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Abstract: Cordyceps militaris (C. militaris) is a medicinal mushroom possessing a variety of biofunc-
tionalities. It has several biologically important components such as polysaccharides and others.
The diverse pharmacological potential of C. militaris has generated interest in reviewing the current
scientific literature, with a particular focus on prevention and associated molecular mechanisms in
inflammatory diseases. Due to rising global demand, research on C. militaris has continued to increase
in recent years. C. militaris has shown the potential for inhibiting inflammation-related events, both in
in vivo and in vitro experiments. Inflammation is a multifaceted biological process that contributes
to the development and severity of diseases, including cancer, colitis, and allergies. These functions
make C. militaris a suitable functional food for inhibiting inflammatory responses such as the regula-
tion of proinflammatory cytokines. Therefore, on the basis of existing information, the current study
provides insights towards the understanding of anti-inflammatory activity-related mechanisms. This
article presents a foundation for clinical use, and analyzes the roadmap for future studies concerning
the medical use of C. militaris and its constituents in the next generation of anti-inflammatory drugs.

Keywords: Cordyceps militaris; inflammation; polysaccharides; pharmacokinetics; COX-2; matrix
metalloproteinases

1. Introduction

Inflammation is a complex process that occurs as a result of various chemical or physi-
cal substances in the body, including pathogens, trauma, toxic substances and others [1].
Type of inflammatory stimulus, and the effectiveness of the response, determine the nature
of inflammation as acute or chronic. Augmented synthesis of inflammatory mediators
has been associated with chronic ailments such as cancer, arthritis, asthma, viral diseases,
atherosclerosis, and others [2]. As a result, slowing down inflammatory events has become
crucial, and non-steroid anti-inflammatory medicines (NSAIDs) are commonly utilized for
this purpose. NSAIDs have a number of side effects, including renal failure, bronchospasm,
gastrointestinal problems, water retention, and hypersensitivity responses [3].

As a result, substantial attention has recently been given to the development of natural
anti-inflammatory products with greater safety and minimal side effects. Natural products
have been in continuous use since prehistoric times for the alleviation of diseases and
overall wellbeing. The modern system of medicine was initiated through the isolation of
pharmacologically active morphine, which served as the basis for the construction of a
therapeutic empire composed of compounds isolated or derived from natural sources [4].
Previously the shifting of paradigm from isolation from natural sources towards synthesis
or combinatorial chemistry urged scientists to focus on the large-scale synthesis of drug
substances. Due to considerable efforts and reduced productivity in the synthetic process,
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recent decades have witnessed the regaining of involvement of natural products in drug
development in conjunction with new technological approaches such as high-throughput
selection [4,5]. Traditional acceptance, cost effectiveness and unique chemical diversity of
metabolites have led to exploitation of natural resources for the identification of various
pharmacological leads and scaffolds, serving the benefit of humanity [6].

Medicinal mushrooms have remained an important component of human culture. The
genus Cordyceps is one of the largest genera in the family Clavicipitaceae, containing over 750
species, and being extremely diverse in terms of the number of species, their morphology
and acclimatization on varied hosts [7,8]. These diverse species are mostly distributed in
Asian countries (such as Korea, Japan, Nepal, China), and other parts of the world in humid
temperate and tropical habitats. Occurrence of a variety of species in different environmen-
tal conditions throughout the world indicates its global distribution [9,10]. Specialized and
coordinated mechanisms are involved in the association between the Cordyceps species and
related hosts. They maintain their life cycles according to the characteristics of the hosts for
the growth and survival, after evading their immune systems and subsequent production
of defensive secondary metabolites by the hosts, which can be considered as promising
sources of new drugs [9]. Based upon this property, these species have gained profound
importance as a source of natural products having diverse biological activities [10]. Re-
cently, Cordyceps species growing in the wild have been surpassed by artificially cultured
specimens due to the scarcity and high price associated with collection and processing [11].
C. militaris is an ethnomedicinal fungi having importance in traditional Chinese medicines
and extensively used as a crude drug and a functional food in Asia [12]. C. militaris is the
second most popular, investigated species in its genus. Several pharmacological activities
of this species have been documented, including blood glucose control, hypolipidemic,
anti-tumor, anti-microbial, anti-viral, antiprotozoal, anti-inflammatory, neuroprotective,
anti-oxidant and immuno-protective activities [10,12]. Therefore, the C. militaris may be
considered an important candidate for the treatment of different ailments. Mycological data
of C. militaris is given below [12]. Natural and cultured C. militaris are shown in Figure 1.
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In today’s world, the concept of “prevention is better than cure” is prevalent, resulting
in the establishment of safety and therapeutic profiles of food items. Functional foods can
be categorized as foods marketed under the labels of healthy food and food sources having
physiological properties besides their nutritional uses. Additionally, natural materials that
can be used daily for regulating or affecting the body system upon intake can also be called
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functional foods [13,14]. According to the European Consensus, the most accurate definition
is that “a food can be considered as functional beyond adequate nutritional effects, if it
reasonably improves target functions in the body in a way that contributes to improving
health and minimizing disease risk”. Functional foods are natural substances; however,
different constituents can be incorporated or removed from them through biotechnological
procedures [15] to improve health, or help avert diseases in individual or defined groups
based upon gender and age [16,17]. The existence or deliberate addition of certain factors
such as fibers, flavonoids, polyphenols, anthocyanins, minerals, fatty acids and carotenoids,
among others, enhances the nutritional value of the dietary components. Vitamins, minerals
and other nutritional components were formerly incorporated in the manufacturing of
functional foods. Prebiotics and probiotics, which have a tendency to target metabolic
syndrome and other ailments [18,19], along with high blood pressure, cellular damage,
oxidation [18,20], are well documented functional foods. These have unique immune-
modulatory and immune-boasting potential, and they can enhance immunity through
symbiotic association with humans [12]. Apart from treatment functionalities, C. militaris
might be a good candidate for consideration as functional food due to the presence of
metabolites of therapeutic or protective capacities.

An extensive number of bioactive constituents have been identified from this species
including cordycepin, ergosterol, carotenoids, mannitol, proteins, essential amino acids,
volatile oils, carotenoids, minerals, vitamins, nucleosides, and sterols, as well as several
types of carbohydrates such as mono, oligo, and polysaccharides, which shows its phar-
macological and palliative significance [12]. The industrial sector in China is involved in
large-scale fermentation and commercial cultivation of its stromata, which is attributed to a
decline in the wild population, and satisfies the increasing demand for medicinal, edible
and nutritional purpose [21]. Further, the bioactive compounds produced in fermented cul-
ture is a major reason for its industrial production [21,22]. Currently, at least 36 health foods
prepared from this medicinal fungus have been approved in China. Moreover, health food
products of C. militaris mycelia in form of powder (Z20030034) and capsules (Z20030035)
have gained the status of commercially approved moieties with claims of having beneficial
effects on kidneys and lungs, and being effective against cough, asthma, phlegm, cold
limbs, fatigue, dizziness, tinnitus, and other ailments. Furthermore, since the Chinese
Ministry of Health recognized it as a Novel Food in 2009, it has been widely consumed as a
regular food item [23].

The objective of the present study is to provide a comprehensive update on the
pharmacological effects of C. militaris in terms of inflammation prevention, as well as the
mechanisms of action at the molecular levels that may contribute to its anti-inflammatory
properties.

1.1. Chemical Constituents
1.1.1. Proteins and Peptides

Fresh raw material is preferred over processed or dried parts for the isolation of the
maximum content of bioactive peptides and proteins from medicinal mushrooms [24]. An
important peptide, cordymin, isolated from C. militaris is about 10.9 kDa in size and its
N-terminal sequence makes it unique among other peptides. Cordymin was observed
to inhibit many fungal species, such as Rhizoctonia solani, Mycosphaerella arachidicola and
others. It is also reported to decrease the proliferation of MCF-7 breast cancer cells and
levels of HIV-1 reverse transcriptase [25]. Additionally, it has preventive effects against
osteopenia by increasing bone mineral content and density in diabetic rats [26]. Another
lectin, named CML, has been isolated from C. militaris by gel filtration chromatography,
and is approximately a 31 kDa peptide. It is distinctive from the lectins identified from
several mushroom species including Polyporus squamosus, Laetiporus sulphureus, and oth-
ers in terms of differences in secondary structure, containing 29% β-turns, 12% β-sheets,
27% α-helix, and 32% random-coil structures. CML has been observed to exert hemag-
glutinating activity in experimental animals by specifically combining sialoglycoproteins.
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This compound has also shown to have mitogenic activity on mouse splenocytes [27].
Similarly, another report discussed the isolation of C. militaris protein (CMP). It has also
exhibited antiproliferative effects on human breast cancer MCF-7 cells (IC50 9.3 µM) and
bladder cancer 5637 cells (IC50 8.1 µM). It also possesses antifungal activity against Fusarium
oxysporum at a minimum concentration of 1.6 µM [28]. Three protein-polysaccharide poly-
mer complexes (CPSP-F1, CPSP-F2, and CPSP-F3) have been isolated form by C. militaris
using an ultrasound-extraction and column chromatography technique. Among these
compounds, CPSP-F1 and CPSP-F2 exhibited inhibitory IC50 as 32.2 ± 0.2 mg/mL and
5.3 ± 0.0 mg/mL in an acetylcholinesterase inhibitory assay, suggesting its ability to be
used against Alzheimer’s disease [29]. A fibrinolytic enzyme has also been produced by
C. militaris using a submerged fermentation technique. The specific enzyme was purified
from culture supernatant by hydrophobic interaction, ion exchange and gel filtration chro-
matographic strategies. It prevented clot formation by degrading the α, β and γ chains
of fibrinogen, and also activated plasminogen into plasmin, thus proving to be a good
anticoagulant agent [30]. Another isolated novel protein is “C. militaris immune-regulatory
protein” (CMIP), which showed anti-metastatic activity on a 4T1 breast cancer lung metas-
tasis, numbers of tumor nodules in the lung, and improved survival rate in experimental
animals [31].

1.1.2. Polysaccharides

Polysaccharides in fungal species are among the most prevalent and significant bio-
logically active constituents extracted from fruiting bodies, mycelium and fermentation
broth. These substances show diverse physicochemical properties and have been the target
of developing quality control of mushrooms, especially C. militaris, containing functional
foods [32]. In this species, polysaccharides have been divided into two types i.e., intra-
cellular polysaccharides and extracellular polysaccharides, based on their formation or
origin in fungal cells. The polysaccharides of C. militaris are reported to exhibit a range of
biofunctions, such as immunomodulatory, antioxidant, antitumor and anti-inflammatory
effects. A novel polysaccharide (PCLM) obtained from the culture broth of C. militaris
enhanced the immune-stimulatory activity of RAW264.7 macrophages by modulating
the release of toxic molecules (nitric oxide (NO) and super oxide dismutase (SOD)) and
cytokine tumor necrosis factor (TNF)-α, as well as inducing phagocytosis [33]. Another re-
port suggested that Cordyceps polysaccharides have the tendency to overcome CY-induced
immunosuppression, and significantly enhanced the function of spleen lymphocytes and
macrophages [34]. A previous study reported CMP-W1 and CMP-S1 (two polysaccharides)
showed significant enhancement of proliferation of spleen cells from an animal model [35].
In another finding, the functional polysaccharides CMP40 and CMP50 enhanced lympho-
cyte proliferation, interleukin (IL)-4 concentrations and antibody titers in the serum [32].
The polysaccharides obtained from C. militaris also possess strong antioxidant activities.
Three polysaccharides extracted from C. militaris exhibited strong anti-radical activity. The
W-CBP50II polysaccharide was observed to have more activity against hydroxyl, superox-
ide and 1,1-diphenyl-2-picrylhyrazyl (DPPH)-radical scavenging activity [36]. Other novel
polysaccharides such as CBP-1, P70-1 extracted and purified from the fruiting body of cul-
tured C. militaris, exhibited strong hydroxyl radical scavenging activity with an IC50 value
of 0.638 mg/mL and 0.548 mg/mL, respectively [32,37]. The exopolysaccharides of mutant
C. militaris SU5-08 enhanced adaptive immune responses. Further, these polysaccharides
have shown anticancer activity against a variety of cell lines. The polysaccharide CMP-I
significantly inhibited the proliferation of HepG2, HeLa, K562 and HT29 cells [38]. Another
report showed the dose-dependent inhibitory potential of C. militaris derived polysaccha-
rides against BGC-823, MCF-7, and SMMC-7721 cells [39]. Another study reported the
antiproliferative potential of a polysaccharide from C. militarism against adenocarcinomic
human alveolar basal epithelial cells (A549) cells, with an IC50 of 39.08 µg/mL [38]. Addi-
tionally, the report confirm the inhibitory effects of C. militaris polysaccharides on colon
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205, NCI-H460, PC-3 cell lines [40,41]. These components also inhibited tumor in animal
model [42].

Yuko et al., reported a C. militaris-derived acidic polysaccharide (APS) containing
arabinose (Ara), galacturonic acid, D-Gal, Rha, and Xyl with an MW of 5.76 × 105 Da. It
showed beneficial health improving properties on influenza A virus infection via modula-
tion of the macrophages related to immune functions [43]. Another study investigated the
beneficial effects of a C. militaris-derived polysaccharide on maturation of dendritic cells
(DC), suggesting that it might be used in cancer immunotherapy [44]. The protective effects
of a C. militaris-derived polysaccharide on hydrogen peroxide-stimulated apoptosis in
HL-7702 cells was investigated previously. The tested polysaccharide significantly reduced
hydrogen peroxide-stimulated apoptosis, mitochondrial dysfunction, production of reac-
tive oxygen species (ROS), decreased intracellular adenosine triphosphate levels, and aug-
mented secretion of cytochrome C. [45]. The polysaccharides from cultured C. militaris have
demonstrated anti-aging potential by preventing mitochondrial injury. It was observed
that the tested sample inhibited Fe2(+)-L Cysteine activated swelling and mitochondrial
damage in a dose-dependent manner [46]. In other studies, polysaccharides of C. militaris
were found to boost immunological effectiveness against Newcastle disease vaccination in
animals. The study suggested that the polysaccharides might be contenders for a novel
form of immunological adjuvant [47]. Various studies on the isolation of polysaccharides
from this species have been documented, such as CPS-1 polysaccharide from C. militaris
composed of d-glucose (D-Glc), xylose (Xyl), rhamnose (Rha), d-mannose (D-Man), and
d-galactose (D-Gal), with a molecular weight of 2.3 × 104 Da, which was extracted and
reported as an immune-modulating agent [48]. Other polysaccharides such as cordlan [44],
cysinocan consisting of D-Gal, D-Man, D-Glc, with an MW of 8.2 × 104 Da [49], two hetero-
polysaccharides (CMP-W1; 3.66 × 105 Da and CMP-S1; 4.6 × 105 Da) consisting of D-Glc,
D-Gal and D-Man, have been reported as immunomodulatory agents [35]. The polysac-
charide CMPB90-1 with an MW of 5.8 × 103 Da was studied as a tumor eradication agent
through immune regulatory activity [50]. Polysaccharide structure, including monosaccha-
ride content and glycosidic linkages, is intimately associated with their immunomodulatory
action. TLR2 is most likely to identify polysaccharides containing galactose and glucose,
which regulate immunomodulatory functions [51,52]. Polysaccharides with α-d- and β-
d-glucosidic bonds have been found to have a more positive impact on NO generation
in macrophages. Therefore, it can be inferred that immunomodulatory potential of the
CMPB90-1 polysaccharide may be attributed toward its monosaccharide like galactose
and glucose. A previous study demonstrated polysaccharide mediated induction of M1
polarization, along with TLR2 as the membrane receptor of MC-2 on macrophages. These
polysaccharides were structurally identical to CMPB90-1 [51,53]. The structure of CMPB90-1
regulates its activity on the phenotype of macrophages

1.1.3. Nucleosides

C. militaris contains nucleosides and nitrogenous bases (adenosine, guanosine, cy-
tidine, uridine, adenine and uracil) as its main components, among which, adenosine
significantly suppressed the release of neurotransmitters in the central nervous system
and could be used to treat chronic heart failure, and also tonically inhibits the release of
excitatory neurotransmitters [54]. This nucleoside is reported to be a neuronal modulator
and to inhibit neuronal action, including regulation of the sleep cycle, regulation of seizure
susceptibility, and locomotor effects. Pharmacologically it can be used as an analgesic
agent, and also mediates the effects of ethanol and chronic drug use. Additionally, it is
important as a neuroprotection agent [55]. Adenosine receptor subtypes in blood arteries
have been identified and characterized, and when triggered have a considerable influence
on peripheral circulation [56]. Another nucleoside, cytidine, has shown antidepressant-like
effects in a forced swim test with rat models [57]. Moreover, intraperitoneal and oral ad-
ministration of guanosine can inhibit α-dendrotoxin- and quinolinic acid-induced seizures
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in experimental animals [58]. The chemical structures of various nucleosides are presented
in Figure 2.
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Cordycepin, also known as 3′-deoxyadenosine, is a bioactive metabolite that was
initially found in the fermented broth of C. militaris [59]. It is a nucleoside analogue that
has been proved to possess an array of biological activities including antibacterial, anti-
fungal, antitumor, antileukemia, and antiviral activities, as well as an immunoregulatory
effect [60,61]. Different mechanisms of action have been identified, including inhibition
of purine synthesis, RNA chain termination and interference in mTOR signal transduc-
tion [62]. Cordycepin has various pharmacological functions, one being antidiabetic activity.
This compound has proved to be effective in reducing the blood glucose levels as well as
blood glucose tolerance levels of alloxan-induced diabetic mice [63]. The mechanism of its
antidiabetic activity is not yet fully understood. However, different reports investigated
that cordycepin can suppress the production of proinflammatory cytokines (such as IL-1β,
IL-6, TNF-α and NO) in LPS stimulated macrophages, leading to downregulation of type 2
diabetes-regulating genes (11β-hydroxysteroid dehydrogenase type 1 and peroxisome pro-
liferated activated receptor-λ) [64]. It inactivates nuclear factor kappa B (NF-κB)-regulated
inflammatory responses and corresponding reduced expression of diabetes-regulating
genes [65,66]. Cordycepin has also been observed to exert anti-hyperlipidemic activity due
to its structural resemblance to adenosine (activating adenosine mono phosphate kinase-
AMPK), which can lead to inhibition of Acetyl CoA carboxylase and result in reduction of
fatty acid synthesis [67]. It can also reduce the levels and accumulation rate of low-density
lipoprotein cholesterol, triglycerides and total cholesterol in an effective manner [68]. Per-
taining to its lipid lowering activities, this compound can be recognized as a prominent
bioactive agent for cardiovascular illnesses treatment. It also enhances the cytokine release
of resting peripheral blood mononuclear cells (PBMCs), and proliferation and transcription
factors in PBMCs are amplified in a leukemia cells (THP-1), suggesting an immunomodula-
tory function [69]. Pure bioactive constituents isolated from C. militaris have demonstrated
immunomodulatory effects, lowering the generation of anti-ds-DNA and boosting the sur-
vival rate of lupus mice [20]. An antiosteoporotic effect of cordycepin has been observed in
osteopenic rat models, in which loss of bone was retrieved in the test animals. The reduced
activity of alkaline phosphatase enzymes and tartrate-resistant acid phosphatase was also
found in a variety of experiments models. Cordycepin consumption can induce the levels of
osteocalcin (prominent marker of bone development), reduce oxidative stress and decrease
the C-terminal cross-linked telopeptide of type I collagen content (bone resorption marker)
in ovariectomized experimental animals [70]. The effects of cordycepin against malarial
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parasites in mice have been detected, in which the nucleic acids and protein synthesis of the
parasites ceased [71]. Cordycepin is also a good anti-inflammatory, antihyperuricemic, and
antioxidant agent, and considered to have the ability to treat respiratory disorders, kidney
malfunctioning, arthritis, cancer and fertility issues [20]. In addition, the main component,
cordycepin itself, has demonstrated antitumor, anticancer, insecticidal and antimicrobial
activities [8]. The structure of cordycepin is shown in Figure 3.
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1.1.4. Phenolic Compounds

Medicinal mushrooms have a significant number of phenolic compounds, specif-
ically polyphenols and flavonoids. These compounds have vital roles as antioxidants
with various mechanisms including metal chelation, free radical scavenging, inhibition of
LDL oxidation and enzyme modulation activities [72]. Yu et al., detected the presence of
polyphenolic (60.2 µg/mL) and flavonoid (0.598 µg/mL) content in cultured C. militaris
extracts [73]. Similarly, according to another report, phenols, flavonoids, lycopene, beta
carotene and ascorbic acid were detected in methanolic extracts of C. militaris by UV visible
spectroscopy [74].

1.1.5. Others

Along with the aforementioned constituents, C. militaris contains other metabolites
that elevates its therapeutic significance. Ergosterol analogues of C. militaris are reported
to exert their actions as antiviral and antiarrhythmic substances [75]. They have the
tendency to suppress activated human mesangial cells as well as alleviate immunoglobulin
A nephropathy (Berger’s disease) [76]. In addition, mannitol (sugar alcohol) and trehalose
free sugars have been found in C. militaris. Mannitol and trehalose free sugars have
also been found in C. militaris. Mannitol has certain bioactivities such as antitussive,
diuretic, free radical inhibition and other bio-functionalities [77]. Certain novel carotenoids
have been separated from its fruit bodies and identified as xanthophylls [78]. Pigmented
compounds, such as carotene, can be incorporated, and functional foods produced in the
food industry acting as improved anticancer functional foods in addition to traditional
carotenoids. Moreover, a new cerebroside (glycosphingolipid) cordycerebroside A, along
with soyacerebroside I and glucocerebroside, have been isolated from C. militaris. These
compounds reduce the augmented pro-inflammatory iNOS and suppress cyclooxygenase
(COX)-2 in LPS-stimulated monocyte/macrophage-like (RAW264.7) cells [79].

2. Pharmacological Actions of Cordyceps militaris

The medicinal mushroom C. militaris has been widely consumed in China for medica-
tion purpose since ancient times (3000 years). It is used for therapeutic treatment of lung
and kidney malfunction, hyperglycemia and hyperlipidemia, respiratory disorders, fatigue,
treatment of night sweating, fertility issues, cardiac arrhythmias, and other heart diseases.
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On a broader scale, C. militaris has an array of pharmacological properties, including as
inflammation inhibition, and antioxidant, antitumor, antimetastatic, immunomodulatory,
hypoglycemic, and steroidogenic activities [12]. Various pharmacological activities are
presented in Figure 4 and explained bellow.
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2.1. Immune Boosting Activity

Several reports have suggested the immune regulation activities of extracts of this
medicinal mushroom. The oral administration of aqueous extracts from the C. militaris
fruiting body at a concentration of 20 mg/kg resulted in induced interferon (IFN) secre-
tion by macrophages via IL-18 [80]. Both fresh and dried C. militaris extracts have been
observed to have equivalent immunomodulatory effects in clophosphamide (cy)-activated
immunosuppressed experimental animals. Quantitative investigation of phytochemicals
revealed that levels of cordycepin and adenosine in fresh and dried C. militaris were sim-
ilar, whereas fresh extracts contained more polysaccharides, total polyphenol, and total
flavonoids compared to dried ones. Both types of extracts reversed the inhibition of the
thymus and spleen index in a dose-dependent manner in a diseased mice model. Addi-
tionally, these extracts were able to increase the levels of IL-2 and IFN-γ secretion levels in
test animals [81]. An ethyl alcohol extract of C. militaris administered to healthy Korean
male volunteers enhanced cell-mediated immunity at a dose of 1.5 g/day via an oral route.
Researchers observed no side effects after a treatment duration of 4 weeks along, with
significant enhancement in the levels of IL-2 and the IFN-γ compared to the placebo group.
Further, due to enhanced T cell proliferation and improved natural killer cell activity, this
fungus was promoted as a safe immunomodulator to boost cell-mediated immunity [82].
In another study, C. militaris fruiting body extracts displayed immune modulation potential
and antioxidative activity in healthy Kunming mice. Oral administration of different ex-
tracts concentrations i.e., 50, 100, or 200 mg/kg on a daily basis caused a significant increase
in thymic and splenic indices. Total white blood cell count, as well as monocytes and
lymphocytes, were enhanced, neutrophils were decreased, but eosinophils and basophils
did not undergo any changes. Augmented IL and TNF-α levels were reported in the spleen
and increased total antioxidant capacity, glutathione peroxidase, and SOD were observed
in different organs such as the heart, kidney, and liver. These results suggest an immune
boosting response in heathy organisms [46] and indicate the positive impact of C. militaris
as an immunomodulatory agent.

2.2. Antiviral Potential

C. militaris extract has been used to determine its protective effects in influenza
A/NWS/33 (H1N1) virus-infected mouse. The virus preventive effects of C. militaris
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extracts were investigated by administering different doses at 30, 100, or 300 mg/kg per
day for seven days to H1N1-infected animals. The results inferred that the protective effect
of the extracts could be attributed to suppressed TNF-α level along with increased IL-12,
natural killer (NK) cells in experimental mice models [83]. Viral hepatitis occurs commonly
worldwide, and when untreated causes hepatocellular carcinomas and cirrhosis. C. militaris
showed moderate anti-HCV potential in conjunction with standard antivirals (IFN-α or
ribavirin) in a cell-based HCV RNA replication assay system used to investigate antiviral
activity [84].

2.3. Anticoagulant Activity

Fibrin is formed by fibrinogen by the activity of thrombin. The accumulation of fibrin
in blood vessels can lead to clot formation resulting in thrombosis and cardiovascular
diseases. A number of reports have confirmed the presence of fibrinolytic enzymes in
C. militaris with anti-coagulant or thrombolytic activities. Cui et al., successfully purified
a novel fibrinolytic enzyme from culture broth of the species and named it C. militaris
fibrinolytic enzyme (CMase) [85]. Similarly, Liu et al. purified a fibrinoyltic enzyme, which
had the ability to hydrolyze fibrin or fibrinogen by cleaving the α-chains more efficiently
than β- and γ-chains, revealing its plasmin like nature. It was able to degrade thrombin,
indicating its benefits as an anticoagulant and antithrombotic protein [86]. The same
authors reported the biochemical characterization of another fibrinolytic protease from
C. militaris [30]. Hence, C. militaris can be suggested as good source of novel thrombolytic
agents, although work related to the anticoagulant activities of crude extracts is scarce.

2.4. Anticancer Activity

C. militaris is one of the important medicinal species and well documented for its
anticancer effects. C. militaris ethanolic extract was orally administered to a xenograft
in mice bearing murine T cell lymphoma (RMA) cell-derived cancers, which resulted in
significant anticancer activity by the suppressing the size and mass of cancer. Furthermore,
reduced proliferation of RMA cells and C6 glioma cells, downregulation of phosphorylation
of AKT, p85 and augmented cleaved caspase-3, phosphoglycogen synthase kinase 3β (p-
GSK3β) were reported. The extract significantly increased the proapoptotic cell population
and reduced viability compared to control cells. The finding indicates the anticancerous
activity of C. militaris occurred by regulating of p85/AKT- or GSK3β-related caspase 3-
dependent apoptosis [87]. Similarly, methanolic extracts showed good cytotoxic activity
via the MTT assay against Hep-2 cancer cell lines with an IC50 value of 20 µg/mL [74]. In
another study, the effect of fluoride was monitored in the culture medium of C. militaris,
and positive effects were observed on the synthesis of secondary bioactive metabolites and
growth of fruiting bodies, which eventually caused reduced proliferation and apoptosis
in a human osteosarcoma (U2OS) cell line [88]. Another study discussed the decreased
apoptotic activity of aqueous extract of C. militaris (AECM) on MDA-MB-231 cells. It
showed significant induction of mitochondrial dysfunction and loss of mitochondrial
membrane permeability by modulating Bcl2/Bax proteins, and also caspase activation [89].
Another report showed the tumor inhibitory effects of an ethanolic extract of C. militaris
in xenograft Balb/c nude mice transfected with human colorectal carcinoma RKO cells.
The oral administration of test extracts led to delayed growth of RKO cell-derived tumors.
It also stimulated cell cycle arrest in G2/M phase (66.33% at 300 µg/mL) and enhanced
early apoptosis (18.07% at 300 µg/mL). Western blot analysis indicated an increase in the
expression levels of p53, cleaved caspase 9, cleaved caspase-3, cleaved PARP, and Bim, Bak,
and Bad proteins [90]. A mechanistic based study conducted by Chou et al., revealed that
anticancerous effects of C. militaris on leukemia cell lines might be attributed to activation
of AKT and p38 mitogen activated protein kinase (MAPK), during the course of apoptosis
induction, suggesting the possible use of its extracts against leukemia by activating the p38
MAPK pathway [91]. Another mechanism of the apoptosis of lung carcinoma by C. militaris
extracts is related to downregulation of TCTN3 expression, which affected the hedgehog
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signaling cascade and contributed to the serial activation of caspases. Additionally, the
extract negatively modulated GLI1 transcriptional activity by inhibiting SMO/PTCH1
molecules, subsequently regulating the intrinsic apoptotic signaling cascade [92]. All these
findings support the possible use of C. militaris extracts as anticancer agents in future
studies.

2.5. Anti-Obesity Activity

C. militaris extracts possess lipid lowering activities. A novel extract of mulberry
leaves fermented with C. militaris was exploited to detect its effect on lipid metabolism.
Administration of an extract in a high fat diet fed to (HFD)-activated obese C57BL/6 mice
for 12 weeks showed significantly decreased concentrations of triglyceride, glucose, total
cholesterol and low-density lipoprotein, and induced production of levels of high-density
lipoproteins were observed. The amount of abdominal fat and the size of adipocytes
were reduced compared to control groups. Moreover, the sample reduced the Fas cell
surface death receptor for lipogenesis and inhibited adipocyte protein 2 and peroxisome
proliferator-activated receptor-γ mRNA expression [93]. Recently, strawberry extracts
fermented with C. militaris showed enhanced levels of secondary metabolites as well as
different extents of inhibition of adipogenesis in a 3T3-L1 cell line [94,95]. The extract also
showed dose-dependent suppressed differentiation of 3T3-L1 preadipocytes into mature
adipocytes and did not show any toxic effects on cells. An associated reduction in lipid
accumulation, increased levels of adipocyte markers including peroxisome proliferator-
activated receptor-γ, adiponectin, and CCAAT/enhancer binding protein-α, as well as
continuous expression of monocyte chemoattractant protein (pre adipocytes marker) were
observed [96].

2.6. Anti-Allergic Activity

Allergic responses are associated with disorders related to the immune system, where
intense immune reactions occur in response to various triggers such as foods, chemicals,
pollens and particulate matter. Primarily, production of CD4+ specific allergen cells i.e.,
type 2 helper, Th2 are accompanied by the generation of interleukins (IL-4, IL-5, IL-9,
and IL-13) by the effector Th2 cells, which subsequently results in the generation of IgE
i.e., allergen related immunoglobins from B cells. IgE reactions with allergen cytokines
generate the allergic reaction. Therefore, suppression of both allergen cytokines and
IgE are effects of therapeutic agents for allergies. Aqueous extracts of C. militaris have
demonstrated asthma-preventing potential in ovalbumin (OVA)-activated experimental
animals at a dose of 4 g/kg/day. Results revealed a decreased concentration of serum
immunoglobulin E (IgE) as well as fewer infiltrating cells in the airways of mice treated
with test extracts, although efficiency was less compared to montelukast and steroids,
which are standard drugs for the treatment of asthma [97]. In another study, C. militaris
(ethyl acetate extract) inhibited allergic reactions in a concentration-dependent manner in
basophilic leukemia (RBL-2H3) cells. Extracts inhibited antigen-activated degranulation in
RBL-2H3 cells with an IC50 value of 28.5 µg/mL. The extract prevented antigen-induced
passive cutaneous anaphylaxis in experimental animals in a concentration-dependent
manner [98]. In another study, an extract of C. militaris cultured on germinated soybean
extract showed inhibitory potential in 2,4-dinitro-1-fluorobenzene (DNFB)-activated contact
dermatitis mice models at a concentration of 300 mg/kg. It not only led to reduced ear
swelling but also reduced infiltration of T, CD4 and CD8 cells in the ear tissues of the
mice [99]. A study was performed to determine the molecular mechanisms of allergy
prevention. An ethyl alcohol extract prepared from silkworm pupa-cultivated C. militaris
fruiting bodies in immunogen triggered RBL-2H3 mast cells inhibited the release of β-
hexosaminidase (a degranulation marker) and mRNA levels of TNF-α, as well as IL-4.
Western blotting results revealed the inhibition of the Syk/phosphatidylinositol 3-kinases
(PI3K)/MEKK4/JNK/c-Jun signaling cascade associated with the expression of various
allergic cytokines in stimulated RBL-2H3 cells. Additionally, inhibited PLCγ evocation,
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and Erk activation were involved in stimulating the synthesis of lipid mediators and Ca2+

mobilization, which favor degranulation in activated RBL-2H3 cells [100].

2.7. Other

Several studies have documented the antihyperglycemic potential of C. militaris. Oral
administration of aqueous and ethanolic extracts of C. militaris to diabetic Sprague-Dawley
rats caused significant reduction in blood glucose levels. These results were due to in-
creased glucose metabolism and suppression of total cholesterol and triglyceride con-
centrations [101]. The diabetic preventive potential of different fractions of C. militaris
in streptozotocin-induced diabetic animals was determined in another study, resulting
reduced blood glucose levels in which C. militaris extract acted as an insulin sensitizer (en-
hanced insulin secretion and insulin resistance in type II diabetic rats) [102]. This medicinal
fungus has also proved its importance as a fertility enhancer, antimicrobial and antiaging
species [103].

3. Inflammation

Inflammation is a key function in biological processes initiated by various stimuli
and noxious factors such as irradiation by ultraviolet light, irritants, infections and cell
injury. The main features of inflammation are redness, elevated temperature, pain and
alteration in physiological functions at infected sites [104,105]. Generally, inflammation is
considered to be protective mechanisms against pathogen-induced tissue damage, and it
may be acute or chronic. It involves neutrophils, natural killer cells, mast cells, and T and B
cells supporting the undesired immune reaction [104]. Prolonged chronic inflammation
increases the risk of various inflammation associated disorders such as arthritis, asthma,
cancer, and atherosclerosis. A variety of regulatory enzymes such as phospholipase A2
(PLA2), lipoxygenases (LOX), COX, phosphatidylinositol kinase, and tyrosine kinases
have a substantial role in inflammation and immune responses. Injured or physiologically
altered tissues generate stress, which acts as either an endogenous or exogenous inducer of
the inflammatory response [106]. These inducers elicit both mast cells and macrophages re-
siding at inflamed tissues that subsequently promote cellular inflammatory mediators [107].
Elicitation of the inflammatory cascade can proceed through three different paths linked
with a variety of pathological events as depicted in Figure 5. Among them, the immune
response occurs in infection allied inflammation. Inflammatory mediators such as lipid
mediators, chemokines, proteolytic enzymes, complement component fragments, cytokines,
vasoactive amines and peptides are characterized on the basis of their biochemistry [108],
while IL and TNF-α alter the function of effectors such as cells and tissues during inflam-
matory responses [109]. Overall, these inflammatory mediators have divergent effects in
different cell and tissue types, with a wide range of functions in the inflammatory response,
regulating homeostasis and adoption [110].
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Stimulators and bacterial endotoxin-triggered immune cells such as leukocytes gener-
ate pro-inflammatory cytokines, which participate in elicitation, activation and regulation
of cellular adhesion molecules (CAMs). CAMs comprise different groups such as integrins,
selectins, and various glycoproteins (immunoglobulins). Tethering, rolling, transmigration
to inflammation related areas, and binding of white blood cells and endothelium are all
crucial functions. Different studies have demonstrated mechanisms such as migration and
mobility white blood cell during inflammation [104]. Inflammatory cells are characterized
by augmented inflammation-related chemicals including TNF-α, IL-1, IL-6 and IL-1β,
which contribute to inflammation related response such as regulation of chemokines, cy-
tokines and CAMs production. Furthermore, reduced inflammation related reactions have
been found against TNF-α and IL-1β specific antibodies [111], showing their involvement
in inflammation regulation.

Arachidonic acid (A.A) has a vital role in inflammation by regulating inflammatory
metabolites, and inflammation regulatory enzymes such as LOX, and COX. A.A is one of
the prominent contributing factors and biomarkers of inflammation, and its inhibition has
been recognized as a molecular target to protect against inflammatory ailments [104].

Exogenous factors including microbes and tumor promoters promote inflammatory
cells such as macrophages eosinophils, and neutrophils, which are connected with oxidative
stress. Various reactive nitrogen species (RNS) and ROS act as fuel for inflammatory
processes by prompting the production of proinflammatory cytokines and adhesion related
components via NF-κB pathway activation. Augmented inflammatory responses, including
activated NF-κB, and induced expression of adhesion molecule have been investigated in
oxidative stress activated neutrophils [112].

NF-κB is a prominent molecular component that activate and regulates gene transcrip-
tion [113] of pro-inflammatory chemicals, the A.A cascade, cytokines, chemokines, and
inflammatory mediator-induced phosphorylation of I-κB via I-κB kinase and damage to
the I-κB complex. It initiates the activation of NF-κB and its related reactions associated
with inflammation [114]. Variations in NF-κB pathway activation have been linked with
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chronic inflammation related ailments such as cancer, inflammatory bowel illness, asthma,
atherosclerosis, and rheumatoid arthritis, [115], as well as maintaining different inducible
transcription factors in inflammation. Inflammation involves several enzymatic proteins
that are related to immune regulation and removal or destruction of various substance
through by blood cells [116]. The role of these proteins as inflammatory mediators has long
been known. These proteins attach to pathogens after being activated by a recognition
protein such as C-reactive protein (CRP), natural IgM, or mannan-binding lectin.

Inflammatory response results in the production of enzymes involved in degrada-
tion of the cellular matrix, such as matrix metalloproteinases (MMPs) [117]. Various
biomolecules occur on the surface of leucocytes, such as selectins, which support their entry
into tissue spaces by rolling on the endothelial surfaces [104].

Currently, steroidal and nonsteroidal inflammation preventive medications are used to
treat acute inflammation and related diseases [118]. However, these medicines are not fully
effective against chronic inflammation-related conditions and may have adverse impacts
on human health. As a result, it is critical to investigate materials with low adverse effects
for the management and treatment of inflammation [119]. Functional foods have attrac-
tions in developing novel therapeutics because of their nutritional and pharmacological
potential. Furthermore, a lot of attention has been diverted towards natural sources in-
cluding mushrooms that contain medicinally important biofunctional components that can
reduce the severity of inflammatory ailments via different mechanisms such as regulating
oxidative stress in the physiological range and controlling pro-inflammatory cytokines.
C. militaris and its bioactive components are being investigated for biomedical applications,
due to their reduced side effects, rich nutritional and bioactive constituents and suppres-
sion of inflammation. C. militaris and its active constituents have both in vitro and in vivo
inflammation preventing potential in a variety of experimental models [120–122].

4. Cordyceps militaris and Inflammation

Chronic inflammation causes diseases that are characterized by devastating effects.
Many different factors induce inflammation, such as chemicals, physical injury, infec-
tious agents, immunological responses, and metabolic disorders. Medicinal fungi such as
C. militaris, or their constituents such as cordycepin, are currently being investigated as
therapeutic agents against inflammation as they prevent acute and chronic inflammatory
responses. The actual mechanisms involved in anti-inflammatory responses include an-
tioxidant activity, transcription factors, matrix metalloproteinases, complement cascade
properties, and adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1),
selectin, and vascular cell adhesion molecule-1 (VCAM-1). Moreover, C. militaris, and its
constituents also regulate pro-inflammatory enzyme actions and gene expression of inflam-
matory genes. Recent reports revealed that Cordycepin, one of the prominent components
of C. militaris, inhibited inflammation-associated gene expressions of COX-2 and iNOS [123].
Furthermore, ethanol extract of silkworm pupa-cultivated C. militaris fruiting bodies inhibit
the secretion of histamine, protein kinases [124], and regulate gene transcription associ-
ated with inflammation or inflammation associated diseases [125]. Many studies have
demonstrated the potential of C. militaris in prevention of inflammation. Hence, this study
comprehensively reviews the available data on the inhibition potential of C. militaris against
inflammation along with related molecular mechanisms. The anti-inflammatory mode
of action and molecular events linked with suppression of inflammation associated with
C. militaris in various experimental models are presented in Table 1 and briefly explained
below.

4.1. Antioxidant Potential

Oxidative stress arises mainly because of the antioxidant system being unable to
remove systematic production of ROS or restore damage produced by the ROS in living
systems [112]. RNS are also associated with oxidative stress. Vital biological molecules are
susceptible to ROS, and RNS. Their interaction can result in damage of cellular components,
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causing modifications and altered functioning of bio-molecules such as proteins, DNA
and others [112,126]. Changes in these processes result in the activation of inflammatory
pathways mediated by inflammatory mediators, which cause damage and altered function-
ing. Inflammatory cells, such as macrophages and neutrophils, contribute to maintaining
oxidative stress. Neutrophils play a vital role in the regulation of inflammatory processes
by the generation of superoxides via triggering NADPH oxidase, that leads to a worsening
effect in cells [127]. Numerous studies have demonstrated the antioxidant potential of
C. militaris. Zhang et al. documented the substantial radical scavenging activity of the
polysaccharide-iron (III) on DPPH, hydroxyl ABTS, and superoxide species [128]. In an-
other study, the antioxidant capacity of neutral polysaccharide was assessed with assays
of reducing power, ABTS radical scavenging activity, oxygen radical absorbance capacity
(ORAC-fluorescein), and hydroxyl radical scavenging activity [129]. An ethanol extract of
C. militaris showed in vitro antioxidant activity against DPPH, superoxide, and hydroxyl
radicals and low-density lipoproteins [130]. Extracellular polysaccharide from C. militaris
effectively regulated key proteins such as HO-1, Nrf2, Kelch-like ECH-associated protein-1
(Keap1), and quinone oxidoreductase 1 (NQO1) in the Nrf2 signaling pathway [131]. He
et al. also supported the anti-inflammatory property of an ethanol extract of C. militaris
via the suppression of H2O2-stimulated cell injury related to ROS overproduction and
downregulated mitogen-activated protein kinases in C6 glial cells [132]. The stimulation
of redox-sensitive transcription factor Nrf2 averts oxidative stress damage by activating
HO-1 [126]. C. militaris polysaccharides prominently increased catalase, SOD, glutathione
peroxidase levels and total antioxidant capacity, and reduced malondialdehyde (MDA) in
experimental animals [34]. Additionally, use of C. militaris was a potent therapy for inflam-
mation associated damaging effects in neurological illnesses [132]. Cordycepin suppressed
LPS-induced MDA content and inflammatory cytokines (IL-1β, TNF-α) production. It also
inhibited LPS-stimulated NF-κB activation, Nrf2 and HO-1 expression [133].

4.2. Effects on Proinflammatory Enzymes

Various inflammatory mediators including prostaglandins (PGs) i.e., PGE2, 6-keto
prostaglandin F1α (6-keto-PGF1α) and other active lipids are found in all human cells.
Cyclooxygenases and prostaglandin synthases catalyze a series of events that create PGs
from A.A at the site of inflammation [134]. The increased production of iNOS takes place
mostly at inflammatory sites, resulting in the augmented synthesis of NO, which ultimately
induces synthesis of PGs [119,126]. PLA2 and LOX enzymes are also linked in the regulation
of the A.A pathway. Likewise, LOX participates in the derivation of leukotrienes (LT) by the
A.A route, which has been connected to inflammatory diseases such as cancer, inflammatory
bowel disease, asthma, allergy and other ailments. C. militaris ameliorated IL-1β-stimulated
COX-2 expression in splenocytes [135]. LPS-induced LPS-stimulated RAW 264.7 cells
exposed to Cordycepin showed concentration-dependent reduced synthesis of NO and
proinflammatory cytokines including IL-6, IL-1β, TNF-α, COX-2 and iNOS, [64]. Another
study demonstrated the anti-inflammatory effect of cordycepin attributed to inhibiting NO
synthesis, suppressing COX-2 and NF-κB activation, Akt and p38 phosphorylation and
iNOS expression [136]. C. militaris powder at a dose of 0–3 g per individual suppressed
inflammatory cytokines such as EGF, eotaxin, fractalkine, GM-CSF, GRO, G-CSF, IFN-α2,
IFN-γ, IL-1α, IL-6, IL-8, IP-10, MCP-1, MIP-1β, MCP-1, MIP-1α, TGF-α, sCD40L, VEGF
that were reported in the blood samples from volunteers of both sexes, i.e., male and
female [137]. In comparison to the LPS-treated control cells, GRC-ON89A decreased the
release of NO. It also suppressed the production of COX-2, iNOS, and TNF-mRNA in
LPS-triggered macrophages. In addition, pretreatment with GRC-ON89A suppressed
LPS-induced activation of NF-κB and MAPKs (ERK, JNK, and P38) [120].

Leukotrienes are crucial molecules related to inflammatory processes in inflammatory
bowel disease cancer, asthma, and rheumatoid arthritis. These molecules are derivatives
of the LOX-mediated arachidonic acid pathway [104,126,138,139]. NO is a significant
important secondary messenger in the signaling pathway regulating pathophysiological
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conditions. The advantageous roles of NO in neurological and defensive systems have
been widely discussed for many years, and NO has evolved as a mediator of several
bio-activities. In addition to these effects, there is a link between increased NO production
and inflammation-related disorders. The interaction of NO with metal causes changes in
the activity of enzymes such as catalase, which results in H2O2 accumulation and harmful
consequences. Additionally, peroxynitrite is an effective oxidant associated with apoptosis
and DNA damage. Oxidation of low-density lipoproteins and suppressing of mitochondrial
respiration occurs as an outcome of interaction between superoxide anions and NO [126].
NO tends to promote the synthesis of pro-inflammatory cytokines such as TNF-α and
others [104]. Asterina pectinifera fermented C. militaris extract decreases LPS-triggered
expression of inducible NO synthase and inhibited pro-inflammatory cytokines such as
TNF-α and IL-6. Furthermore, it ameliorates the LPS-triggered phosphorylation levels of
JNK1/2, ERK1/2, and p38 MAPKs in RAW264.7 macrophages [140].

4.3. Effects on Inflammation-Associated Gene Expression

C. militaris and its constituents regulate numerous molecular mechanisms, including
PI3K, MAPK pathways, activator of transcription (JAK/STAT) pathways, Janus kinase-
Signal Transducer, protein kinase C (PKC), and others. These mechanisms contribute
to inflammation and related diseases via regulating inflammatory mediators and are
comprehensively discussed in this study. Inflammatory conditions are linked to kinases
that affect the production and regulation of transcription factors such as activator protein-1
(AP-1) [141].

The MAPK family includes important serine/threonine protein kinases such as c-jun
N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase1/2 (Erk1/2) [142].
Inflammatory stimuli initiate these pathways that ultimately control the expression of tar-
geted genes such as TNF-α, IL-1, and COX-2. Cordycepin inhibited LPS-stimulated NF-κB
activation and suppressed LPS induced lung wet/dry ratio, MDA content, and inflamma-
tory cytokine (IL-1β, TNF-α) production [133]. Asterina pectinifera fermented C. militaris
extract decreased LPS-induced expression of iNOS and inhibits proinflammatory cytokines
such as TNF-α and IL-6. Additionally, it ameliorates the LPS-induced phosphorylation
levels of ERK1/2, JNK1/2, and p38 MAPKs [140]. Cordycepin attenuated airway hyper
responsiveness, mucus hypersecretion, and OVA-specific immunoglobulin (Ig) E in an
experimental model. It blocked severe OVA-induced inflammatory cell recruitment to the
lungs such as eosinophils, neutrophils, macrophages, and lymphocytes. It decreased the
upregulation of eotaxin, ICAM-1, IL-4, IL-5, and IL-13 in mice. Furthermore, it inhibited
p38-MAPK and NF-κB signaling pathway activation in OVA-driven asthmatic mice [143].
An aqueous extract of C. militaris significantly reduced the serum levels of MCP-1, ICAM-1,
VCAM-1, and NF-κB p65 compared with disease model rats, and total cholesterol, serum
creatinine, triglyceride, blood urea nitrogen and urine protein in a cationic bovine serum
albumin-induced membranous glomerulonephritis rat model. It also attenuated altered
levels of inflammatory factors such as IL, TNF-α and 6-keto-PGF1α, and NF-κB p65. In
addition, increased the levels of serum albumin, total protein, MDA, and induced the
production of SOD levels and glutathione peroxidase were observed [144]. Cordycepin
inhibited IL-1β, PGE2, NO synthesis, along with production of MMP-13, IL-6, iNOS and
COX-2 in IL-1β-induced chondrocytes [145]. In another study, cordycepin reduced the
production MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5. It also inhibited oxidative
stress-associated factors (NO and PGE2) and increased the synthesis of aggrecan and
collagen-2 in LPS-activated models [146]. A militarin derivative inhibited the synthesis of
NO and PGE2 at the transcriptional level through the inhibition of multiple targets includ-
ing Syk/NF-kB, IKKe/IRF-3, and p38/AP-1 pathways in LPS-activated RAW264.7 cells
and peritoneal macrophages [122]. PI3K has a critical role as a mediator of inflammatory
signaling pathways [67]. Stimulation of PI3K leads to AKT activation via a cascade of
events that subsequently causes cytokine synthesis [147]. C. militaris fermented mulberry
(Morus alba) leaves exerted anti-inflammatory response through the PI3K/AKT/mTOR
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signaling pathway in high fat diet-induced obese mice. It reduced mast cell infiltration,
inflammatory mediator expression (iNOS and COX-2), and proinflammatory cytokine
synthesis (NF-κB, IL-1, -6, and TNF-α) [148]. The anomalous activity of the JAK/STAT
pathway in inflammation has been detected in response to various stimuli, resulting in the
stimulation of gene transcription related to inflammatory conditions. Various cytokines
enhance STAT phosphorylation, which controls gene transcription [104,149]. Similarly,
JAK-phosphorylated STATs are implicated in the control of target gene transcription, such
as TARC chemokine [150].

4.4. Effects on Transcription Factors

There are numerous stimuli, such as LPS, RNS, ROS and proinflammatory mediators
activating I-κB phosphorylation through I-κB kinase, that break down the I-κB complex
and cause NF-κB activation. NF-κB then translocates into the nucleus where it induces
the transcription of genes such as IL-1, iNOS, TNF-α, myeloperoxidase lipoxygenases,
adhesion molecules, COX-2, and pro-inflammatory cytokines [104,114]. Furthermore,
NF-κB activation is linked to a number of degenerative inflammatory diseases such as
inflammatory bowel disease, asthma, atherosclerosis, and rheumatoid arthritis [115].

Nonsteroidal anti-inflammatory therapeutic agents, including aspirin and sulindac
have been shown to inhibit the NF-κB response. The pharmaceutical substance that ad-
verts these pathways can reduce inflammatory processes in living beings. Various reports
have shown that C. militaris reduces NF-κB-regulated inflammation and related responses
in a variety of experiments [40,120,136,148,151]. Various inflammatory genes, such as
COX-2 IL-8, IL-6, and TNF-α, are activated by the NF-κB transcription factor, which is
susceptible to oxidative stress. Cordycepin attenuates caerulein-stimulated degenerative
histological features of pancreatic injury, such as augmented inflammatory cell (neutrophil)
infiltration, and reduced edema, acinar cell vacuolization, and serum amylase and lipase
levels. It inhibited inflammatory chemicals (IL-6, TNF-α and IL-1β,) by suppressing the
activation of NF-κB and NLRP3 inflammasomes in an experimental model [152]. Addi-
tionally, C. militaris serves as an effective inhibitor of pro-inflammatory cytokines, demon-
strating its anti-inflammatory tendency via NF-κB inhibition, and down regulating the
iNOS, COX-2, MAPKs and AKT cascades in LPS-mediated inflammations in RAW 264.7
macrophages [120]. Repression of RANKL is also linked with events that may be impor-
tant targets for controlling inflammation-associated condition such as cancer and colitis.
C. militaris extract demonstrated concentration-dependent suppression of receptor activator
of NF-κB ligand (RANKL)-triggered osteoclast differentiation. In addition, cordycepin
considerably suppressed RANKL-activated NF-κB and p38 phosphorylation [153].

4.5. Effects on Adhesion Molecules

Endothelial adhesion molecules such as vascular cell adhesion molecule (VCAM)-1,
P-selectins (platelets), monocyte chemotactic protein (MCP)-1, L-selectin (leukocytes), in-
tracellular adhesion molecule (ICAM)-1, and integrin, play a critical role in the interactions
of endothelial and leukocytes during inflammatory processes [104]. These molecules
have a variety of functions such as infiltration, adhesion, tethering, and rolling. These
are only a few of the critical functions of leukocyte-mediated inflammation. Augmented
immunoglobin-G adhesion components, including ICAM-1, VCAM-1 participate in mi-
gration, activation of T cells, and leucocyte recruitment [104,154]. In vitro experiments
exhibited that diverse inflammatory related molecules, such as IL-1β and TNF-α, cause
the synthesis of E-selectin [155], P-selectin [156], and leukocyte adhesion molecules [157]
in endothelial cells. This illustrates the implication of proinflammatory cytokines in the
recruitment of white blood cells at the site of inflammation. Aqueous extract of C. militaris
prominently decreased the serum levels of NF-κB p65, VCAM-1, ICAM-1, MCP-1, com-
pared with disease model rats, as well as blood urea nitrogen, serum creatinine, total
cholesterol, triglyceride, and urine protein. It also attenuated altered inflammatory chemi-
cals such as IL, TNF-α and 6-keto-PGF1α, and NF-κB p65. Furthermore, increased levels
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of serum albumin, total protein, MDA, SOD levels, and glutathione peroxidase were ob-
served [144]. C. militaris extract showed neuroprotection against focal and permanent
ischemic brain damage through anti-inflammatory activities. It suppressed oedema and
the infiltration of ED-1-and MPO-positive inflammatory cells into ischemic lesions in an
experiment model. It also inhibited chemoattractant (MCP-1)-induced microglial migra-
tion [158]. A soya-cerebroside of C. militaris attenuates IL-1β-activated monocyte migration
and MCP-1 expression and inhibits SP1 levels via upregulation of miR-432 and the phospho-
rylation of AMPK and AKT [159]. Suppressed inflammatory cytokines including eotaxin,
EGF, fractalkine, GRO, GM-CSF, G-CSF, IFN-α2, IFN-γ, IP-10, IL-8, IL-6, IL-1α, MCP-1,
MIP-1β, MIP-1α, sCD40L, VEGF, TGF-α were reported in the blood samples of both male
and female volunteers [137]. Extravasion of neutrophil was effectively inhibited in the
peritoneal inflammatory model. Increased selectin receptors are linked to inflammatory
diseases including pancreatitis. Various noninfectious inflammatory ailments such as acute
pancreatitis are characterized by high mortality and morbidity, and accompanied by tissue
necrosis and severe inflammation. Cordycepin inhibited a variety of proinflammatory
cytokines, including TNF-α, IL-6, and IL-1β via downregulating NLRP3 inflammasomes
and NF-κB inhibition in experimental model [152].

4.6. Effects on Matrix Metalloproteinase

The enzyme inhibitory potential of C. militaris against a variety of enzymes includ-
ing COX, matrix metalloproteases (MMPs) and others has been well reported. Inhibition
of these enzymes confines tissue injuries in various diseases, reduces inflammation and
mitigates metastasis. MMPs are a group of zinc-containing calcium-dependent proteases
(endopeptidases) involved in the breakdown and remodeling of extracellular matrix com-
ponents [160]. Hormones, growth factors, and cytokines all have a role in regulating MMP
expression.

Tissue inhibitors of metalloproteinases (TIMPs) control MMPs in the physiological
range. Increased or decreased TIMP or MMPs can trigger different diseases or increase
their severity including inflammation-related ailments [161].

Proinflammatory cytokines such as IL-1, IL-17, TNF-α and others induced the pro-
duction of MMPs in bovine primary chondrocytes, chondrosarcomal cells (SW1353), and
human primary chondrocytes [104,162]. Cordycepin inhibited IL-1β-stimulated MMP-1
and MMP-3 expression in rheumatoid arthritis synovial fibroblasts in a concentration-
dependent manner. It also suppressed IL-1β-stimulated p38/JNK and AP-1 activation [163].
C. militaris-derived soya-cerebroside inhibits IL-1β-induced MMP-1 synthesis by regulating
MEK, ERK, FAK, and AP-1 signaling cascades [159].

C. militaris associated anti-inflammatory molecular mechanisms are depicted in Figure 6.
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Table 1. Biofunctional components, concentration, experimental/disease model and anti-inflammatory actions of Cordyceps militaris.

Bioactive Component Dose/Disease Model Study Type/Experimental Model Results/Mechanism References

Cordycepin 2.5–10 mg per kg of rat/Parkinson’s
disease

In vivo/
Male Sprague-Dawley rats

Reduced neuro-inflammation, dynamin-related
protein 1 (Drp1), IL-1β, IL-18 and tyrosine hydroxylase.
Amplified NLRP3 inflammasome activation, ATP
production, AMP-activated protein kinase and
mitochondrial functions

[164]

Cordycepin 0.0005–0.008 nM/L
In vitro/
PC12 rat pheochromocytoma cell
line

Improved mitochondrial functioning by increased ATP
content, maintaining membrane potential, inhibiting
fission protein 1(Fis1) and mitochondrial ROS levels.

[164]

Cordycepin
0–40 µg per mL/
TNF-α-induced inhibition of osteogenic
differentiation in ADMSCs

In vitro/
ADMSCs

Restoration of cell proliferation and osteogenic
differentiation by regulating Runx2 and Osx mRNA
expressions, and NF-κB signaling via inhibition of
IκBα phosphorylation.

[165]

Cordycepin 0–40 µg per mL/LPS-stimulated
RAW264.7 cells

In vitro/
RAW264.7 cells

Reduced proinflammatory chemicals such as IL-1β,
IL-6, TNF-α, iNOS, COX-2 and NO synthesis [64]

C. militaris extract (WIB801C) 20, 50, 100 mg per kg of rat/Focal cerebral
ischemia

In vivo/
Male Sprague-Dawley rat

Neuroprotection, inhibited MCP-1-induced microglial
migration, oedema and the infiltration of ED-1-and
MPO-positive inflammatory cells.

[158]

Asterina pectinifera fermented C.
militaris extract (FACM)

0–40 µg per mL/LPS-induced RAW264.7
macrophages

In vitro/
RAW264.7 macrophages

Amelioration of LPS-stimulated phosphorylation
levels of MAPKs (p38, JNK1/2, and ERK1/2), NO
synthase expression, IL-6 and TNF-α.

[140]

Cordycepin 10, 20, 400 mg per kg of rat/
Acute lung injury, asthma.

In vivo/
Male BALB/c mice

Inhibited OVA-specific immunoglobulin (Ig) E, mucus
hypersecretion, eotaxin, IL-4, -5, -13 and ICAM-1,
NF-kB activation and p38-MAPK signaling cascades,
recruitment of inflammatory cells in an experimental
model.

[143]

Militarin Derivatives 0–100 µM/
LPS-treated RAW264.7

In vitro/
RAW264.7 cells, peritoneal
macrophages

Inhibited NO production and PGE2 by
downregulating p38/AP-1, IKKe/IRF-3, and
Syk/NF-kB pathways

[122]

Militarin Derivatives
5–20 mg per kg in DSS-induced colitis,
5–30 mg per kg in gastritis model and ear
oedema model

In vivo/
male C57BL/6 and ICR mice

Anti-inflammatory effects by reducing gastric damage
(gastritis), inhibited colon size and up-regulated
phospho-p38 (colitis), and inhibited ear oedema.

[122]
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Table 1. Cont.

Bioactive Component Dose/Disease Model Study Type/Experimental Model Results/Mechanism References

Cordycepin
and adenosine

0, 1, 10 and 100 µg per mL/
LPS induced inflammatory response

In vitro/
Murine macrophage

Inhibition of inflammation by reducing expression of
M1 chemokines (CX3CR1, RANTES) and cytokines
(IL-1β, TNF-α).

[166]

Extract of C. militaris grown on
soybean

5–20 mg per kg of mice/
DSS-induced colitis

In vivo/
C57BL/6 mice

Inhibited TNF-α, iNOS, MMP-3, MMP-9 mRNA
Expressions in colonic tissue of a colitis model. [167]

Extract of C. militaris grown on
soybean

10 and 100 µg per mL/
LPS-induce RAW264.7 Cells.

In vitro/
RAW264.7 cells Suppressed TNF-α and iNOS in a cell model [167]

Extract (Mulberry leaves fermented
with C. Militaris) High fat diet-induce -obese mice In vivo/

C57BL/6N male mice

Inhibited mast cell infiltration, COX-2, iNOS, IL-6, -1β,
TNF-α, NF-κB. Anti-inflammatory response via the
PI3K/AKT/mTOR signaling pathway.

[148]

Cordycepin
0, 10, 50 or 100 µM/
Nucleus pulposus cell and intervertebral
disc organ culture inflammatory models

In vitro/
rats

Increased type-II collagen, aggrecan synthesis.
Inhibited PGE2, NO, and matrix damaging enzymes
(MMP-3, -13; ADAMTS-4, and -5).

[146]

C. militaris extract, fractions,
ergosterol

0.1, 1, 10 and 100 µg per mL/
LPS-stimulated BV2 microglia cells

In vitro/
BV2 microglia cells Significantly reduction in LPS induced nitric oxide. [168]

C. militaris-fermented product
extract

0.603–1.809 g per kg per day/
liver fibrosis BALB/c mice

In vivo/
Male BALB/c mice

Suppressed proinflammatory cytokines, such as
TNF-α, IL-6, and NF-κB. [151]

Cordycepin, C. militaris butanol
extract

0–30 µg of Cordycepin per mL/ or
0–75 µg of extract per mL/
LPS-triggered RAW264.7 cells

In vitro/
RAW264.7 cells

Anti-inflammatory effect by inhibiting NO synthesis,
NF-κB activation, iNOS, COX-2 expressions and
phosphorylation of p38 and Akt.

[136]

Ergosterol palmitate; palmitic acid;
ergosterol; ergosterol peroxide;
3,4-O-isopropylidene-d-mannitol;
Cordycepin; d-mannitol; d-glucose

LPS/IFN-α stimulated murine peritoneal
macrophage cells

In vitro/
macrophage cells

Suppressed synthesis of cytokines including IL-12 and
TNF-α and NO production [40]

Soya-cerebroside,
C. militaris extract

0, 1, 5, and 10 µM/
IL-1β-induced monocytes

In vitro/
Monocyte

Reduced monocytes migration and MCP-1 expressions.
Downregulated SP1 expression by activating miR-432
and inducing phosphorylation of AKT and AMPK.

[159]

Soya-cerebroside,
C. militaris extract

3 and 10 mg per kg per day/
IL-1β-induced inflammatory rat model

In vivo/
Severe combined immunodeficiency

Inhibited edema and cartilage damage. Induction in
CD68 and MCP-1 (a marker for
monocyte/macrophages) positive cells,

[159]
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Table 1. Cont.

Bioactive Component Dose/Disease Model Study Type/Experimental Model Results/Mechanism References

Soya-cerebroside
0, 1, 5, and 10 µM/
Osteoarthritis synovial fibroblasts
(OASFs)

In vitro/
humans

Decreased monocyte migration, activated AKT and
AMPK signaling pathways, MCP-1 and microRNA
(miR)-432 expression in OASFs.

[159]

C. militaris extract
1, 10, 100 and 1000 µg per mL/
In LPS-stimulated RAW264.7 and
antigen-induced RBL-2H3 cells

In vitro/
RAW264.7 and RBL-2H3 cells Inhibited nitrite production, iNOS, and TNF-α. [169]

C. militaris extract 500 mg per kg of animal per day/
DSS induced acute colitis

In vivo/
BALB/c mice

Alleviated the severity of the disease in a colitis mouse
model by decreasing mRNA expression of TNF- α and
iNOS.

[169]

GRC,
GRC-ON89A

250, 500 µg per mL/
LPS-induced Macrophages

In vitro/
RAW264.7 cells

Reduced NO production, iNOS, COX-2, and TNF-α
mRNA expression, and that of MAPKs (ERK, JNK, and
P38), NF-κB.

[120]

GRC,
GRC-ON89A

25 mg per kg of animal/
DNFB induced allergic contact dermatitis

In vivo/
BALB/c, C57BL/6N mice models

Decreased inflammatory response such as ear swelling
in an experimental model [120]

Cordycepin
12.5, 25, 50, 100 µg per mL/
Cholecystokinin-stimulated pancreatic
acinar cancer cell

In vitro/
pancreatic acinar cancer cell

Anti-inflammatory effect by down regulating NLRP3
inflammasome activation and NF-κB via AMPK. [152]

Cordycepin 100 mg per kg of animal/
Caerulein induced acute pancreatitis

In vivo/
Male ICR mice

Augmented neutrophil infiltration and reduced edema,
acinar cell vacuolization, serum amylase, lipase levels.
Inhibited TNF-α, IL-1β, IL-6 by suppressing the
activation of NLRP3 inflammasome and NF-κB.

[152]

C. militaris aqueous extract

1 and 2 g per kg of animal/
Cationic bovine serum albumin-induced
membranous glomerulonephritis rat
model

In vivo/
Wistar male rats

Amplification of total protein, serum albumin, MDA,
SOD, and glutathione peroxidase. Attenuated IL-1,
TNF-α, 6-keto-PGF1α, NF-κB p65. Reduced serum
levels of VCAM-1, ICAM-1, and MCP-1 and urine
protein serum creatinine, triglyceride, blood urea
nitrogen and total cholesterol.

[144]

Extract of fruiting bodies C. militaris
500 µg per mL/
LPS-induced inflammatory response in
macrophages

In vitro/
RAW264.7 Macrophages Reduced Synthesis of IL-6, NO, and TNF-α. [170]
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Table 1. Cont.

Bioactive Component Dose/Disease Model Study Type/Experimental Model Results/Mechanism References

Cordycepin
50, 100, and 200 g per kg /
LPS-induced acute lung injury mice
model

In vivo/
Male BALB/c mice

Inhibition of Nrf2 and HO-1 expressions, MDA
content, IL-1β, TNF-α and NF-κB activation. [133]

C. militaris and Rumex crispus
Mixture

50 and 100 µg per mL/
LPS-induced splenocytes

Ex vivo/
splenocytes

Suppressed COX-2, iNOS, IL-1β, IL-6, TNF-α, IFN-γ)
and NO synthesis [135]

C. militaris-based nanoemulsion 25 and 50 µg per mL/
LPS-induced Macrophages

In vitro/
RAW264.7 Macrophages

Reduced expression of proinflammatory cytokines
(TNF-α, IL-1β, IKKa, iNOS, IL-6, NF-kß) and NO
production.

[171]

Mulberry leaves fermented with
C. militaris

100, 200 and 400 µg per mL/
LPS-induced Macrophages

In vitro/
RAW264.7 Macrophages

Anti-inflammatory activity by iNOS-mediated COX-2,
expression of inflammatory cytokines (IL-1β, IL-6 and
TNF-α), and MAPK signaling pathway

[148]

Cordycepin
10, 50 and 100 µM/
IL-1β-stimulated human osteoarthritic
chondrocytes

Ex vivo/
osteoarthritic chondrocytes

Suppressed IL-1β, PGE2, MMP-13, IL-6, iNOS, COX-2
and NO synthesis. [145]

Cordycepin PBMCs (Kawasaki disease patients),
LPS-induced Macrophages

In vitro and Ex-Vivo/ PBMCs,
macrophages

Inhibition of LPS-stimulated TNFα production in
mouse macrophages and in PBMCs [172]

Cordycepin 1, 5, 10 and 20 mg per kg/
Traumatic brain injury

In vivo/
Sprague-Dawley rats

Increased arginase 1 and IL-10. Inhibition of IL-1β,
iNOS, MPO and MMP-9, and NADPH oxidase
expression.

[173]

C. militaris fruiting bodies extract
4 g per kg/
OVA sensitized airway inflammatory
mice model

In vivo/
BALB/c mice

Inhibited asthmatic airway inflammation and blocked
bronchoconstriction mediators-leukotrienes [97]

C. militaris, C. militaris fermented
Haliotis discus hannai (HFCM-5)

50, 100 and 200 µg per mL/
LPS-induced Macrophages

In vitro/
RAW264.7 Macrophages

Decreased proinflammatory cytokines, TNF-α and IL-6
in a concentration-dependent manner. In addition,
showed nitric oxide inhibitory activity.

[174]
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Table 1. Cont.

Bioactive Component Dose/Disease Model Study Type/Experimental Model Results/Mechanism References

Cordycepin
50 and 100 µM/
Palmitic acid and oleic acid in
inflammation in Hepatocytes

In vitro/
hepatocytes

Attenuated the increased expression of inflammatory
genes (TNF-α, IL-1β, Cxcl10, Ccl2 and Ccl5) [121]

Cordycepin
100 and 200 mg per kg/
Lipotoxic model), nonalcoholic
steatohepatitis

In vivo/
Mice

Suppressed inflammatory genes (IL-1β, Cxcl2, Cxcl10,
Ccl2, and Ccl5), activation of NF-κB signaling, and
inflammatory cell infiltration. Anti-inflammatory
effects through AMPK pathways

[121]

Spent mushroom (C. militaris) 0.5, 1 and 1.5 g per kg/ In vitro/
pigs

Improved health conditions. Inhibition of IL-1β and
TNF-α. [175]

Fermented cultured C. militaris
(GRC-SC11)

0–300 µg per mL/
allergic model (RBL-2H3 cells)

In vitro/
RBL-2H3 IL-4 and TNF-α inhibition [176]

Cordycepin 2 g per liter in drinking water/
LPS stimulated animals

In vivo/
Male broilers (Ross 308) Inhibition of COX-2 and iNOS [123]

C. militaris powder 3, 1.5, and 0.5 g powder per individual/ In vivo/
Humans

Suppressed inflammatory cytokines including EGF,
eotaxin, fractalkine, IP-10, IL-1α, -6, -8, IFN-α2, -γ,
MIP-1α, -1β, GRO, G-CSF, GM-CSF, MCP-1, sCD40L,
TGF-α, VEGF

[137]

Abbreviations: 1-fluoro-2,4-dinitrofluorobenzene: DNFB; Adipose-derived mesenchymal stem cells: ADMSCs; Cordyceps militaris grown on germinated Rhynchosia nulubilis: GRC;
Cyclooxygenase 2: COX-2; Dextran sodium sulfate-induced: DSS; Epidermal growth factor: EGF; Fibroblast growth factor-2: FGF-2; Granulocyte-colony stimulating factor: G-CSF;
Granulocyte-macrophage colony-stimulating factor: GM-CSF; GRC: fermented with Pediococcus pentosaceus ON89A isolated from onion hexane extract: GRC-ON89A; Growth regulated
oncogene: GRO; Interferon-α2 (IFN-α2), IFN-γ; Heme oxygenase-1: HO-1; IFN-γ inducible protein 10: IP-10; Inducible NO synthase: iNOS; Intercellular adhesion molecule 1: ICAM-1;
Interleukin-1α: (IL)-1α, IL-1β, IL-1ra, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12(p40), IL-12(p70), IL-13, IL-15, IL-17; Lipopolysaccharide: LPS; Macrophage inflammatory
protein-1α: (MIP)-1α, MIP-1β; Macrophage-derived chemokine: MDC; Malondialdehvde: MDA; Monocyte chemoattractant protein-1: (MCP)-1, MCP-3; Monocyte chemoattractant
protein-1: MCP-1; Nuclear factor erythroid 2–related factor 2: Nrf2; Nuclear factor-κB: NF-κB; Mitogen -activated protein kinases: MAPKs; Ovalbumin: OVA; Peripheral Blood
Mononuclear Cells: PBMCs; Transforming growth factor-α: TGF-α; Tumor necrosis factor alpha: TNF-α; Tumor necrosis factor-α: (TNF)-α, TNF-β; Vascular endothelial growth factor:
VEGF; Vascular adhesion molecule 1: VCAM-1.
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Figure 6. C. militaris and its constituents associated anti-inflammatory molecular mechanisms. Arachi-
donic acid: A.A; Cyclooxygenase 2: COX-2; Heme oxygenase-1: HO-1; Interleukin-1β: (IL)-1β, -4, -5,
-6, -10, -12, -13, -18; Intracellular adhesion molecule: ICAM; Inducible nitric oxide synthase: iNOS;
Leukotrienes LT; Lipoxygenases: LOX; Monocyte chemotactic protein-1: MCP-1; Matrix metallo-
proteinases: MMPs; Nuclear factor-κB: NF-κB; phospholipase A2: PLA-2; Glutathione peroxidase:
GPx; Prostaglandin: PG; Superoxide dismutase: SOD; Transforming growth factor-α: TGF-α; Tumor
necrosis factor alpha: TNF-α; Vascular endothelial growth factor: VEGF; Vascular cell adhesion
molecule: VCAM. Upward double arrow shows the improved/increased content or functionality.
Single black arrow indicates signaling cascades, while the red symbol specifies the inhibition of
inflammation associated signals and biomolecules.

5. Functional Resemblance of Cordyceps militaris and Nonsteroidal Inflammation
Preventing Drugs

The anti-inflammatory potential of C. militaris shows it has similar molecular targets
to those of steroidal and nonsteroidal drugs. Nonsteroidal inflammation preventing drugs
and C. militaris both reduce inflammation related mechanistic cascades including

â Production of ROS
â Triggering and augmented production of pro-inflammatory cytokines
â Inflammation-associated markers, pro-inflammatory cytokine mediated regulation of

CAMs
â NF-κB activation
â Enhancing the production of arachidonic acid metabolites

Various contributing factors, such as autoimmune injury, infections, trauma, toxins,
postischemia, and microbes elicit inflammatory events, Usually these responses are a part
of healing or eradicating the infectious agent. Prolonged or chronic inflammation can cause
persistent tissue damage through collagen and leukocytes. Inflammation for prolonged
periods leads to the chronic disorders, while inhibition or downregulation of the above-
indicated inflammatory responses can avert disease development or lessen its severity.
Therefore, C. militaris may be noteworthy as an anti-inflammatory substance due to its ef-
fects on NF-κB and other inflammation-linked events for treating inflammation and chronic
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ailments. Furthermore, improved knowledge of bioavailability and proper consumption,
such as daily recommended intake, would improve its efficacy as a therapeutic food for
inflammation control.

6. Limitations and Future Prospects

Naturally occurring C. militaris is exceptionally expensive because of its rarity, host
specificity, and habitat. Furthermore, due to practical constraints, such as rigorous growing
conditions, cordycepin production from this medicinal fungus is unlikely to reach commer-
cial levels. It is important to highlight that the production of cordycepin through chemical
procedures is a time-consuming procedure that results in decreased productivity, as well as
the discharge of a considerable volume of organic solvents that are disadvantageous for our
environment. Moreover, natural production of significantly important constituents from
C. militaris such as cordycepin on a commercial level is carried out by culturing this fungus.
Although cultivation on a large scale has some concerns, several studies have reported the
similarity in quantity and the nature of chemical constituents in cultivated and natural
C. militaris.

C. militaris as a therapeutic agent has a number of limitations including negligence, lack
of suitable systematic information, inadequate in-depth research and awareness. Formerly,
it was solely used by an elite class of people but with the passage of time has become
available universally. Research on C. militaris in terms of its therapeutic effectiveness,
adverse effects, biosafety, biosecurity, and appropriate standardization should be prioritized
not only by individual producers, but also by different industries including functional
foods, pharmaceutical, and others.

The raw sources for natural medicines come from nature. The majority of medi-
cations derive from botanical origins. People select these medications for a variety of
reasons, including the fact that chemically created pharmaceuticals may cause patients
to become sicker, whereas natural measures such as medicinal mushrooms may combat
life-threatening diseases with lower side effects on human health. The pharmaceutical
industry requires innovation providing low-cost materials with appropriate health security
in order to maintain healthy growth. The combination of chemistry and biotechnology
with bio-originated starting materials, such as secondary metabolites, has the potential to
revolutionize edible mushroom-based pharmaceuticals. As a result, C. militaris derived
metabolites, including cordycepin, peptides, polysaccharides, and other active constituents,
will be a major driving force in the field of green pharmacognosy and pharmacology.

7. Concluding Remarks

Medicinal fungi are classical examples of natural riches pharmacological importance.
Our review encompasses the therapeutic effects of C. militaris in the context of ameliorating
inflammation-related conditions and disorders. This species has gained importance as a po-
tent bio-functional food source due to its diverse biological activities against inflammation-
mediated disorders such as diabetes, allergies, obesity, infectious diseases and cancer.
Different bio-functional components from the species are able to regulate inflammation at
the molecular level. The inhibition of inflammation at the molecular level proceeds through
various mechanisms including inhibition of prostaglandins, cytokines and chemokines,
MMPs, oxidative stress, and suppressed inflammation associated transcription factors. In
the pharmaceutical sector, C. militaris-associated bioactive ingredients may result in the
development of a viable base for pharmaceutical industries for treatment and management
of emerging diseases. In this regard, the species needs to be investigated by contemporary
scientific methods including gene sequencing, precise analysis of bioactive chemicals and
their screening, as well as pharmacological research and clinical trials. The food industry is
already generating formulations with C. militaris constituents but two important parameters
that require extensive work are the development of a complete safety profile, bioavailability
studies and standardization of the pharmacodynamics parameters, as well as consideration
of regulatory aspects.
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