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There are about 1-2million follicles presented in the ovary at birth, while only around 1000 primordial follicles are left atmenopause.
The ovarian function also decreases in parallel with aging. Folliculogenesis is vital for ovarian function, no matter the synthesis of
female hormones or ovulation, yet the mechanisms for its changing with increasing age are not fully understood. Early follicle
growth up to the large preantral stage is independent of gonadotropins in rodents and relies on intraovarian factors. To further
understand the age-related molecular changes in the process of folliculogenesis, we performed microarray gene expression profile
analysis using total RNA extracted fromyoung (9weeks old) and old (32weeks old)mouse ovarian secondary follicles.The results of
our currentmicroarray study revealed that there were 371 (≥2-fold, q-value ≤0.05) genes differentially expressed in which 174 genes
were upregulated and 197 genes were downregulated in old mouse ovarian secondary follicles compared to young mouse ovarian
secondary follicles. The gene ontology and KEGG pathway analysis of differentially expressed genes uncovered critical biological
functions such as immune system process, aging, transcription, DNA replication, DNA repair, protein stabilization, and apoptotic
process were affected in the process of aging.The considerable changes in gene expression profile may have an adverse influence on
follicle quality and folliculogenesis. Our study provided information on the processes that may contribute to age-related decline in
ovarian function.

1. Introduction

Ovarian aging results in the cessation of ovarian function,
that is, anovulation and a decrease in gonadal steroids
secretion. The anovulation causes loss of fertility and
reduced hormone production results in multiple health
consequences, including vasomotor symptoms, cardiovascu-
lar disease, osteoporosis, cognitive dysfunction, depression,
mood disorders, sexual dysfunction, vaginal atrophy, and
even mortality [1, 2]. The age at which natural menopause
occurs may be a marker of ovarian aging which is considered
to be the multiple pacemakers [3].

Ovarian follicle is the basic unit of ovarian physiolog-
ical function. After puberty, the periodic development of
the ovarian follicles enables the ovary to produce female

hormones to maintain secondary sexual characteristics and
ovulation. The reproductive aging process is considered to
be dominated by the gradual decrease of both the quantity
and the quality of the oocytes residing within the follicles
present in the ovarian cortex [4]. Females have approximately
1-2 million primordial follicles at birth [5, 6]. After birth, the
number of follicles decreases gradually with increasing age
through atresia with some 300,000 to 400,000 primordial
follicles remaining at menarche [4, 7]. During the reproduc-
tive years, the number of primordial follicles declines until
a critical threshold when only about 1000 left at the time of
menopause [8–10].

The information on the hormonal changes observed
gradual decline of the follicle pool and the reduced oocyte
quality during ovarian aging is quite a bit; however, the
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molecular mechanisms behind that are still not fully under-
stood. Studies have shown that accumulation of reactive
oxygen species (ROS) and free radicals and the action of envi-
ronmental factors such as radiation and chemotherapeutic
drugs used in cancer patients can cause DNA damage in the
oocytes during long periods of dictyate arrest and without
repairing, the extent of DNA damage may cause genomic
abnormalities (chromosomal breakages andmutations) lead-
ing to cell death and follicle atresia [11, 12]. Researches have
revealed that the expression of BRCA1 (breast cancer type 1)
related DNA repair decreased in the process of ovarian aging
in rat and buffalo primordial follicles [13, 14]. Laboratory and
clinical studies also demonstrated that expression of BRCA1
declines in single mouse and human oocytes and BRCA1
mutation is associated with primary ovarian insufficiency
[15–17].

A better understanding of follicle biology is essential
to help make ovarian aging process explicit. Early follicle
growth up to the large preantral stage is independent of
gonadotropins in rodents and relies on intraovarian fac-
tors [6]. Thus in our present study, the secondary follicles
from young and old mice ovaries were used to investigate
the changes of expression profile during ovarian aging by
genome-wide microarray analysis.

2. Materials and Methods

2.1. Isolation of Secondary Follicles from the Mouse Ovary.
The experimental animals were maintained as per the
guidelines of the Animal Care Committee of Tongji Hos-
pital within the Tongji Medical College at the Huazhong
University of Science and Technology in China. The 9-
week old and 32-week old, specific pathogen-free (SPF),
female C57BL/6J mice were obtained from Beijing Vital
River Laboratory Animal Technology Co., Ltd. (Beijing,
China). All mice were killed by decapitation and ovaries
were collected free of adhering tissue. Under the stereomi-
croscope, follicles with diameter of 120-140 𝜇m, an intact
basal membrane, a central and spherical oocyte surrounded
by granulosa cells were mechanically dissecting by 2 syringe
needles. The ovarian secondary follicles were stored at
−80∘C.

2.2. RNA Isolation and Microarray Analysis. The total RNA
of the ovarian secondary follicles was extracted with RNAiso
plus reagent according to the manufacturer’s instructions
(Takara, Japan). Of the total of 6 samples, 3 replicate samples
were from young mouse ovarian secondary follicles and 3
replicate samples were from old mouse ovarian secondary
follicles. All RNA samples were stored in DEPC in order
to prevent RNA degeneration. GeneChip hybridization for
each sample was examined on Affymetrix 3’ IVT Expression
Arrays (MouseGenome 430 2.0 array) at Bioassay Laboratory
of CapitalBio Corporation. The technical procedures and
quality controls were performed at the CapitalBio Corpo-
ration. Hybridization assay procedures were as described
in the GeneChip Expression Analysis Technical Manual
(http://www.affymetrix.com).

2.3.MicroarrayData Analysis. Theraw data frommicroarray
analysis was normalized using robust multiarray average
(RMA) algorithm. The differentially expressed genes with a
fold change ≥2 and a q-value ≤0.05 were identified using
Significant Analysis of Microarray (SAM) software. For
visualization of differentially expressed genes, unsupervised
hierarchical clustering was performed using HemI 1.0.3.7
software (http://hemi.biocuckoo.org/down.php) [18]. Gene
Ontology (GO) consisting of three items: molecular func-
tions, biological processes, and cellular components [19]
and Kyoto Encyclopedia of Genes and Genomes (KEGG),
a set of high-throughput genes and protein pathways [20],
analyses of differentially expressed genes were performed
using the DAVID online tools (https://david.ncifcrf.gov/)
compared with the mouse whole genome [21]. Whole Mouse
Genome was used as the reference group. Statistical sig-
nificance was calculated with a standard hypergeometric
equation corrected by a Benjamini Yekutelli correction for
multiple testing, which takes into account the dependency
among the GO categories. The minimal length of considered
GO-paths was 2. Significance was set at corrected p-value
< 0.05. The Search Tool for the Tetrieval of Interacting
Genes (STRING) database (http://string-db.org/), an online
software that provides comprehensive interactions of lists
of proteins and genes, was used to build a PPI network of
the differentially expressed genes [22]. The cut-off criteria
of the minimum required interaction score were 0.7 for
the PPI network. The visualizing of the PPI network was
constructed using the Cytoscape software (version 3.6.1) [23].
The Clustering with Overlapping Neighborhood Expansion
(ClusterONE) plug-in for Cytoscape was used to detect
protein complexes in the PPI network [24]. The gene regu-
latory network modeling for selected differentially expressed
genes was performed using Cytoscape software (version
3.6.1).

3. Results

3.1. Global Gene Expression Analysis of Secondary Follicles
from Mouse Ovaries. To characterize the genes that are
associated with mouse ovarian aging, we examined the gene
expression profile of secondary follicles from young and
old mouse ovaries. The expression values of all the six
samples (three samples each from young and old mouse
ovaries) were normalized using the robustmultiarray average
(RMA) method. The results of our microarray data were
made available in the public domain NCBI-GEO repository
(accession ID: GSE121493). The box-whisker plot analysis
of normalized data showed uniform distribution of the
expression levels in both intra- and intersample manner
indicating reliable hybridization (see Figure 1). Summary
statistics showed effectiveness of quantile normalization as
50th percentile values were close to 4.9. After normal-
ization of raw data for all three biological replicates, the
R package significance analysis of microarray (SAM) was
used to identify genes that are differentially expressed in
secondary follicles from young and old mouse ovaries (fold
change ≥2 or ≤0.5 and q-value ≤0.05). And the results

http://www.affymetrix.com
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http://string-db.org/


BioMed Research International 3

O
ld

−1

O
ld

−2

O
ld

−3

Yo
un

g−
1

Yo
un

g−
2

Yo
un

g−
3

2

4

6

8

10

12

14

Sample

Lo
g2

 (i
nt

en
sit

y)

Figure 1: Box and whisker plot (Box plot). We performed the comparison of gene expression with a total of six samples from young (n=3)
and old (n=3) mouse ovarian secondary follicles by using Affymetrix 3’ IVT Expression Arrays (Mouse Genome 430 2.0 array) at Bioassay
Laboratory of CapitalBio Corporation. Robust multiarray average (RMA) algorithm was used to eliminate the variation in the arrays from
noisy data. Box plot was constructed to illustrate the distribution of normalized probe hybridization signal intensities (log ratios) for all six
arrays (young and old mouse ovarian secondary follicles). The probe distribution by 0-100% quantiles as whiskers, the 25-75% quantiles as
different color boxes, and the 50% quantile as horizontal line within the box indicated a similar range of signal intensities and confirmed
perfect hybridization.

revealed that 371 genes were differentially expressed between
the two groups, while 174 genes were upregulated and
197 genes were downregulated in the secondary follicles
from the old mouse ovaries compared to those from the
young mouse ovaries. Further, unsupervised hierarchical
clustering analysis using the HemI 1.0.3.7 software showed
distinct patterns of up- and downregulated genes in the
secondary follicles from young and old mouse ovaries (see
Figure 2).

3.2. Functional Annotation for the Differentially Expressed
Genes. The identified differentially expressed genes in the
secondary follicles from the old mouse ovaries compared
to those from the young mouse ovaries were further ana-
lyzed via gene ontology (GO) and KEGG pathway analysis
using the DAVID online tool. As shown in Table 1, GO
term enrichment analysis showed that the upregulated genes
were significantly enriched in immune system process in
the biological processes category, cytoplasm, and nucleus
in the cellular component category and RNA and DNA
binding in the molecular function category. While listed
in Table 2, the functional annotation for the downregu-
lated genes revealed that the most significant categories
of biological process were involved in transcription and
its regulation, cellular component was involved in nucleus
and cytoplasm, and molecular function was involved in

protein, RNA, and DNA binding. Furthermore, KEGG path-
way analysis showed that most of the upregulated genes
took part in virus related and Toll-like receptor signaling
pathways, whereas downregulated genes mainly participated
in PI3K-Akt signaling pathway and Adherens junction in
Table 3.

3.3. Protein-Protein Interaction and Gene Regulation Network
Analysis. In total, 187 nodes and 572 edges were mapped
in the PPI network of identified differentially expressed
genes using STRINGwith the minimum required interaction
score > 0.7 (Figure 3). The 10 nodes with highest degree
were regarded as hub genes: STAT1, IFIT1, IFIT3, IRF7,
USP18, OASL2, IFIT2, UBC, DDX58, IFIH1. There were 12
modules generated by ClusterONE with p-value < 0.05. The
most significant module with p-value < 0.001 contained 35
nodes and 286 edges (Figure 4). The 10 genes listed above
apart from UBC were included in the module. In addition
to the 9 genes, other nodes in the module were RSAD2,
IFI47, TRIM30A, PARP14, PARP9, IFI44, RTP4, GBP7,
ISG15, IRF9, GBP6, GBP3, IGTP, HERC6, IRGM1, DHX58,
IIGP1, OAS2, DDX60, CXCL10, ZBP1, GBP2, EIF2AK2,
IRGM2, IFI35, and TLR3. And all genes in the module
were upregulated. As shown in the gene regulatory network
modeling for selected genes, many differentially expressed
genes such as BRCA1, STAT3, JUN, AKT1, SEPRING1,
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Figure 2: Heat map visualization for selected differentially expressed genes. Heat map was produced by unsupervised hierarchical-clustering
analysis frommicroarraydata for top 50upregulated genes and top 50downregulated genes in oldmouse ovarian secondary follicles compared
to young. The relative expression levels of each gene are mentioned in different colors. The red lines represent high expression, while blue
lines represent low expression.The numbers in the right side, corresponding to the different colors, represent the relative expression levels of
each gene.
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Table 1: Functional enrichment analysis of upregulated genes in the old mouse ovarian secondary follicles compared to young mouse.

Category Term Count∗ % P Value
GOTERM BP DIRECT GO:0035458∼cellular response to interferon-beta 15 8.6 5.62E-21
GOTERM BP DIRECT GO:0009615∼response to virus 18 10.3 6.73E-21
GOTERM BP DIRECT GO:0051607∼defense response to virus 21 12.1 1.15E-19
GOTERM BP DIRECT GO:0002376∼immune system process 24 13.8 1.01E-15
GOTERM BP DIRECT GO:0045087∼innate immune response 23 13.2 2.70E-14
GOTERM BP DIRECT GO:0071346∼cellular response to interferon-gamma 9 5.2 1.80E-08
GOTERM BP DIRECT GO:0042832∼defense response to protozoan 6 3.4 1.60E-06
GOTERM BP DIRECT GO:0006952∼defense response 8 4.6 1.36E-05
GOTERM BP DIRECT GO:0032870∼cellular response to hormone stimulus 6 3.4 1.57E-05
GOTERM BP DIRECT GO:0034097∼response to cytokine 7 4.0 1.79E-05
GOTERM CC DIRECT GO:0020005∼symbiont-containing vacuole membrane 5 2.9 1.46E-07
GOTERM CC DIRECT GO:0005829∼cytosol 28 16.1 7.00E-05
GOTERM CC DIRECT GO:0005737∼cytoplasm 65 37.4 6.61E-04
GOTERM CC DIRECT GO:0005634∼nucleus 58 33.3 2.75E-03
GOTERM CC DIRECT GO:0048471∼perinuclear region of cytoplasm 12 6.9 8.23E-03
GOTERM CC DIRECT GO:0072562∼bloodmicroparticle 5 2.9 1.34E-02
GOTERM CC DIRECT GO:0031225∼anchored component of membrane 5 2.9 1.63E-02
GOTERM CC DIRECT GO:0009897∼external side of plasma membrane 7 4.0 2.23E-02
GOTERM MF DIRECT GO:0003725∼double-stranded RNA binding 9 5.2 2.62E-08
GOTERM MF DIRECT GO:0003690∼double-stranded DNA binding 11 6.3 3.33E-08
GOTERM MF DIRECT GO:0003924∼GTPase activity 11 6.3 1.81E-06
GOTERM MF DIRECT GO:0005525∼GTP binding 12 6.9 6.76E-05
GOTERM MF DIRECT GO:0008134∼transcription factor binding 10 5.7 5.97E-04
GOTERM MF DIRECT GO:0003723∼RNA binding 15 8.6 9.40E-04
GOTERM MF DIRECT GO:0003677∼DNA binding 25 14.4 1.58E-03
GOTERM MF DIRECT GO:0001730∼2-5-oligoadenylate synthetase activity 3 1.7 2.48E-03
GOTERM MF DIRECT GO:0016817∼hydrolase activity, acting on acid anhydrides 3 1.7 2.48E-03

GOTERM MF DIRECT GO:0001077∼transcriptional activator activity, RNA polymerase II
core promoter proximal region sequence-specific binding 8 4.6 2.65E-03

∗Number of enriched genes in each term. The top ten terms based on P value were chosen in each category.

TCF3, MAP3K7, and IRF7 took part in various pathways
(Figure 5).

4. Discussion

Elucidating the mechanism of ovarian aging has significant
meanings to female health. The gradual decrease of both
the quantity and the quality of the oocytes surrounded by
the granulosa cells in all stages of follicles dominates the
reproductive aging [4]. In previous study, Govindaraj et al.
revealed that gene expression patterns changed considerably
in the rat primordial follicles in the process of ovarian
aging [25]. Folliculogenesis in the ovary is a highly dynamic
and periodic process regulated by both intra- and extra-
oocyte factors [26]. At each reproductive cycle, activated
primordial follicles join the growing pool transiting to pri-
mary follicles [26]. Through further development, a primary
follicle grows into a secondary follicle [26]. And these stages
are gonadotropin independent, but depend on the complex

bidirectional communication between the oocyte and the
somatic cells [26]. In the subsequent stages of folliculogenesis,
the presence of pituitary gonadotropins, follicle-stimulating
hormone (FSH), and luteinizing hormone (LH) are required
[26]. So the secondary follicles from the mouse ovaries were
selected as research objective in our study.

Gene expression profile of the secondary follicles from the
young and old mouse ovaries was compared by microarray
analysis to find what changed in the process of ovarian aging
in the present study.The results of our research found that 174
genes were upregulated and 197 genes were downregulated in
the secondary follicles from the old mouse ovaries compared
to those from the young mouse ovaries.

FurtherGOandKEGGpathway analyses were performed
to study the function of the differentially expressed genes.
The result of GO analysis showed that the upregulated genes
were mainly involved in biological process such as immune
system process and defense response, while downregulated
genes were closely related to gene transcription and cell
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Table 2: Functional enrichment analysis of downregulated genes in the old mouse ovarian secondary follicles compared to young mouse.

Category Term Count∗ % P value
GOTERM BP DIRECT GO:0006355∼regulation of transcription, DNA-templated 42 21.3 7.02E-05
GOTERM BP DIRECT GO:0016311∼dephosphorylation 8 4.1 9.84E-05
GOTERM BP DIRECT GO:0006351∼transcription, DNA-templated 35 17.8 3.19E-04
GOTERM BP DIRECT GO:0045893∼positive regulation of transcription, DNA-templated 16 8.1 5.56E-04
GOTERM BP DIRECT GO:0030335∼positive regulation of cell migration 9 4.6 8.87E-04
GOTERM BP DIRECT GO:0006470∼protein dephosphorylation 7 3.6 2.39E-03

GOTERM BP DIRECT GO:0043154∼negative regulation of cysteine-type endopeptidase
activity involved in apoptotic process 5 2.5 4.21E-03

GOTERM BP DIRECT GO:0030177∼positive regulation of Wnt signaling pathway 4 2.0 5.61E-03
GOTERM BP DIRECT GO:0043065∼positive regulation of apoptotic process 10 5.1 5.85E-03
GOTERM BP DIRECT GO:0097194∼execution phase of apoptosis 3 1.5 6.92E-03
GOTERM CC DIRECT GO:0005634∼nucleus 106 53.8 3.23E-13
GOTERM CC DIRECT GO:0005737∼cytoplasm 100 50.8 4.49E-08
GOTERM CC DIRECT GO:0005654∼nucleoplasm 44 22.3 9.26E-08
GOTERM CC DIRECT GO:0070062∼extracellular exosome 50 25.4 3.19E-06
GOTERM CC DIRECT GO:0043234∼protein complex 19 9.6 3.26E-05
GOTERM CC DIRECT GO:0071013∼catalytic step 2 spliceosome 6 3.0 2.24E-03
GOTERM CC DIRECT GO:0005925∼focal adhesion 11 5.6 4.30E-03
GOTERM CC DIRECT GO:0005829∼cytosol 29 14.7 5.76E-03
GOTERM CC DIRECT GO:0030529∼intracellular ribonucleoprotein complex 9 4.6 1.17E-02
GOTERM CC DIRECT GO:0005911∼cell-cell junction 7 3.6 1.26E-02
GOTERM MF DIRECT GO:0005515∼protein binding 77 39.1 6.99E-09
GOTERM MF DIRECT GO:0044822∼poly(A) RNA binding 30 15.2 2.52E-06
GOTERM MF DIRECT GO:0003723∼RNA binding 20 10.2 3.71E-04
GOTERM MF DIRECT GO:0003677∼DNA binding 35 17.8 4.23E-04
GOTERM MF DIRECT GO:0004725∼protein tyrosine phosphatase activity 7 3.6 4.62E-04
GOTERM MF DIRECT GO:0046982∼protein heterodimerization activity 15 7.6 7.77E-04
GOTERM MF DIRECT GO:0000166∼nucleotide binding 35 17.8 9.78E-04
GOTERM MF DIRECT GO:0016791∼phosphatase activity 7 3.6 1.29E-03
GOTERM MF DIRECT GO:0019903∼protein phosphatase binding 6 3.0 2.02E-03
GOTERM MF DIRECT GO:0005524∼ATP binding 28 14.2 2.62E-03
∗Number of enriched genes in each term. The top ten terms based on P value were chosen in each category.

apoptosis. However, there was an unexpected phenomenon
in the results of our functional enrichment. Many upregu-
lated genes were involved in response to virus and interferon
in the biological process and took part in several virus
related signal pathway. This phenomenon revealed that the
SPF mice used in our study might infect some viruses.
However, the certain thing is that the immune related genes
can be expressed in ovarian granulosa cells, not only in
immune cells. Several earlier studies indicated that viruses
can induce innate immune response in granulosa cells and
perturb ovarian function in mouse [27, 28]. And immune
response genes were overexpressed with increasing age as
showed by several microarray studies of aging [29]. Recently
the concept that innate immunity is an essential requisite
in the ovulation process is forwarded [30]. The important
role of innate immune cells in decreasing the senescence

burden was also recognized [31]. There was a probability
that innate immune related genes were upregulated in the
process of aging and affected the progress of ovarian aging.
Yet, the actual role of innate immunity in the process
of ovarian aging or folliculogenesis needs to be further
researched.

We conducted protein-protein interaction network anal-
ysis of differentially expressed genes. The nodes regarded as
hub genes weremostly involved in innate immune system. As
in the gene regulatory network, many differentially expressed
genes between young and old mouse ovarian secondary
follicles such as BRCA1, STAT3, JUN, AKT1, SEPRING1,
TCF3, MAP3K7, and IRF7 showed their genetic interactions
by various pathways. Thus, a number of pathways were
interacted through many genes in the process of ovarian
aging.
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Table 3: Pathway enrichment analysis of differentially expressed genes in old mouse ovarian secondary follicles compared to young mouse.

Category Term Count∗ % P value
Up-regulated
KEGG PATHWAY mmu05164:Influenza A 15 8.6 2.25E-11
KEGG PATHWAY mmu05168:Herpes simplex infection 15 8.6 3.13E-10
KEGG PATHWAY mmu05162:Measles 11 6.3 6.23E-08
KEGG PATHWAY mmu05160:Hepatitis C 11 6.3 6.23E-08
KEGG PATHWAY mmu04380:Osteoclast differentiation 8 4.6 4.40E-05
KEGG PATHWAY mmu05161:Hepatitis B 8 4.6 1.12E-04
KEGG PATHWAY mmu04622:RIG-I-like receptor signaling pathway 6 3.4 1.58E-04
KEGG PATHWAY mmu04668:TNF signaling pathway 7 4.0 1.69E-04
KEGG PATHWAY mmu04620:Toll-like receptor signaling pathway 6 3.4 9.93E-04
KEGG PATHWAY mmu05133:Pertussis 5 2.9 2.38E-03
Down-regulated
KEGG PATHWAY mmu04151:PI3K-Akt signaling pathway 14 7.1 4.14E-04
KEGG PATHWAY mmu05200:Pathways in cancer 14 7.1 1.31E-03
KEGG PATHWAY mmu04550:Signaling pathways regulating pluripotency of stem cells 8 4.1 1.69E-03
KEGG PATHWAY mmu04520:Adherens junction 6 3.0 2.03E-03
KEGG PATHWAY mmu04015:Rap1 signaling pathway 9 4.6 5.33E-03
KEGG PATHWAY mmu04390:Hippo signaling pathway 7 3.6 1.16E-02
KEGG PATHWAY mmu05145:Toxoplasmosis 6 3.0 1.36E-02
KEGG PATHWAY mmu04510:Focal adhesion 8 4.1 1.51E-02
KEGG PATHWAY mmu04022:cGMP-PKG signaling pathway 7 3.6 2.04E-02
KEGG PATHWAY mmu03040:Spliceosome 6 3.0 2.57E-02
∗Number of enriched genes in each term. The top ten terms based on P value were chosen in each category.
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Figure 3: Protein-protein interaction (PPI) network complex. Using the SearchTool for the retrieval of InteractingGenes (STRING) database
online database, 187 out of 371 differentially expressed genes (DEGs) (upregulated genes are displayed in red and downregulated genes in
green) were filtered into the DEGs protein-protein interaction (PPI) network complex.
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Figure 4: Overlapping protein complexes in the protein interaction.The most significant module consisted of 35 nodes and 286 edges, and
all genes in this module were upregulated (in red).

5. Conclusions

In conclusion, our data showed quite different gene expres-
sion patterns of the secondary follicles between young and old
mouse ovaries. The differentially expressed genes involved in
the process of ovarian aging are central to biological processes
such as immune system process, aging, transcription, DNA
replication, DNA repair, protein stabilization, and apoptotic
process. However, many upregulated genes in the old mouse
ovarian secondary follicles were innate immune related
genes. We proposed that innate immune system may play a
vital role in the process of ovarian aging. Our results of altered
genes and related transcriptional networks may be helpful for
understanding the mechanism of the folliculogenesis in the
process of ovarian aging in mice.

There are however limitations in the present study.
Findings of our present research were mainly based

on the bioinformatics analysis and further experiments
are needed to verify. Furthermore, these data were ac-
quired with secondary follicles from mouse ovaries
and needed to be confirmed with the samples from the
human.
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Figure 5: Gene regulatory network modeling for selected differentially expressed genes by using Cytoscape software (version 3.6.1).
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