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Ferroptosis is an iron-dependent programmed cell death, which is different

from apoptosis, necrosis, and autophagy. Specifically, under the action of

divalent iron or ester oxygenase, unsaturated fatty acids that are highly

expressed on the cell membrane are catalyzed to produce lipid

peroxidation, which induces cell death. In addition, the expression of the

antioxidant system [glutathione (GSH) and glutathione peroxidase 4 (GPX4)]

is decreased. Ferroptosis plays an important role in the development of diabetes

mellitus and its complications. In this article, we review the molecular

mechanism of ferroptosis in the development of diabetes mellitus and its

complications. We also summarize the emerging questions in this particular

area of research, some of which remain unanswered. Overall, this is a

comprehensive review focusing on ferroptosis-mediated diabetes and

providing novel insights in the treatment of diabetes from the perspective of

ferroptosis.
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Introduction

In 2012, Brent R. Stockwell and his team found that erastin, a selectively lethal

small molecule of oncogenic RAS, triggered a unique form of iron-dependent

nonapoptotic cell death—a new form of cell death, called ferroptosis (Dixon et al.,

2012). Ferroptosis is a kind of regulated cell death that primarily relies on iron-

mediated oxidative damage and follows cell membrane damage (Chen et al., 2021a).

Unlike previous forms of cell death, cells that experience ferroptosis exhibit atypical

features of apoptosis. Morphologically, in erastin-induced cell death, mitochondria

become smaller with increasing membrane density and the number of mitochondrial

cristae decreases, without swelling of the cytoplasm and organelles (Lei et al., 2022).

Increased iron accumulation, free-radical production, fatty-acid supply, and lipid

peroxidation are crucial for the development of ferroptosis (Chen et al., 2021a). Key
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proteins in ferroptosis-related signaling pathways can be

targeted by drugs or some small-molecule inhibitors.

Since the discovery of ferroptosis, many studies have

confirmed that ferroptosis is related to the occurrence and

development of many diseases, such as cancer, diabetes, and

ischemia–reperfusion injury (Stockwell et al., 2017; Wei et al.,

2020). According to the 10th edition of the International

Diabetes Federation (IDF) diabetes atlas, diabetes is one of

the fastest growing global health emergencies in the 21st

century, and the number of people with diabetes worldwide

is expected to reach 643 million by 2030 (Oka et al., 2021).

Absolute or relative insufficiency of insulin secretion from

pancreatic β-cells is the culprit of diabetes. Pancreatic islet

cells are more sensitive to oxygen than other cells and have

relatively weak antioxidant capacity. Pancreatic islets are

prone to death when attacked by free radicals or when

oxidative stress occurs in the islet microenvironment

(Bottino et al., 2004; Wang and Wang, 2017). A number of

FIGURE 1
Mechanisms of how ferroptosis occurs and how it is inhibited in pancreatic islet cells. System Xc- is a cystine/glutamate antiporter system
consisting of SLC7A11 and SLC3A2. After cystine enters the cell, it is reduced to cysteine, which becomes the raw material for the synthesis of GSH,
and GSH becomes the reducing cofactor of GPX4. Glutamate cysteine ligase (GCL) and GSH synthase (GS) are the rate-limiting enzymes in the GSH
biosynthesis pathway. DHODH is involved in the regulation of ferroptosis independent of GSH pathway. FSP1 reduces CoQ through NAD(P)H,
thereby reducing lipid free radicals and thereby inhibiting ferroptosis. Iron ions entering the cells undergo the Fenton reaction, which causes the
peroxidation of PUFAs to generate lipid peroxides, resulting in the destruction of the cell membrane structure and the occurrence of ferroptosis. This
peroxidation is regulated by three synthetases: ACSL4, LPCAT3, and LOX. Transferrin imports iron from the extracellular environment to the
intracellular state through TfR1 recognition, and excess iron is stored in the form of bound ferritin and transported to cells under the action of FPN1.
Transferrin imports Fe3+ (yellow ball) from the extracellular environment to the cytoplasm of islet β-cell through TfR1 recognition, and then Fe3+ is
converted to Fe2+ (light green ball). The excess iron is stored in the form of bound ferritin and finally effluxed by FPN. Activation of p53 severely
reduced the protein level of SLC7A11 and thus mediated ferroptosis. When the organism is under oxidative stress, Nrf2 dissociates from Keap1 and
interacts with the ARE of target genes tomaintain cellular redox homeostasis. The Nrf2-HO-1 pathway canmodulate intracellular iron concentration
to suppress ferroptosis. Nrf2 inhibits ferroptosis directly through the PPARγ pathway. Small molecules in green in the figure can inhibit ferroptosis,
including: Vitamin E, Metformin, Deferoxamine, Liproxstatin-1, Ferrostatin-1, Deferiprone, CCA, ROSI. Small molecules in red can induce ferroptosis,
including Erastin and RSL3. Abbreviation, System Xc-, a cystine/glutamate antiporter system; GSH, glutathione; GPX4, glutathione peroxidase; GCL,
glutamate cysteine ligase; GS, GSH synthase; RSL3, RAS-selective lethal 3; DHODH, dihydroorotate dehydrogenase; FSP1, ferroptosis suppressor
protein 1; CoQ, coenzyme Q; PUFAs, polyunsaturated fatty acids; ACSL4, acyl-CoA synthetase long-chain family member 4; LPCAT3,
lysophosphatidylcholine acyltransferase 3; LOX, lipoxygenase; TfR1, transferrin receptor 1; FPN1, ferroportin; ARE, antioxidant response element;
CCA, cryptochlorhydric acid; ROSI, rosiglitazone.
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small molecules have been found to improve β-cell function by

inhibiting certain pathways of ferroptosis (Bannai et al., 1977;

Zhou, 2020), which provides more possibilities for clinical

treatment of diabetes. This article reviews the general

mechanism of ferroptosis and the role of ferroptosis in the

development of diabetes, thereby providing a comprehensive

understanding for early diagnosis, treatment, and prognosis of

diabetes.

Molecular mechanisms of ferroptosis

As a new form of cell death, ferroptosis was originally

discovered by the selective inhibition of erastin and RAS-

selective lethal 3 (RSL3) (Yang and Stockwell, 2008). These

two compounds are known to target RAS-mutant tumors

(Dolma et al., 2003). Thereafter, detailed research has been

performed on ferroptosis, demonstrating that compared with

other forms of cell death, ferroptosis is a new, nonapoptotic

programmed cell death (PCD).

Inhibition of system
Xc−–GSH–GPX4 activity promotes
ferroptosis

System Xc−, a cystine/glutamate antiporter system, is an

antiporter made up of two subunits, SLC7A11 (solute carrier

family 7 member 11), which is the light chain of the subunit, and

SLC3A2 (solute carrier family 3 member 2), which is the heavy

chain of the subunit (Koppula et al., 2018). SLC7A11 is

responsible for the main transport activity and is profoundly

specific for cystine and glutamate, while SLC3A2 acts as a

chaperonin. System Xc− transports a molecule of glutamate

out of the cell for every molecule of cystine delivered into the

cell (Liu et al., 2021). Cystine is reduced to cysteine, which

becomes the raw material for the synthesis of glutathione

(GSH). Subsequently, GSH becomes a reducing cofactor for

glutathione peroxidase, including glutathione peroxidase 4

(GPX4) and phospholipid hydroperoxide glutathione

peroxidase (PHGPx).

GSH, which is mainly distributed in the cytoplasm, can

scavenge reactive oxygen species (ROS) and play an important

role in inhibiting ferroptosis (Wu et al., 2004). Inhibition of GSH

synthesis leading to its depletion can lead to ferroptosis.

L-glutamic acid, cysteine, and glycine are needed to synthesize

GSH with energy provided by adenosine triphosphate (ATP).

When erastin inhibits system Xc−, the source of cysteine is

reduced and the amount of GSH synthesis decreases, which in

turn leads to the accumulation of lipid peroxides, triggers protein

and membrane damage, and initiates ferroptosis. Glutamate

cysteine ligase (GCL) and GSH synthase (GS) are the rate-

limiting enzymes in the GSH biosynthesis pathway. Inhibition

of GCL and GS can lead to depletion of GSH and result in

ferroptosis (Lu, 2009).

GPX inactivation or depletion induces
ferroptosis

GPX4 is the fourth member of the selenium-containing

GPX family. In mammals, GPX4 is the only GPX family

member with the ability to resist peroxide damage

(Brigelius-Flohé and Maiorino, 2013). GPX4 reduces

oxidative stress damage by converting the peroxy bonds of

lipid peroxidation into hydroxyl groups so as to reduce lipid

peroxides to lipid alcohols, despite the fact that these lipids

have become a part of cell membranes or lipoproteins

(Brigelius-Flohé and Maiorino, 2013; Seibt et al., 2019). As

one of the mediators of oxidative stress, GPX4 is a core

regulator of ferroptosis (Bersuker et al., 2019). PL-

peroxidase activity of GPX4 is inhibited by RSL3 ((1S,3R)-

RSL3), a ferroptosis inducer, by its binding to

GPX4 selenocysteine (Sec) site (Yang et al., 2016). Boyi

Gan’s team from the University of Texas MD Anderson

Cancer Center found that uridine 5′-monophosphate

(UMP) synthesis was significantly increased after treating

cells with GPX4 inhibitors such as RSL3. This suggests that

there may be a relationship between ferroptosis and

pyrimidine nucleotide synthesis. It was next found that

dihydroorotate dehydrogenase (DHODH) may be involved

in the regulation of ferroptosis. Namely, the ferroptosis

defense system located in mitochondria can regulate

ferroptosis independently of the GSH pathway (Mao et al.,

2021), and DHODH may serve as a novel target to restore cell

death induced by ferroptosis.

Depletion of reduced coenzyme Q10
(CoQ10) increases cellular susceptibility to
ferroptosis

According to previous studies, ferroptosis suppressor protein

1 (FSP1) has a proapoptotic effect under certain conditions.

FSP1 could translocate into the nucleus and trigger DNA

degradation. However, recent studies have shown that

FSP1 has an anti-ferroptosis mechanism parallel to the Cyst(e)

ine-GSH-GPX4 axis. FSP1 reduces CoQ10 through NAD(P)H,

which reduces lipid free radicals, thereby inhibiting lipid

peroxidation and consequently inhibiting ferroptosis (Bersuker

et al., 2019).

Unlike the Cyst(e)ine/GSH/GPX4 axis, which is dependent

on the cysteine anti-transport system Xc− and the cysteine-

providing supersulfur pathway, the FSP1/CoQ10 axis is

dependent on the mevalonate pathway. The mevalonate

pathway involves the production of isopentenyl
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pyrophosphate (IPP), squalene (both IPP and squalene are

precursors of CoQ10), CoQ10, and cholesterol (Moosmann

and Behl, 2004). Inhibition of CoQ10 biosynthesis through

the mevalonate pathway or inactivation of CoQ10 reductases

such as FSP1 or DHODH can induce ferroptosis by increasing

cellular susceptibility to ferroptosis in the absence of GPX4.

Conversely, tetrahydrobiopterin (BH4) inhibits ferroptosis by

converting phenylalanine to tyrosine to promote the synthesis of

CoQ10 (Kraft et al., 2020).

Induction of lipid ROS generation by
means of iron and/or polyunsaturated
fatty acid overload

As an iron-dependent form of cell death, ferroptosis requires

high levels of iron. In the 1870s, Henry Fenton discovered that

iron salts can react with peroxides to generate hydroxyl

radicals, and proposed the famous fenton reaction (Fe2+ +

HOOH →Fe3+ + OH− + OH·). This reaction is also the basic

principle of the lipid peroxidation step in ferroptosis. Namely,

iron ions entering the cell undergo a Fenton reaction and

peroxidize polyunsaturated fatty acids (PUFAs) to generate

lipid peroxides (Li and Li, 2020). This process, regulated by

three synthases, including acyl CoA synthase long-chain family

member 4 (ACSL4), lysophosphatidylcholine acyltransferase 3

(LPCAT3), and lipoxygenase (LOX) (Doll et al., 2017), results in

damage to the cell membrane structure and eventually leads to

cell death. Therefore, iron metabolism is closely related to the

occurrence of ferroptosis in cells, and it incorporates at least the

following four aspects: intake, storage, utilization, and efflux

(Chen et al., 2021b). Transferrin imports iron from the

extracellular environment to intracellular space through

recognition by transferrin receptor 1 (TfR1), while excess iron

is bound to ferritin and transported outside of the cell under the

action of ferroportin (FPN1), where the whole process normally

maintains a dynamic balance (He et al., 2022).

Ferroptosis in diabetes

On the basis of the abovementioned molecular mechanisms

of ferroptosis, multiple pathways are involved in the regulation of

ferroptosis. We summarize the relationship between some

pathways and diabetes, and reveal their potential applications

in the diagnosis, treatment, and prognosis of diabetes (Figure 1).

Crucial role of p53 in ferroptosis-
mediated diabetes

p53 is a tumor-suppressor gene in humans that causes cell

cycle arrest, apoptosis, and/or senescence (Liu et al., 2019).

One of the methods to activate the p53 protein signaling

pathway is to disrupt the integrity of the DNA template

(Liu and Gu, 2021). As shown by western blot (WB)

analysis, the activation of p53 severely reduces the protein

level of SLC7A11, and the flanking region of the SLC7A11 gene

has a site that exactly matches the p53-binding sequence,

indicating that the SLC7A11 gene is one of the downstream

targets of p53 (Jiang et al., 2015; Liu and Gu, 2022). Gu’s team

found that ALOX12 (arachidonate 12-lipoxygenase, 12S type)

depletion had no significant effect on the expression of

p53 and its downstream targets, but was able to rescue p53-

mediated ferroptosis, indicating that ALOX12 is necessary for

the p53-mediated ferroptosis pathway under ROS stress (Chu

et al., 2019). They further constructed an ACSL4/

GPX4 double-gene knockout (ACSL4−/−/GPX4−/−)

human osteosarcoma cell line U2OS. The levels of

p53 and its downstream targets were unaffected, but the

cells underwent ferroptosis when exposed to TBH (tert-

butyl hydroperoxide, mimicking ROS environment) and

Nutlin (p53 activator), suggesting that p53 induces

ferroptosis in a GPX4-independent manner (Chen et al.,

2021c).

Minamino et al. (2009) demonstrated that upregulation of

p53 in adipose tissue causes an inflammatory response that

leads to insulin resistance. When β-cells were treated with free

fatty acids (FFAs), the production of ROS increased and

p53 was activated (Yuan et al., 2010). β-cell mitosis was

reduced and their apoptosis was increased. Induction of the

downstream microRNAmiR34a sensitized β-cells to apoptosis
and restrained insulin secretion. Akt plays an important role

in promoting pancreatic β-cell survival by inhibiting the

proapoptotic proteins such as glycogen synthase kinase 3α/
β (GSK3α/β), Forkhead Box O1 (FoxO1), and p53 (Wrede

et al., 2002; Lovis et al., 2008). Similar to Mdm2, ARF-BP1 acts

as a ubiquitin ligase to control p53 stability and activity. The

stability of p53 is tightly regulated by ARF-BP1 in vivo.

Researchers constructed a mouse model with a specific

deletion in pancreatic cells (arf-bp1FL/Y/RIP-cre) and found

that the mice died of severe diabetes as they matured; in

contrast, when the p53 deletion was reversed (p53LFL/FL/arf-

bp1FL/Y/RIP-cre), the mice lived longer (Kon et al., 2012). T-cell

factor 7-like 2 (TCF7L2) is a key transcriptional effector of the

Wnt/β-catenin signaling pathway, and leads to type 2 diabetes

mainly by reducing β-cell survival and impairing insulin

secretion. In glucose-stimulated INS-1 cells, TCF7L2 binds

to gene promoters such as p53 and Fto. When TCF7L2 is

silenced in INS-1 cells, p53INP1 protein expression is reduced,

and apoptosis of INS-1 cells is decreased (Zhou et al., 2012).

P53 is a key molecule for ferroptosis, which is linked to β-cell
apoptosis and survival. Since p53 plays an important role in

regulating physiological processes such as apoptosis,

inflammation, and aging, targeting p53 in diabetes

treatment may offer additional benefits.
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Nrf2 in ferroptosis-mediated diabetes

Nuclear factor erythroid 2-related factor 2 (NRF2) is a

transcription factor that plays an important role in cellular

antioxidant activity, regulates transcription of components of

the GSH antioxidant systems, and is involved in phase I and

phase II detoxification of exogenous and endogenous products,

NADPH regeneration, and heme metabolism enzymes (Tonelli

et al., 2018). As many of its downstream genes are associated with

ferroptosis, Nrf2 is considered an important regulator of

ferroptosis. When the organism is in a state of oxidative

stress, Nrf2 dissociates from Keap1 and is transferred to the

nucleus, where it interacts with antioxidant response elements

(ARE) of target genes, activates transcriptional pathways, and

maintains cellular redox homeostasis (Zhang, 2006). Selvakumar

et al. found that the Nrf2-HO-1 pathway can regulate ferritin and

thus intracellular iron concentration (Selvakumar et al., 2019). A

protein–protein interaction network analysis revealed that

Nrf2 mainly regulates ferroptosis by directly affecting the

synthesis and function of Gpx4 and the PPARγ pathway

(Song and Long, 2020).

Patients with type 2 diabetes mellitus commonly experience

hyperglycemia, insulin resistance, inflammation, and

dyslipidemia, all of which cause intracellular oxidative stress

and inflammation (Karam et al., 2017). Flavin adenine

dinucleotide hydroquinone form (FADH2) and nicotinamide

adenine dinucleotide (NADH) generated by glucose or fatty

acid oxidation undergo oxidative phosphorylation in the

mitochondrial electron transport chain. When a large amount

of oxidative phosphorylation occurs, the electron transport chain

becomes congested, and the electrons return to complex I to

generate ROS with oxygen (Fisher-Wellman and Neufer, 2012).

Redox stress is a producer of diabetes-related tissue injury and

causes serious complications.

Antioxidative enzymes are generally expressed at low

levels in pancreatic endocrine cells, and treatment of islet

cells with antioxidants rescues oxidative damage to β-cells in
diabetic mice (Kaneto et al., 1999). The antioxidant ability of

the Nrf2 pathway can maintain the body’s glucose level by

saving the oxidative stress status of β-cells and maintaining

insulin secretion. Cryptochlorhydric acid (CCA), a standout

among the active components in mulberry leaf extract, has

been shown to improve inflammation and insulin

resistance (Tian et al., 2019). It inhibits ferroptosis by

activating cystine/system xc
−/Gpx4/Nrf2 and inhibiting

NCOA4 in diabetes, thereby exerting a strong antidiabetic

effect (Zhou, 2020).

ACSL4 mediated-ferroptosis in β-cells

Acyl-CoA synthetase long-chain family member 4

(ACSL4) is an important enzyme in lipid metabolism,

which catalyzes the reaction between long-chain fatty acids

and coenzyme A to generate acyl-CoA. ACSL4 activates

arachidonic acid to arachidonyl-CoA, which is further

esterified to phospholipid (Liao et al., 2022). The oxidation

of the endoplasmic reticulum–associated compartment

involved in ferroptosis has been found to occur only on one

class of phospholipids [phosphatidylethanolamines (PEs)]

and targets two fatty acids [arachidonoyl (AA) and

adrenoyl (AdA)] (Kagan et al., 2017). Doll et al. found that

exogenous arachidonic acid enhanced RSL3-induced

ferroptosis, and ACSL4 was a key enzyme in arachidonic

acid–induced ferroptosis in synergy with IFNγ (Doll

et al., 2017; Liao et al., 2022). The expression of

ACSL4 can reflect the sensitivity of cells to ferroptosis

(Yuan et al., 2016).

The ACSL4 protein exists in the β-cells of human and rat

islets, and its distribution site suggests that ACSL4 is involved

in insulin secretion by modifying fatty acids in insulin

secretion granules and mitochondria (Ansari et al., 2017).

Upregulation of ACSL4 expression was observed in mice

fed a high-fat diet, and when ACSL4 was specifically

knocked out in adipocytes in mice fed a high-fat diet, the

mice were protected from insulin resistance (Killion et al.,

2018). Some studies have found that when the

ACSL4 inhibitor rosiglitazone (ROSI) is used in diabetic

nephropathy mice, it may inhibit the inflammatory

response, thereby inhibiting ferroptosis, and finally

improving the damage of renal tubular cells in a high-

glucose environment (Wang et al., 2020), which also

provides some ideas for ACSL4 as a potential therapeutic

target for diabetes.

WFS-T2 in β-cells

WFS-T2 encodes the protein NAF-1. NAF-1 is a member of

the NEET protein family, a highly conserved [2Fe-2S] protein.

NAF-1 localizes to mitochondria, the endoplasmic reticulum

(ER), and the mitochondria-associated membrane connecting

these organelles, and its unique [2Fe-2S] cluster structure makes

NAF-1 essential for autophagy, ferroptosis, redox, and oxidative

stress. It plays a key regulatory role in the process of cell

proliferation (Nechushtai et al., 2020). Researchers built an

NAF-1 knockout INS-1 cell model, and the cells developed

ferroptosis-like features such as enhanced lipid peroxidation,

mitochondrial atrophy, and GPX4 expression. Insulin secretion

was impaired in NFA-1 knockout INS-1 cells. When this cell

model was treated with the iron chelator deferiprone, the GSH

precursor N-acetyl cysteine, and the ferroptosis inhibitor

ferrostatin-1, the levels of ROS generated by the cells were

reduced, the mitochondrial and endoplasmic reticulum

structures were improved, and cellular insulin secretion

function was repaired (Agrawal et al., 2018; Ommati et al., 2021).
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Conclusion and perspectives

This article reviews the mechanism of ferroptosis and the role

of ferroptosis in diabetes. At present, diabetes is one of the most

prevalent diseases in the world, and its complex pathogenesis and

systemic complications make it a very difficult problem. As a new

form of PCD, ferroptosis has different characteristics from other

cell deaths, and has shown great potential in the diagnosis,

treatment, and prognosis of diabetes. Four mechanisms for

the induction of ferroptosis have been identified: (Dixon et al.,

2012): inhibition of the system Xc−, (Chen et al., 2021a)

inhibition/degradation/inactivation of GPX4, (Lei et al., 2022)

depletion of reduced CoQ10, and (Stockwell et al., 2017) lipid

peroxidation via iron or polyunsaturated fatty acid overload.

Given the association between diabetes and ferroptosis,

starting from the key targets of ferroptosis might improve

diabetes. Improvements in insulin secretion and insulin

sensitivity along with better control of blood glucose have

been observed after reducing iron storage levels in the body

(Houschyar et al., 2012). Although serum ferritin levels can be for

early diagnosis of type 2 diabetes mellitus and gestational

diabetes mellitus (Wang et al., 2018), the use of serum ferritin

levels to calculate iron stores in the body appears unreliable

because ferritin is also elevated in other diseases such as cancer

and liver disease (Wang et al., 2010). In the treatment of diabetes,

many specific ferroptosis inhibitors have been identified, such as

ferrostatin-1, liproxstatin-1, vitamin E, and deferoxamine (Ju

et al., 2021). Although many drugs are still in the preclinical

stage, some drugs that have been marketed (such as metformin)

have been shown to inhibit ferroptosis and may be beneficial for

diabetes and its complications (Ma et al., 2021). This can provide

ideas for the application of ferroptosis in diabetes treatment.

However, there are still some unanswered questions about

the occurrence and development of ferroptosis in diabetes. For

example, as there are no markers of ferroptosis in vivo, we cannot

be sure whether ferroptosis occurs during cell growth and

differentiation. In addition, ferroptosis is caused by

phospholipid peroxidation, and ROS are also closely related to

ferroptosis. Considering the oxygen demand of islet cells, it is

unclear whether the ferroptosis process is dependent on the

concentration of oxygen. In conclusion, although ferroptosis has

not been thoroughly studied and its molecular mechanism in

diabetes and diabetic complications needs to be further explored,

ferroptosis is a potential target for the therapeutics of diabetes.
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