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The identification of high-quality wine brands can avoid adulteration and fraud
and protect the rights and interests of producers and consumers. Since the main
components of wine are roughly the same, the characteristic components that can
distinguish wine brands are usually trace amounts and not unique. The conventional
quantitative detection method for brand identification is complicated and difficult.
The naive Bayes (NB) classifier is an algorithm based on probability distribution,
which is simple and particularly suitable for multiclass discriminant analysis. However,
the absorbance probability between spectral wavelengths is not necessarily strongly
independent, which limits the application of Bayes method in spectral pattern
recognition. This research proposed a Bayes classifier algorithm based on wavelength
optimization. First, a large-scale wavelength screening for equidistant combination (EC)
was performed, and then wavelength step-by-step phase-out (WSP) was carried out
to reduce the correlation between wavelengths and improve the accuracy of Bayes
discrimination. The proposed EC-WSP-Bayes method was applied to the 5-category
discriminant analysis of wine brand identification based on visible and near-infrared (Vis-
NIR) spectroscopy. Among them, four types of wine brands were collected from regular
sales channels as identification brands. The fifth type of samples was composed of 21
other commercial brand wines and home-brewed wines from various sources, as the
interference brand. The optimal EC-WSP-Bayes model was selected, the corresponding
wavelength combination was 404, 600, 992, 2,070, 2,266, and 2,462 nm located in
the visible light, shortwave NIR, and combination frequency regions. In modeling and
independent validation, the total recognition accuracy rate (RARTotal) reached 98.1 and
97.6%, respectively. The technology is quick and easy, which is of great significance to
regulate the alcohol market. The proposed model of less-wavelength and high-efficiency
(N = 6) can provide a valuable reference for small special instruments. The proposed
integrated chemometric method can reduce the correlation between wavelengths,
improve the recognition accuracy, and improve the applicability of the Bayesian method.

Keywords: visible and near-infrared spectroscopy, wine, multibrand identification, Bayes classifier, equidistant
combination wavelength screening, wavelength step-by-step phase-out
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INTRODUCTION

High-quality wine is made through the high-quality grape
variety and yeast strain after a unique process; its taste
is pleasant and fragrant scent lead to extremely popular
among consumers. The market demand of wine cannot be
underestimated. The identification of high-quality wine brands
can avoid adulteration and fraud and protect the rights and
interests of producers and consumers.

Normally, the identification methods for wine brands
mainly include manual identification method for wine taster
and quantitative analysis method of multiple characteristic
components. The manual method is obviously subjective bias
and inefficient. Since the main components of wine are roughly
the same, and the characteristic components that can distinguish
wine brands are usually trace amounts and not unique. Therefore,
the required quantitative analysis is complex and expensive.

Near-infrared (NIR) spectroscopy primarily reflects the
vibration absorption of the overtones and combination
frequencies of the hydrogen-containing group X-H (e.g., C–H,
O–H, and N–H). This method usually does not require reagents,
and it can measure samples directly, with the advantages of
being quick and easy. Combined with the visible light region,
visible-near infrared (Vis-NIR) spectroscopy has been applied in
many fields, such as agriculture and food (1–6), environment (7,
8), and biomedicine (9–14).

The qualitative discriminant analysis of spectroscopy is
based on spectral similarity of samples in the same type and
spectral differences of different types of samples to perform
spectral pattern recognition. For the identification of samples
with small differences in component content, the qualitative
discriminant analysis has more significant advantages than
quantitative analysis. It has been applied in many fields, such
as identification of the authenticity of rice seed (15), melon
genotypes (16), transgenic sugarcane leaf (17, 18), and edible
oil types (19), as well as screening for thalassemia (20) and
schizophrenia (21). In recent years, Vis-NIR spectroscopy has
also begun to be applied to the identification of wine (22–
25), mainly focusing on the identification of wine origin. The
identification of wine involves multiclass discriminant analysis
of multiple spectral populations, which is more challenging than
the binary classification problems, and related work is still rare.
The main components of different brands of wine are roughly
the same, but due to different production processes, there are
still differences in the concentration ranges of some components,
resulting in differences in the overall spectra of different wines.
Vis-NIR spectral discriminant analysis has potential application
in wine brand identification.

The partial least squares-discriminant analysis (PLS-DA)
method (26), which is based on quantitative analysis of
category assignment variables, is a well-performed method of
binary classification discriminant analysis. When using PLS-
DA to process multiclass discriminant analysis, it is necessary
to perform multiple binary classification discrimination and
comprehensive evaluation of errors. This process is complicated
and difficult to popularize. When using principal components
analysis-linear discriminant analysis (PCA-LDA) method (26)

to dealing with multiclass discriminant analysis (the number
of classifications is n), it is necessary to determine the optimal
classification surface of n-1 dimension in the n-dimensional
space, which is difficult and complex in mathematics. Thus, the
method is difficult for the multiclass problem.

Based on probability distributions (i.e., prior, conditional,
and posterior) of different spectral populations, Bayes classifier
(27–32) perform spectral pattern recognition. Under certain
assumptions (naive Bayes), compared with the classical
multiregression-based methods (i.e., PLS-DA and PCA-LDA),
this method is simpler and more suitable for multiclass
discriminant analysis. Bayes method only requires calculating
the prior probability that the unknown sample belongs to the k-th
class and the conditional probability of the measured spectrum
when the sample belongs to the k-th class. Furthermore, using
the Bayes formula, the posterior probability that the measured
spectrum is judged as the k-th sample was calculated. The key
point is to use the spectral population data of each class sample
to calculate the conditional probability.

The spectrum is absorbance data with multiple wavelengths.
The naive Bayes (NB) method (27–31) assumes that the
absorbance of each wavelength conforms to a normal
distribution, and the absorbance of different wavelengths is
probabilistically independent. Thus, the probability density
parameter and probability multiplication can be used to
calculate the abovementioned conditional probability. The
calculation method is very simple. When dealing with a
multiclassification problem, it is only necessary to repeatedly
calculate the conditional probability of each class, and then
combined with the Bayes formula, it is completed. There is no
substantial dimensionality difficulty, and it is especially suitable
for multiclass spectral discriminant analysis.

In the previous studies (28, 29), Vis-NIR spectroscopy
combined with the NB method was used to identify unfertilized
duck and chicken eggs before hatching. Moreover, a variety of
spectral pretreatment methods were compared and optimized,
and the prediction accuracy reached 94.54 and 91.67%,
respectively. But, in some other applications, the NB method does
not work well. In a previous study (32), Vis-NIR spectroscopy
was applied to the detection of grapevine leafroll-associated
virus 3 in a red-fruited wine grape cultivar. Both quadratic
discriminant analysis (QDA) and NB methods were used for the
discriminant analysis. The result of NB was significantly weaker
than that of QDA.

In fact, the collinearity between adjacent wavelengths of
Vis-NIR spectrum is relatively serious, and it is difficult to
meet the probabilistic independence assumption of the NB
method about absorbance, which affects the effect of Bayes
classification. In a previous study (30), Vis-NIR spectroscopy was
applied to the detection of citrus greening in citrus leaves. The
classification tree, k-nearest neighbors (kNN), and NB methods
were used to perform four classification discriminant analyses.
The results showed that after the characteristic wavelength
selection, the effect of the Bayes method was significantly
improved, which was better than the other two methods. In
a previous study, NIR spectroscopy combined with the NB
method was applied to the identification of aflatoxin B1 in
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peanut. Through the screening of characteristic wavelengths, the
effect of the Bayes method was significantly improved. Therefore,
the use of appropriate wavelength selection can help overcome
the correlation between spectral wavelengths and improve the
accuracy of Bayes discrimination.

The objectives of this study were to propose a Bayes classifier
algorithm based on wavelength optimization and apply the
method to the 5-category discriminant analysis of wine brand
with Vis-NIR spectra.

First, a large-scale wavelength screening for equidistant
combination (EC) was performed (33–36), and then the
wavelength step-by-step phase-out (WSP) method (14, 37) was
used for secondary wavelength optimization, to reduce the
dependence between wavelengths and improve the accuracy of
Bayes discrimination. To get closer to the actual situation of
wine brand identification in the market, the spectral discriminant
models for accurately identifying four wine brands from a
variety of wines were established. Among them, four types
of wine brands were collected from regular sales channels as
identification brands. The fifth type of samples was composed of
21 other commercial brand wines and home-brewed wines from
various sources, as the interference brand.

EXPERIMENT AND METHODS

Experimental Materials, Instruments, and
Measurement Methods
Four types of red wine brands were collected from regular sales
channels as identification brands (not in order as I, II, III,
and IV), namely, Great Wall (Hebei, China, 2018), Chile Aoyo
(Lenquemira Valley, Chile, 2016), Dynasty (Tianjing, China,
2004), and Changyu (Ningxia, China, 2018) (20 bottles each, 5
samples/bottle, a total of 100 samples for each category). The
grape varieties of the above four brands of red wine were all
Cabernet Sauvignon. The fifth type of samples collected was
regarded as the interference brands (denoted as V, 111 samples in
total), which included 21 other commercial red wines of different
brands and origins (one bottle each brand, 3 samples/bottle,
63 samples in total), as well as home-brewed red wines from
different sources (48 bottles, 1 sample/bottle, 48 samples in total).
In total, 511 samples were used for spectral measurements.

The XDS Rapid ContentTM Liquid Grating Spectrometer
(FOSS, Denmark) and a transmission accessory with 1 mm
cuvette were used for spectral measurement. The spectral scope
ranged as 400–2,498 nm with a 2 nm wavelength interval.
Wavebands of 400–1,100 and 1,100–2,498 nm were used for Si
and PbS detection, respectively. Each sample was measured three
times, and a total of 1,533 spectra (I, II, III, and IV: 300 each, V:
333) were obtained. The experimental temperature and humidity
were 25± 1◦C and 45± 1%, respectively.

Calibration-Prediction-Validation
Framework and Evaluation Indicators
A sample-independent experimental design based on calibration-
prediction-validation was adopted. The calibration and

prediction sets were used for modeling and parameter
optimization, and the selected model was validated using
the independent validation samples that were excluded in the
modeling, thus objective evaluation was obtained.

Each identification brand of wine (20 bottles, 100 samples,
300 spectra) was randomly divided into calibration (8
bottles, 40 samples, 120 spectra), prediction (6 bottles, 30
samples, 90 spectra), and validation (6 bottles, 30 samples, 90
spectra) sets.

The fifth type of samples (V, interference brands) were
divided as follows: 21 other commercial brand wines (21
bottles, 63 samples, 189 spectra) were randomly divided into
calibration (7 bottles, 21 samples, 63 spectra), prediction (7
bottles, 21 samples, 63 spectra), and validation (7 bottles, 21
samples, 63 spectra) sets; home-brewed wines (48 bottles, 48
samples, 144 spectra) were randomly divided into calibration
(18 bottles, 18 samples, 54 spectra), prediction (15 bottles, 15
samples, 45 spectra), and validation (15 bottles, 15 samples,
45 spectra) sets; the total was calibration (39 samples, 117
spectra), prediction (36 samples, 108 spectra), and validation (36
samples, 108 spectra) sets. The calibration-prediction-validation
division for the spectra of five types of samples was shown in
Table 1.

Referring to the previous studies (15, 27, 38), the evaluation
indicators were set as the recognition accuracy rate of each type
sample (RARi, i = 1,2,...,5) and their standard deviation (RARSD),
as well as total recognition accuracy rate (RARTotal) of all samples,
as follows:

RARi =
M̃i

Mi
, i = 1, 2, ..., 5 (1)

RARTotal =
65

i = 1 M̃i

65i = 1 Mi
(2)

where Mi(i = 1, ..., 5) was the number of samples of i-th
category of the prediction set (or validation set), and M̃i was
the number of accurately identified samples in i-th category
samples of the prediction set (or validation set). In the modeling
process, to consider the balance, wavelength models were
preferred according to a comprehensive indicator (RARTotal −

RAR SD).

Spectral Algorithm Framework of Bayes
Classifier
Bayes classifier (27) is a well-known classification method based
on probability theory, which is easy to calculate and is very
suitable for multiclass discrimination problems. For multiclass

TABLE 1 | Calibration-prediction-validation division for the spectra of five types of
samples.

I II III IV V Total

Calibration 120 120 120 120 117 597

Prediction 90 90 90 90 108 468

Validation 90 90 90 90 108 468

Total 300 300 300 300 333 1533
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spectral discriminant analysis, the calculation formula of the
Bayes classifier is as follows:

P
(
Class = k

∣∣ Spectrum
)

=
P
(
Sepctrum

∣∣ Class = k
)
P(Class = k)

65i = 1 P
(
Spectrum

∣∣ Class = i
)
P(Class = i)

,

k = 1, ..., 5 (3)

where P
(
Class = k

∣∣ Spectrum
)

was the posterior probability
that the measured spectrum was judged as the k-th sample;
P(Class = k) was the prior probability that the unknown sample
belongs to the k-th class; and P

(
Sepctrum

∣∣ Class = k
)

was
the conditional probability of the measured spectrum when the
sample belongs to the k-th class. Finally, the category of the
unknown sample was determined according to the maximum
of posterior probability P

(
Class = k

∣∣ Spectrum
)
. The difficulty

of this algorithm lies in the calculation of the conditional
probability P

(
Sepctrum

∣∣ Class = k
)

based on the spectrum
because it involves the problem of high-dimensional multivariate
probability distribution associated with many wavelengths.

The NB method is based on the assumption that the
absorbance of a single wavelength conforms to the normal
distribution, and the absorbance of different wavelengths is
probabilistically independent. The method can decompose the
multivariate probability distribution problem into multiple
independent unary probability distribution problems, which is
easy to calculate and popularize. To avoid the overflow of a
large amount of data calculation, this article made appropriate
improvements to the method. The specific steps are as follows:

1) Calculation of prior probability P(Class = k): according to the
percentage of the total number of samples in the calibration
set or assign equal probability to each type of sample.

2) Calculation of conditional probability P(Spectrum| Class = k):
the corresponding wavelength model contained s wavelengths,
denoted as λ1, ...,λs; according to the assumption that the
absorbance at a single wavelength obeys a normal distribution,
the mathematical expectation and standard deviation of the
absorbance of each type of sample in calibration set were
calculated at each wavelength λi; furthermore, at each λi,
the probability density was used to calculate the conditional

FIGURE 1 | Schematic diagram of modeling framework.

probability P(Spectrumi| Class = k) (i = 1, ..., s) of the
corresponding absorbance value; according to the assumption
of independence, the probability multiplication was used to
calculate the conditional probability, as follows:

P
(
Spectrum

∣∣ Class = k
)
=

s∏
i = 1

P(Spectrumi|Class = k)

(4)

Notably, to avoid calculation overflow, the following
calculation was proposed:

ln
(
P
(
Spectrum

∣∣ Class = k
))

=
s
6

i = 1
ln(P(Spectrumi| Class = k)) (5)

3) Finally, the unknown sample was judged as the category
corresponding to the maximum value of ln(P(Spectrum|
Class = k)).

Equidistant Combination-Bayes Method
As we know, the NB method (27–31) is based on the
assumption that the absorbances of different wavelengths
are probabilistically independent. However, the absorbance
probability between spectral wavelengths is not necessarily
strongly independent, which limits the application of Bayes
method in spectral pattern recognition. In previous studies (33–
36), the wavelength screening method of EC combined with
multiple linear regression and PLS regression can overcome the
collinearity of the spectrum and has been successfully applied
to the quantitative analysis of multiple objects in the NIR
spectroscopy. Drawing on the above research, the wavelength
screening method of EC is integrated with the Bayes classifier
algorithm (denoted as EC-Bayes) to reduce the correlation
between wavelengths, improve the recognition accuracy, and
reduce the complexity of the model.

FIGURE 2 | Average spectra of five types of wine and the spectrum of distilled
water in the visible and near-infrared (Vis-NIR) region.
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TABLE 2 | Recognition accuracy rates (%) of direct Bayes model in modeling.

Method N RAR1 RAR2 RAR3 RAR4 RAR5 RARTotal RARSD

Bayes 1050 92.2% 100.0% 94.4% 94.4% 94.4% 95.1% 2.9%

The EC-Bayes method used all equidistant wavelength models
in a wavelength range to establish Bayes models. The search
parameters were set as follows: (1) the initial wavelength
(I), (2) number of wavelengths (N), and (3) number of
wavelength gaps (G). Then, the optimal wavelength model was
selected based on the comprehensive indicator (RARTotal −

RAR SD).
In this research, the whole spectral region (400–2,498 nm) was

used as the screening of the EC-Bayes method. The parameters
I, N, and G were set as I∈ {400,402,...,2,498}; N∈{1,2,...,1,050};
and G∈ {1,2,...,50}. Furthermore, the ending wavelength (E) was
determined as follows:

E = I + 2(N − 1)G (6)

Equidistant Combination-Wavelength
Step-by-Step Phase-Out-Bayes Method
Wavelength step-by-step phase-out is a well-executed secondary
wavelength optimization method (14, 37). In this study, it is
further used to improve the preferred EC-Bayes model (denoted
as EC-WSP-Bayes). It can eliminate the interference wavelengths
in the wavelength models obtained by optimization strategy of
EC-Bayes. The algorithm framework is as follows: first, each
time eliminated a wavelength, whose removing resulted in the
best recognition accuracy, until only one wavelength remained;
then, the optimal model was selected from the above-mentioned

FIGURE 4 | Position of the wavelength combination of the optimal equidistant
combination (EC)-wavelength step-by-step phase-out (WSP)-Bayes model
labeled in the average spectrum.

process of wavelengths elimination by step-by-step phase-out
mode [refer to Ref. (14, 37) for details].

The computer algorithms for the above-mentioned methods
were designed using the MATLAB version 2016b software.
Moreover, the schematic diagram of modeling framework is
shown in Figure 1.

RESULTS AND DISCUSSION

Direct Bayes Model
The average spectra of five types of wine in the Vis-NIR
region (400–2,498 nm) are illustrated in Figure 2. In general,

TABLE 3 | Recognition accuracy rates (%) of the optimal equidistant combination (EC)-Bayes model in modeling.

Method I E N G RAR1 RAR2 RAR3 RAR4 RAR5 RARTotal RARSD

EC-Bayes 404 2462 22 49 93.3% 100.0% 95.6% 95.6% 100.0% 97.0% 2.7%

FIGURE 3 | Comparison of the top 10 equidistant combination (EC)-Bayes models and corresponding EC-wavelength step-by-step phase-out (WSP)-Bayes
models: (A) RARTotal ; (B) number of wavelengths.
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the composition of red wine can be broadly represented on
a w/w basis as 86% water, 11% ethanol, and 3% for the
remainder, which includes sugars, phenols, organic acids, and
many other low-content components (22). For comparison, the
spectrum of distilled water is also shown in Figure 2 (dashed
line). Comparing the spectra of wine and distilled water in
Figure 2, it can be observed that the two strong absorptions
near 1,450 and 1,930 nm in the wine spectrum correspond to
the absorption of water molecules. At 2,100–2,400 nm in the
combination frequency region, and 400–700 nm in the visible
light region, the weak absorption of components other than
moisture was observed. The average spectrum of the five types
of spectra was not significantly different in the NIR region (780–
2,498 nm).

Based on the entire scanning region (400–2,498 nm,
N = 1,050), the direct Bayes model was established first. The
RARTotal of modeling was 95.1%, and the RARi of the five types
were 92.2, 100.0, 94.4, 94.4, and 94.4%, respectively (refer also to
Table 2).

Equidistant Combination-Bayes Model
The EC-Bayes method was used for wavelength model
optimization based on the selection of multiparameter
combination (I, N, and G). The parameters of the optimal
model were I = 404 nm, N = 22, and G = 49. According to Eq. 6,
the corresponding ending wavelength E was 2,462 nm. The
RARi of the five types were 93.3, 100.0, 95.6, 95.6, and 100.0%,
respectively, and the RARTotal of modeling increased to 97.0%
(refer also to Table 3).

The number of wavelengths (N = 22) of the optimal EC-Bayes
model was only 2.1% of the direct Bayes model (N = 1,050). The
wavelength model was greatly simplified, but the discrimination
effect was improved.

Equidistant Combination-Wavelength
Step-by-Step Phase-Out-Bayes Model
Since the models processed by the EC-Bayes method were
likely to still contain redundant wavelengths, the EC-WSP-
Bayes method discussed in Section “Equidistant Combination-
Wavelength Step-by-Step Phase-Out-Bayes Method” was further
used to improve the selected EC-Bayes models. Specifically,
the Top 10 EC-Bayes models were selected according to a
comprehensive indicator (RARTotal − RARSD) in order from
largest to smallest. Then, the corresponding 10 optimized EC-
WSP-Bayes models were determined; furthermore, the optimal
EC-WSP-Bayes model was determined from them.

The modeling effects (RARTotal) and the number of
wavelengths of the Top10 EC-Bayes models and corresponding
EC-WSP-Bayes models are shown in Figure 3. It illustrated
that for all of the Top 10 EC-Bayes models, after the process of

FIGURE 5 | Total recognition accuracy rate (RARTotal ) in the process of
wavelength step-by-step phase-out (WSP) for the equidistant combination
(EC)-Bayes model.

WSP, the number of wavelengths was all greatly reduced, and the
discrimination effects were all improved.

The optimal EC-WSP-Bayes model was selected (No. 10,
N = 6), the corresponding wavelength combination was 404,
600, 992, 2,070, 2,266, and 2,462 nm located in the visible light,
shortwave NIR, and combination frequency regions. The position
of the wavelength combination of the optimal EC-WSP-Bayes
model labeled in the average spectrum is showed in Figure 4. The
RARi of the five types were 94.4, 100.0, 100.0, 95.6, and 100.0%,
respectively, and the RARTotal of modeling further increased
to 98.1% (refer also to Table 4). Figure 5 shows the values of
RARTotal in the process of WSP for the EC-Bayes model (No. 10),
which reached maximum when N = 6.

Notably, the wavelength combination of the optimal EC-WSP-
Bayes model is greatly simple and effective, which indicated
that the WSP method is very necessary. The corresponding
wavelength combination has reference value for the development
of small special instrument.

Independent Validation
A total of 468 spectra of the validation samples (90 for each
of I, II, III, and IV, 108 for V), who did not participate in the
modeling process, were used to validate the effect of the optimal
EC-WSP-Bayes model. Using the mathematical expectation and
standard deviation of the spectral absorbance in the calibration
set, the conditional probability of the spectra in validation set was
calculated, and the type of validation samples was determined. In
validation, the RARi of the five types were 93.3, 100.0, 97.8, 100.0,
and 97.2%, respectively, and the RARTotal was 97.6% (refer also
to Table 5). The results showed that the optimal EC-WSP-Bayes
model also achieved a good performance in validation.

TABLE 4 | Recognition accuracy rates (%) of the optimal equidistant combination (EC)-wavelength step-by-step phase-out (WSP)-Bayes model in modeling.

Method I E N RAR1 RAR2 RAR3 RAR4 RAR5 RARTotal RARSD

EC-WSP-Bayes 404 2462 6 94.4% 100.0% 100.0% 95.6% 100.0% 98.1% 2.8%
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TABLE 5 | Recognition accuracy rates (%) of optimal equidistant combination (EC)-wavelength step-by-step phase-out (WSP)-Bayes model in validation.

Method I E N RAR1 RAR2 RAR3 RAR4 RAR5 RARTotal RARSD

EC-WSP-Bayes 404 2462 6 93.3% 100.0% 97.8% 100.0% 97.2% 97.6% 2.7%

To facilitate the observation of the identification of the
validation sample’s spectra, the class i samples were assigned the
categorical value i, i = 1, 2, ..., 5, respectively. Using the optimal
EC-WSP-Bayes model, the correctness of the identification for
the spectra of the validation samples is shown in Figure 6. Among
them, 6 spectra of type 1 samples and 2 spectra of type 3 samples
were misjudged as type 5; 3 spectra of type 5 samples were
misjudged as type 1; and the remaining 457 spectra were all
correctly identified.

It is worth mentioning that, to get closer to the actual situation
of wine brand identification in the market, this study adopted the
following experimental design: four types of wine brands were
collected from regular sales channels as identification brands.
The fifth type of samples was composed of 21 other commercial
brand wines and home-brewed wines from various sources, as
the interference brand. As more brands of wine are involved,
the 5-category problem in this study is more difficult than the
5-category problem for pure samples, but it is closer to the
actual situation.

The article proposed an integrated optimization method
(EC-Bayes, EC-WSP-Bayes), which improved the existing NB
method and can overcome the independence requirement of
the NB algorithm framework. The aim in this study was
to compare the discriminative performance of the existing
NB and the improved method. Furthermore, WSP was a
simple backward elimination method. EC-WSP-Bayes made
the secondary optimization for the Top 10 models of EC-
Bayes by using WSP. Through the independent validation
of the 5-category models of wine brands, the EC-WSP-Bayes
method achieved significantly better discriminant effect, and the
wavelength model was more concise. This method can be applied
to wider fields in food and nutrition.

FIGURE 6 | Identification for the spectra of the validation samples based on
the optimal equidistant combination (EC)-wavelength step-by-step phase-out
(WSP)-Bayes model.

CONCLUSION

The NB classifier is an algorithm based on probability
distribution, which is simple and particularly suitable for
multiclass discriminant analysis. However, the absorbance
probability between spectral wavelengths is not necessarily
strongly independent, which limits the application of the Bayes
method in spectral pattern recognition.

In this study, a Bayes classifier algorithm based on wavelength
optimization was proposed and applied to the 5-category
discriminant analysis of wine brand with Vis-NIR spectra. The
Bayes classifier algorithm was integrated with the wavelength
screening methods of EC and WSP, which reduced the correlation
between wavelengths, improved the recognition accuracy, and
improved the applicability of the Bayesian method. In the
5-category discriminant analysis of wine brands, the total
discrimination accuracy of the validation set reached 97.6%.
The proposed model of less-wavelength (N = 6) and high-
efficiency provided a valuable reference for small special
instruments. The proposed Bayes classifier algorithm with
wavelength optimization is simpler and efficient compared with
the classical Bayes method and is also expected to be applied to
spectral discriminant analysis in other fields.

The technology is quick and easy and has potential in food
characterization, traceability, and authenticity of food matrices,
such as protected geographical indication (PGI) and protected
designation of origin (PDO) of food products, which is of great
significance to food safety and nutrition.

DATA AVAILABILITY STATEMENT

The original contributions presented in this study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

TP and JC contributed to conception and design of the study.
JL, CF, and NC organized the database. JL, CF, NC, and TP
performed the statistical analysis. TP and JL wrote the first draft
of the manuscript. All authors wrote sections of the manuscript,
contributed to manuscript revision, read, and approved the
submitted version.

FUNDING

This study was supported by the National Natural Science
Foundation of China (No. 61078040) and the Science and
Technology Project of Guangdong Province of China (Nos.
2014A020213016 and 2014A020212445).

Frontiers in Nutrition | www.frontiersin.org 7 July 2022 | Volume 9 | Article 796463

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/
https://www.frontiersin.org/journals/nutrition#articles


fnut-09-796463 July 12, 2022 Time: 15:20 # 8

Pan et al. Wine Multibrand Identification

REFERENCES
1. Tumsavas Z. Application of visible and near infrared reflectance spectroscopy

to predict total nitrogen in soil. J Environ Biol. (2017) 38:1101–6. doi: 10.
22438/jeb/38/5(SI)/GM-29

2. Pudelko A, Chodak M. Estimation of total nitrogen and organic
carbon contents in mine soils with NIR reflectance spectroscopy
and various chemometric methods. Geoderma. (2020) 368:114306.
doi: 10.1016/j.geoderma.2020.114306

3. Chen H, Pan T, Chen J, Lu Q. Waveband selection for NIR spectroscopy
analysis of soil organic matter based on SG smoothing and MWPLS methods.
Chemometr Intell Lab. (2011) 107:139–46. doi: 10.1016/j.chemolab.2011.02.
008

4. Pan T, Han Y, Chen J, Yao L, Xie J. Optimal partner wavelength
combination method with application to near-infrared spectroscopic analysis.
Chemometr Intell Lab. (2016) 156:217–23. doi: 10.1016/j.chemolab.2016.0
5.022

5. Liu Z, Liu B, Pan T, Yang J. Determination of amino acid nitrogen in
tuber mustard using near-infrared spectroscopy with waveband selection
stability. Spectrochim Acta A. (2013) 102:269–74. doi: 10.1016/j.saa.2012.1
0.006

6. Chen J, Liao S, Yao L, Pan T. Rapid and simultaneous analysis of multiple wine
quality indicators through near-infrared spectroscopy with twice optimization
for wavelength model. Front Optoelectr. (2020) 14:329–40. doi: 10.1007/
s12200-020-1005-3

7. Sousa AC, Lucio MMLM, Bezerra OF, Marcone GPS, Pereira AFC,
Dantas EO, et al. A method for determination of COD in a domestic
wastewater treatment plant by using near-infrared reflectance spectrometry
of seston. Anal Chim Acta. (2007) 588:231–6. doi: 10.1016/j.aca.2007.0
2.022

8. Pan T, Chen Z, Chen J, Liu Z. Near-infrared spectroscopy with waveband
selection stability for the determination of COD in sugar refinery
wastewater. Anal Methods UK. (2012) 4:1046–52. doi: 10.1039/c2ay05
856a

9. Jiang J-H, Berry RJ, Siesler HW, Ozaki Y. Wavelength interval selection in
multicomponent spectral analysis by moving window partial least-squares
regression with applications to mid-infrared and hear-infrared spectroscopic
data. Anal Chem. (2002) 74:3555–65. doi: 10.1021/ac011177u

10. Pan T, Liu J, Chen J, Zhang G, Zhao Y. Rapid determination of preliminary
thalassaemia screening indicators based on near-infrared spectroscopy with
wavelength selection stability. Anal Methods UK. (2013) 5:4355–62. doi: 10.
1039/c3ay40732b

11. Chen J, Yin Z, Tang Y, Pan T. Vis-NIR spectroscopy with moving-window PLS
method applied to rapid analysis of whole blood viscosity. Anal Bioanal Chem.
(2017) 409:2737–45. doi: 10.1007/s00216-017-0218-9

12. Chen J, Peng L, Han Y, Yao L, Zhang J, Pan T. A rapid quantification method
for the screening Indicator for β-thalassemia with near-infrared spectroscopy.
Spectrochim Acta A. (2018) 193:499–506. doi: 10.1016/j.saa.2017.1
2.068

13. Pan T, Wu Z, Chen H. Waveband optimization for near-infrared spectroscopic
analysis of total nitrogen in soil. Chinese J Anal Chem. (2012) 40:920–4. doi:
10.3724/SP.J.1096.2012.10987

14. Tan H, Liao S, Pan T, Zhang J, Chen J. Rapid and simultaneous analysis
of direct and indirect bilirubin indicators in serum through reagent-
free visible-near-infrared spectroscopy combined with chemometrics.
Spectrochim Acta A. (2020) 233:118215. doi: 10.1016/j.saa.2020.11
8215

15. Chen J, Li M, Pan T, Pang L, Yao L, Zhang J. Rapid and non-destructive analysis
for the identification of multi-grain rice seeds with near-infrared spectroscopy.
Spectrochim Acta A. (2019) 219:179–85. doi: 10.1016/j.saa.2019.0
3.105

16. Seregély Z, Deák T, Bisztray GD. Distinguishing melon genotypes using
NIR spectroscopy. Chemometr Intell Lab. (2004) 72:195–203. doi: 10.1016/j.
chemolab.2004.01.013

17. Guo H, Chen J, Pan T, Wang J, Cao G. Vis-NIR wavelength selection for
non-destructive discriminant analysis of breed screening of transgenic
sugarcane. Anal Methods UK. (2014) 6:8810–6. doi: 10.1039/c4ay01
833h

18. Yao L, Xu W, Pan T, Chen J. Moving-window bis-correlation coefficients
method for visible and near-infrared spectral discriminant analysis with
applications. J Innov Opt Heal Sci. (2018) 11:1850005. doi: 10.1142/
S1793545818500050

19. Hong Y, Joseph I, Manish MP. Discriminant analysis of edible oils and fats
by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chem. (2005) 93:25–32.
doi: 10.1016/j.foodchem.2004.08.039

20. Liu K-Z, Tsang KS, Li CK, Shaw RA, Mantsch HH. Infrared spectroscopic
identification of beta-thalassemia. Clin Chem. (2003) 49:1125–32. doi: 10.
1373/49.7.1125

21. Chuang C-C, Nakagome K, Pu S, Lan T-H, Lee C-Y, Sun C-W. Discriminant
analysis of functional optical topography for schizophrenia diagnosis. J Biomed
Opt. (2013) 19:011006. doi: 10.1117/1.JBO.19.1.011006

22. Ranaweera RKR, Capone DL, Bastian SEP, Cozzolino D, Jeffery DWA.
Review of Wine Authentication Using Spectroscopic Approaches in
Combination with Chemometrics. Molecules. (2021) 26:4334. doi: 10.3390/
molecules26144334

23. Cozzolino D, Cynkar WU, Shah N, Smith PA. Can spectroscopy geographically
classify Sauvignon Blanc wines from Australia and New Zealand? Food Chem.
(2011) 126:673–8. doi: 10.1016/j.foodchem.2010.11.005

24. Martelo-Vidal M, Domínguez-Agis F, Vázquez M. Ultraviolet/visible/near-
infrared spectral analysis and chemometric tools for the discrimination of
wines between subzones inside a controlled designation of origin: a case study
of Rías Baixas. Aust J Grape Wine R. (2013) 19:62–7. doi: 10.1111/ajgw.1
2003

25. Hu XZ, Liu SQ, Li XH, Wang CX, Ni XL, Liu X, et al. Geographical
origin traceability of Cabernet Sauvignon wines based on Infrared fingerprint
technology combined with chemometrics. Sci Rep UK. (2019) 9:8256. doi:
10.1038/s41598-019-44521-8

26. Emil W, Benoit I, Jerome W, Burns DA. Handbook of Near-Infrared Analysis.
4th ed. Boca Raton, FL: CRC Press (2021).

27. Fearn T, Pérez-Marín D, Garrido-Varo A, Guerrero-Ginel JE. Classifying with
confidence using Bayes rule and kernel density estimation. Chemometr Intell
Lab. (2019) 189:81–7. doi: 10.1016/j.chemolab.2019.04.004

28. Dong J, Dong X, Li Y, Peng Y, Chao K, Gao C, et al. Identification
of unfertilized duck eggs before hatching using visible/near infrared
transmittance spectroscopy. Comput Electron Agr. (2019) 157:471–8. doi: 10.
1016/j.compag.2019.01.021

29. Dong J, Dong X, Li Y, Zhang B, Zhao L, Chao K, et al. Prediction of
infertile chicken eggs before hatching by the Naive-Bayes method combined
with visible near infrared transmission spectroscopy. Spectrosc Lett. (2020)
53:327–36. doi: 10.1080/00387010.2020.1748061

30. Ma H, Ji H, Lee W. Detection of citrus greening based on Vis-NIR
spectroscopy and spectral feature analysis. Spectrosc Spect Anal. (2014)
34:2713–8. doi: 10.3964/j.issn.1000-0593201410-2713-06

31. Zhang S, Li Z, An J, Yang Y, Tang X. Identification of aflatoxin B1
in peanut using near-infrared spectroscopy combined with naive Bayes
classifier. Spectrosc Lett. (2021) 54:340–51. doi: 10.1080/00387010.2021.19
31792

32. Sinha R, Khot LR, Rathnayake AP, Gao Z, Naidu RA. Visible-near infrared
spectroradiometry-based detection of grapevine leafroll-associated virus 3 in
a red-fruited wine grape cultivar. Comput Electron Agr. (2019) 162:165–73.
doi: 10.1016/j.compag.2019.04.008

33. Lyu N, Chen J, Pan T, Yao L, Han Y, Yu J. Near-infrared spectroscopy
combined with equidistant combination partial least squares applied to
multi-index analysis of corn. Infrared Phys Techn. (2016) 76:648–54. doi:
10.1016/j.infrared.2016.01.022

34. Pan T, Li M, Chen J. Selection method of quasi-continuous wavelength
combination with applications to the near-infrared spectroscopic analysis
of soil organic matter. Appl Spectrosc. (2014) 68:263–71. doi: 10.1366/13-0
7088

35. Han Y, Chen J, Pan T, Liu G. Determination of glycated hemoglobin
using near-infrared spectroscopy combined with equidistant combination
partial least squares. Chemometr Intell Lab. (2015) 145:84–92. doi: 10.1016/
j.chemolab.2015.04.015

36. Yao L, Lyu N, Chen J, Pan T, Yu J. Joint analyses model for total cholesterol
and triglyceride in human serum with near-infrared spectroscopy. Spectrochim
Acta A. (2016) 159:53–9.

Frontiers in Nutrition | www.frontiersin.org 8 July 2022 | Volume 9 | Article 796463

https://doi.org/10.22438/jeb/38/5(SI)/GM-29
https://doi.org/10.22438/jeb/38/5(SI)/GM-29
https://doi.org/10.1016/j.geoderma.2020.114306
https://doi.org/10.1016/j.chemolab.2011.02.008
https://doi.org/10.1016/j.chemolab.2011.02.008
https://doi.org/10.1016/j.chemolab.2016.05.022
https://doi.org/10.1016/j.chemolab.2016.05.022
https://doi.org/10.1016/j.saa.2012.10.006
https://doi.org/10.1016/j.saa.2012.10.006
https://doi.org/10.1007/s12200-020-1005-3
https://doi.org/10.1007/s12200-020-1005-3
https://doi.org/10.1016/j.aca.2007.02.022
https://doi.org/10.1016/j.aca.2007.02.022
https://doi.org/10.1039/c2ay05856a
https://doi.org/10.1039/c2ay05856a
https://doi.org/10.1021/ac011177u
https://doi.org/10.1039/c3ay40732b
https://doi.org/10.1039/c3ay40732b
https://doi.org/10.1007/s00216-017-0218-9
https://doi.org/10.1016/j.saa.2017.12.068
https://doi.org/10.1016/j.saa.2017.12.068
https://doi.org/10.3724/SP.J.1096.2012.10987
https://doi.org/10.3724/SP.J.1096.2012.10987
https://doi.org/10.1016/j.saa.2020.118215
https://doi.org/10.1016/j.saa.2020.118215
https://doi.org/10.1016/j.saa.2019.03.105
https://doi.org/10.1016/j.saa.2019.03.105
https://doi.org/10.1016/j.chemolab.2004.01.013
https://doi.org/10.1016/j.chemolab.2004.01.013
https://doi.org/10.1039/c4ay01833h
https://doi.org/10.1039/c4ay01833h
https://doi.org/10.1142/S1793545818500050
https://doi.org/10.1142/S1793545818500050
https://doi.org/10.1016/j.foodchem.2004.08.039
https://doi.org/10.1373/49.7.1125
https://doi.org/10.1373/49.7.1125
https://doi.org/10.1117/1.JBO.19.1.011006
https://doi.org/10.3390/molecules26144334
https://doi.org/10.3390/molecules26144334
https://doi.org/10.1016/j.foodchem.2010.11.005
https://doi.org/10.1111/ajgw.12003
https://doi.org/10.1111/ajgw.12003
https://doi.org/10.1038/s41598-019-44521-8
https://doi.org/10.1038/s41598-019-44521-8
https://doi.org/10.1016/j.chemolab.2019.04.004
https://doi.org/10.1016/j.compag.2019.01.021
https://doi.org/10.1016/j.compag.2019.01.021
https://doi.org/10.1080/00387010.2020.1748061
https://doi.org/10.3964/j.issn.1000-0593201410-2713-06
https://doi.org/10.1080/00387010.2021.1931792
https://doi.org/10.1080/00387010.2021.1931792
https://doi.org/10.1016/j.compag.2019.04.008
https://doi.org/10.1016/j.infrared.2016.01.022
https://doi.org/10.1016/j.infrared.2016.01.022
https://doi.org/10.1366/13-07088
https://doi.org/10.1366/13-07088
https://doi.org/10.1016/j.chemolab.2015.04.015
https://doi.org/10.1016/j.chemolab.2015.04.015
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/
https://www.frontiersin.org/journals/nutrition#articles


fnut-09-796463 July 12, 2022 Time: 15:20 # 9

Pan et al. Wine Multibrand Identification

37. Yang Y, Lei F, Zhang J, Yao L, Chen J, Pan T. Equidistant combination
wavelength screening and step-by-step phase-out method for the near-infrared
spectroscopic analysis of serum urea nitrogen. J Innov Opt Heal Sci. (2019)
12:1950018. doi: 10.1142/S1793545819500184

38. Tao S, Hong Y, Yuan Z. Discrimination of gentiana and its related
species using IR spectroscopy combined with feature selection and
stacked generalization. Molecules. (2020) 25:1442. doi: 10.3390/molecules250
61442

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Pan, Li, Fu, Chang and Chen. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Nutrition | www.frontiersin.org 9 July 2022 | Volume 9 | Article 796463

https://doi.org/10.1142/S1793545819500184
https://doi.org/10.3390/molecules25061442
https://doi.org/10.3390/molecules25061442
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/
https://www.frontiersin.org/journals/nutrition#articles

	Visible and Near-Infrared Spectroscopy Combined With Bayes Classifier Based on Wavelength Model Optimization Applied to Wine Multibrand Identification
	Introduction
	Experiment and Methods
	Experimental Materials, Instruments, and Measurement Methods
	Calibration-Prediction-Validation Framework and Evaluation Indicators
	Spectral Algorithm Framework of Bayes Classifier
	Equidistant Combination-Bayes Method
	Equidistant Combination-Wavelength Step-by-Step Phase-Out-Bayes Method

	Results and Discussion
	Direct Bayes Model
	Equidistant Combination-Bayes Model
	Equidistant Combination-Wavelength Step-by-Step Phase-Out-Bayes Model
	Independent Validation

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


