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Indoleamine 2,3-dioxygenase 1 (IDO1) is a cytosolic haem-containing enzyme involved

in the degradation of tryptophan to kynurenine. Although initially thought to be solely

implicated in the modulation of innate immune responses during infection, subsequent

discoveries demonstrated IDO1 as a mechanism of acquired immune tolerance. In

cancer, IDO1 expression/activity has been observed in tumor cells as well as in the

tumor-surrounding stroma, which is composed of endothelial cells, immune cells,

fibroblasts, and mesenchymal cells. IDO1 expression/activity has also been reported

in the peripheral blood. This manuscript reviews available data on IDO1 expression,

mechanisms of its induction, and its function in cancer for each of these compartments.

In-depth study of the biological function of IDO1 according to the expressing (tumor) cell

can help to understand if and when IDO1 inhibition can play a role in cancer therapy.
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INTRODUCTION

Indoleamine 2, 3-dioxygenase 1 (IDO1, hereafter referred to as IDO) is a 403 amino acid
cytosolic haem-containing enzyme involved in the first, rate-limiting step of the tryptophan
(Trp) metabolism to kynurenine (Kyn) (1, 2). Trp is an essential amino acid for which both
neuropsychological as well as immunological functions have been described. Despite their shared
function in Trp degradation, the IDO2 isoform and tryptophan 2, 3-dioxygenase (TDO2) have
distinct inducers and patterns of tissue expression (3, 4).

IDO (human chromosome 8p22) is recognized as an interferon (IFN)-inducible gene. Indeed,
the promoter region of IDO consists of several IFN-stimulated response elements (ISREs) and
gamma activation sequences (GAS), permitting a controlled and context-dependent transcriptional
process (2, 5, 6).

Although initially thought to be solely implicated in the modulation of innate immune
responses in parasitic/viral conditions (7–9), subsequent discoveries demonstrated IDO to be
a mechanism of acquired immune tolerance (4). In cancer, IDO expression has not only been
documented in tumor cells but also in endothelial cells, fibroblasts and immune cells infiltrating
the tumor microenvironment (Figure 1). In addition to the local tumor microenvironment, IDO
expression was detected in peripheral blood mononuclear cells (PBMCs) in blood samples of
cancer patients. Although IDO expression has been reported in these different compartments, the
exact mechanisms for its distinct expression patterns and their functions are far from completely
understood. In view of the complex interplay betweenmalignant cells and their microenvironment,
understanding IDO activation and its particular function in the different compartments may be of
the outmost importance. This review summarizes the available scientific data.
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FIGURE 1 | Schematic representation of IDO expression in different compartments of the immune system during cancer. IDO is expressed by multiple cell types in the

tumor microenvironment (A), the tumor-draining lymph node (B) and the peripheral blood (C). (A) Bin1 attenuation results in STAT1- and NFκB-dependent constitutive

expression of IDO in cancer cells. In addition, COX2 overexpression facilitates constitutive IDO expression via PGE2-mediated activation of the PKC/PI3K pathways.

IFNγ is recognized as a highly potent inducer of IDO expression. Binding of IFNγ to its receptor (IFNγR) leads to (i) tyrosine phosphorylation of STAT-1, triggering its

dimerization and binding to the GAS sequence in IDO1 and (ii) NF-κB and STAT-1 dependent synthesis of IFNγ-regulated factor 1 (IRF1), which binds to the ISRE

sequences in IDO1. Tumor IDO expression activates the cytosolic transcription factor aryl hydrocarbon receptor (AhR) by kynurenine (Kyn), stimulating an autocrine

positive feedback loop via IL-6 dependent STAT-3 signaling which maintains IDO expression. In addition to IFNγ, IDO expression can be induced by other

proinflammatory cytokines such as tumor necrosis factor α (TNFα) and IL-1 who enhance the expression of IFNγR on cancer cells. IFNγ and TNFα can also induce

IDO expression in endothelial cells of venules in the tumor microenvironment. In the tumor-surrounding stroma, IDO is expressed by cancer associated-fibroblasts,

pericytes, and infiltrating immune cells. (B) Regulatory T-cells (Tregs) induce IDO expression by antigen-presenting cells (APCs) via CTLA-4/B7 ligation in the

tumor-draining lymph node. In addition, cancer cells are involved in the upregulation of IDO expression in plasmacytoid dendritic cells (pDCs) by shedding of the

extracellular domain of the type III TGF-B receptor (sTGFBR3). IDO expression in myeloid DCs (mDCs) can be induced by cancer cell-secreted Wnt5a, which triggers

binding of β-catenin to its responsive elements. IDO+ APCs inhibit T-cell responses and polarize naïve CD4+ T-cell differentiation toward the phenotype of suppressive

Tregs via TGFβ-mediated FoxP3 upregulation. Myeloid derived suppressor cells (MDSCs) upregulate IDO via IL-6 triggered STAT-3 activation. (C) IDO+ APCs and

IDO+ MDSCs infiltrate the tumor microenvironment and the peripheral blood, contributing to local and systemic immune escape.

IDO IN THE TUMOR MICROENVIRONMENT

IDO expression in the tumor microenvironment has been
described in tumor cells, immune cells, endothelial cells, and
stromal fibroblasts (Table 1).

Tumor Cells
The majority of literature reports on IDO positivity in neoplastic
cells. Strong expression in tumor tissue is identified as an
independent negative prognostic factor in multiple cancers
(4, 35, 87, 105, 106). It is well-documented that tumoral
IDO expression is associated with tumor-infiltrating forkhead
box P3 positive regulatory T-cells (FoxP3+ Tregs) and IDO-
expressing mononuclear cells, while a negative association with
CD8+ cytotoxic T-cells in the primary tumor and metastatic
tissue has been reported (23–30, 107). These observations in
human samples are consistent with earlier mechanistic studies

elucidating the involvement of IDO in impairing cytotoxic
effector T-cell function/proliferation via downregulation of the
T-cell receptor ζ chain as well as its stimulatory role in
enhancing Treg generation (31, 47, 54, 108, 109). In diffuse-
type gastric cancer, elevated tumoral IDO expression correlated
with decreased expression of CD107a and granzyme B in tumor-
infiltrating CD8+ T-cells, reflecting T-cell dysfunction (32).
IDO expressed by pancreatic ductal adenocarcinoma cells was
observed to support immune escape of cancer cells by impairing
cytotoxicity and degranulation of γδ T-cells (33). In addition
to FoxP3, tumoral IDO expression has been evidenced to be
strongly correlated with other immunosuppressive molecules
such as programmed cell death protein 1 (PD-1) and its ligand
PD-L1 (29, 30, 44–46).

The extent of tumoral IDO expression has been investigated in
the context of deficiencies in the DNA mismatch repair system.
The microsatellite instable (MSI-H) subgroup of colorectal
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TABLE 1 | Regulatory mechanisms and functions of IDO expressing cells in the tumor microenvironment.

Human studies Animal studies

Tumor cells Regulatory

mechanisms

- Constitutive expression (10, 11) dependent on

COX2 and PGE2 (12)

- Induction by type I,II IFNs (13), mediated by STAT-1

and NF-κB signaling (2, 5, 6, 14, 15)

- Expression inversely correlated with Bin expression

(16, 17)

- Synergism between IFNγ and TNFα/IL1 on expression

(18–20)

- Autocrine positive feedback loop through

Kyn-AhR-IL6-STAT3 (11)

- STAT-1- and NF-κB-dependent expression as a

consequence of loss of Bin (21)

- LPS induces systemic activity dependent on TNF (22)

Functions - Associated with increased intratumoral Treg

infiltration and impaired cytotoxic T-cell function

(23–30)

- Conversion of CD4+CD25−Treg into CD4+CD25+

cells (31)

- Prevents degranulation of CD8+ and γδ T-cells (32, 33)

- Associated with MDSC infiltration (34)

- Promotes proliferation of HUVEC cells (35)

- Associated with metastasis (35–42)

- Drives dormancy of tumor repopulating cells (11, 43)

- Correlates with PD-1 and PD-L1 expression

(29, 30, 44–46)

- Trp depletion/catabolites drive TCR ζ-chain

downregulation in CD8+ cells and induce FoxP3

in CD4+ cells (47)

- Drives IL-6 dependent MDSC-mediated immune

escape (36)

- Associated with enhanced VEGF-C expression and

lymphangiogenesis (48–50)

- Promotes tumor vascularization (36)

- Drives dormancy of tumor repopulating cells (43)

- Drives tumorigenesis through NAD+-depletion induced

DNA damage (51)

Immune cells Regulatory

mechanisms

- Induction by PGE2 and activated by TNFα/TLR

signaling in moDC (52, 53)

- Induction by synergystic combination of IFNγ and

CD40L in monocyte-derived macrophages (54)

- Induction by IL-32γ depending on NF-κB and STAT-3

in macrophages (55)

- Induction in MDSCs requires phosphorylation of

STAT-3, but not STAT-1 (39) and non-canonical

NF-κB (56)

- Expression in splenic DCs induced by CpGs and

dependent on IFN type I signaling (57)

- Expression in DCs induced by Tregs through CTLA-

4/B7 (58)

- Expression in pDCs induced by CpG, TGFβ, CD200

(59–61)

- Expression in mDCs induced by Wnt5a (62, 63) and

IFNγ in an IRF8-dependent way, functionally active in

cDC1 (64, 65)

Functions - DCs decrease antigen uptake and downregulate

CD40/CD80 under low Trp conditions (66)

- Expression in moDCs induces regulatory activity in

T-cells (67, 68)

- Expression is associated with distinct profile of

cytokines and surface markers in moDCs (69, 70)

- Mediates IFNγ-induced differentiation of monocytes

into M2-macrophages (71–74)

- Expression in macrophages halts cell cycle

progression in T-cells (54, 55)

- Expressing MDSCs associated with FoxP3+ Tregs

and impaired CD8+ T-cell function (39, 75, 76)

- Expression in pDCs suppresses T-cell responses

in TDLN (77) and activates Tregs in tumor

microenvironment and TDLN (60, 61, 78)

- Expression in DCs and MDSCs implicated in anti-PD-1

resistance (79)

- Expression in MDSCs impairs AMPK and mTOR

function (80)

Endothelial

cells

Regulatory

mechanisms

Induction and synergism by IFNγ (81, 82) and TNF (81) - Induced by IFNγ through non-canonical NF-κB

activation (83)

- Induced by agonistic CD40 mAb through IFNγ

secretion by CD8+ T-cells (84)

Functions - Expression in CD31+ HEV in peritumoral stroma:

sentinel LN and metastatic tissue associated with

reduced CD8+ T-cells and increased FoxP3+

Tregs (85)

- Expression in sentinel LN associated with enhanced

IDO expression in peripheral blood (86)

- Expression associated with microsatellite instability in

CRC (87)

- Expression associated with responsiveness to

anti-PD-1 (88, 89)

- Drives tumor dormancy through Trp depletion-induced

TSLP expression/secretion (90)

- Expression in LECs impairs CD4+ T-cell

proliferation (91)

(Continued)
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TABLE 1 | Continued

Human studies Animal studies

Stromal cells Regulatory

mechanisms

- Induction in CAFs (92, 93), mesenchymal stem cells

(94–96) and pericytes (82) by IFNγ

- Expression in CAFS mediated by COX2/PGE2 (97)

Functions - Expression in CAFs suppresses NK cell activity

(98, 99)

- Expression in dermal fibroblasts induces apoptosis in

T-cells, B cells and monocytes (100)

- Expression in mesenchymal stem cells involved in

inhibition of T-cell function (96) and conversion of

monocytes into M2-macrophages (101)

- Expression in pericytes negatively regulates T-cell

proliferation (102)

Expression in CAFs (103) and mesenchymal stem cells

(104) involved in Treg activation

cancer is characterized by a strong infiltration of activated
cytotoxic T-lymphocytes, which is a positive prognostic factor
(110–113). Despite this highly inflamed environment, MSI-H
tumors persist in such hostile climate due to overexpression
of immune checkpoint molecules as cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), lymphocyte-activation gene 3
(LAG-3), PD-1/PD-L1, and IDO, hampering an efficient anti-
tumor T-cell response (87, 114, 115). It is hypothesized that the
active tumor microenvironment is stimulated by an increased
neoantigen load in MSI-H tumors, which is counterbalanced
by the upregulation of immune checkpoints, such as IDO, as a
negative feedback mechanism. This immunosuppressive climate
mediates evasion of the tumor from the host immune system.

Besides the suppression of anti-tumor immune responses,
tumoral IDO is involved in tumor vascularization. IDO-
deficiency was observed to significantly decrease pulmonary
vascular density in lung cancer mouse models, predominantly
reducing small to medium size vessels, unaltering large vessels
(36). In breast cancer, a cancer cell line (MCF-7) with strong
IDO expression promoted proliferation of human umbilical vein
endothelial cells (35). In murine metastasized melanoma lymph
nodes, tumoral IDO expression was associated with enhanced
expression of VEGF-C, an inducer of lymphangiogenesis,
previously linked to the occurrence of regional lymph node
metastasis (48–50). This observation suggests tumoral IDO
expression is involved in the expansion of lymphatic vessels.
Furthermore, tumoral IDO expression has been proposed to
stimulate the metastasic process. An association between strong
IDO expression at the primary tumor and development of lymph
node and/or metachronous metastases is described in various
malignancies (36–42). Studies detecting IDO in the primary
tumor and the corresponding lymph node and metastatic
tissue reported a highly consistent expression pattern of IDO
throughout the disease course (44, 87). Altogether, these data
define tumoral IDO as a modulator that bridges inflammation,
vascularization, and immune escape to promote primary and
metastatic tumor outgrowth.

Although it is widely accepted that tumor cells are capable
of expressing IDO, the critical signals directing its expression
and activity are only partially revealed. There are indications
for constitutive/intrinsic as well as induced/extrinsic tumor IDO

expression. Constitutive expression of IDOmRNA in the absence
of any IFNγ exposure has been demonstrated in several cancer
cell lines (10). This study also investigated in vivo IDO expression
in multiple malignancies and normal cells in the stroma were
observed to be IDO-negative in contrast to the tumor cells. The
authors concluded that this tumoral IDO expression could not
be the result of IFNγ exposure, as this would have induced IDO
in the surrounding stroma too. Another study in ovarian and
adeno-squamous lung cancer cell lines demonstrated that cancer
cells expressed IDO1mRNA and constitutively released Kyn into
the supernatant (11).

Loss of the tumor suppressor Bridging Integrator 1 (Bin1)
and overexpression of cyclooxygenase-2 (COX2) are both linked
to intrinsic upregulation of IDO. Bin1 loss in a knockout
mouse model was associated with elevated STAT1- and NFκB-
dependent expression of IDO, driving tumor immune escape
(21). This is supported in vivo by the observation that tumor
expression of Bin1 is inversely correlated with IDO expression
in esophageal squamous cell cancer and lung cancer (16, 17).
COX2 has been implicated in the pathogenesis of several cancers,
in particular colorectal cancer, where it impacts oncogenic
signaling, invasion and metastasis, survival and angiogenesis
(116–118). In a series of tumor cell lines, it was demonstrated
that constitutive IDO expression depends on COX2 and
prostaglandin E2 (PGE2), which upon autocrine signaling
through the EP receptor activates IDO transcription via the PKC
and PI3K pathways. Oncogenic mutations were identified in
the signaling pathways involved in this autocrine loop, favoring
constitutive IDO expression (12).

Type I and especially type II IFNs are known to be potent
IDO-inducers (13). As tumor-infiltrating lymphocytes (TILs) are
a predominant source of IFNγ, they might upregulate IDO as
a negative feedback signal, hereby potentially contributing to
tumor immune escape. This is in line with the observation that
human hepatoma cell lines express IDO once T-lymphocytes
and monocytes are added, subsequently upregulating IFNγ in
the co-culture (18). IFNγ-dependent induction of tumoral IDO
expression has been extensively analyzed in various malignancies
(38, 88, 119, 120). IFNγ-mediated signal transduction leads to (i)
tyrosine phosphorylation of STAT-1, triggering its dimerization
and binding to the GAS sequence in IDO and (ii) NFκB- and
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STAT-1-dependent synthesis of IFNγ-regulated factor 1 (IRF1),
which binds to the ISRE sequences in IDO. Combined STAT-1
and IRF-1 binding to GAS and ISRE sequences in the IDO1 gene
promoter is necessary for maximal IFNγ-mediated induction of
IDO transcription (2, 5, 6, 14, 15). Tumoral IDO expression was
suggested to stimulate an autocrine positive feedback loop via the
activation of the cytosolic transcription factor aryl hydrocarbon
receptor (AhR) by Kyn. AhR activation subsequently upregulates
IL-6, which mediates STAT-3 signaling driving IDO expression
(11). In addition, the IDO-Kyn-AhR pathway has been evidenced
to drive dormancy in tumor repopulating cells (TRCs), a
highly tumorigenic subpopulation of cancer cells involved in the
initiation and progression of tumorigenesis. When TRCs were
stimulated in vitro with IFNγ, phosphorylated STAT-1 rapidly
upregulated IDO expression, subsequently elevating Kyn levels
and activating AhR. This pathway triggers G0/G1 cell cycle arrest
by p27 and TRC dormancy (43).

IFNγ-mediated IDO induction can be potentiated by other
proinflammatory cytokines, such as tumor necrosis factor α

(TNFα) (18, 19), IL-1 (20), lipopolysaccharide (LPS) (7, 22), CpG
oligodoxynucleotides (57) and PGE2 (52). The combination of
these inflammatory stimuli results in synergistic enhancement
of IDO transcription. For instance, IL-1 and TNFα enhance
the expression of IFNγ receptors (IFNγRs) via the transcription
factor NFκB, lowering the threshold for IFNγ-directed IDO
upregulation (121). In addition to IFNγ, TNFα synergistically
induces IDO expression by increasing both STAT-1 activation
and NFκB -dependent IRF-1 expression (19).

Immunohistochemical analysis of biopsies of melanoma
metastases detected IDO, PD-L1, and FoxP3 in CD8+ T-
cell inflamed regions (29). In contrast, non-T-cell inflamed
melanomas lacked these factors, suggesting that immune
suppression might not be a property of tumor cells but rather
an immune-intrinsic negative feedback process that follows the
infiltration of activated CD8+ T-cells. These data indicate that
IFNγ produced by CD8+ T-cells is a requisite factor for PD-L1
and IDO expression in melanoma metastatic tissue (29). Such
T-cell inflamed–also termed immunologically “hot” –tumors
have been associated with higher response rates to anti-PD-
1 immunotherapy (122). This is in contrast to T-cell non-
inflamed tumors–also referred to as “cold” tumors–which might
constitute a group of tumors expressing IDO in absence of
any inflammation and T-cell infiltration, representing a state of
intrinsic immune resistance.

CD8+ T-cell-mediated IDO expression via IFNγ in
immunologically “hot” tumors could be one of the explanations
why studies in breast cancer (123, 124), gastric adenocarcinoma
(125), hepatocellular (126), pancreatic cancer (127),
adenosquamous lung carcinoma (128), and prostate cancer
(129) observed a positive prognostic effect for tumoral IDO
expression. Another explanation–apart from technicalities such
as the use of different antibody clones that could result in distinct
staining patterns–could be Trp shortage caused by IDO activity.
Trp is the only endogenous precursor for de novo biosynthesis
of nicotinamide adenine dinucleotide (NAD+), which is a
co-enzyme of redox reactions for adenosine triphosphate (ATP)
production. Enhanced IDO activity results in downregulated

Trp and NAD+ levels, the latter being a vital co-factor in energy
production, DNA synthesis, and cellular homeostasis. NAD+

depletion-induced DNA damage has been evidenced to play a
role in liver tumorigenesis (51, 130).

Immune Cells
The most extensively studied IDO-expressing immune cell types
in the tumor microenvironment are antigen presenting cells
(APCs) and myeloid derived suppressor cells (MDSCs).

Immunohistochemical analysis of the local tumor
microenvironment identified IDO expression in human
dendritic cells (DCs) in melanoma (131), breast cancer (45),
squamous cell carcinoma (132), Hodgkin lymphoma (71), and
esophageal cancer (133). It is well-known that DCs acquire
a strong tolerogenic capacity when cultivated under low Trp
conditions as they decrease antigen uptake and downregulate
the expression of the costimulatory molecules CD40 and CD80
(66). Munn et al. (77) detected IDO expression in murine
plasmacytoid dendritic cell (pDCs) subsets upon CTLA4-Ig
exposure. Although human CD11c− CD123+ pDCs constitute
a minor part of the tumor infiltrate, in vitro experiments in
murine tumor draining lymph nodes (TDLNs) demonstrated
that pDCs potently suppress CD8+ T-cell responses to (i)
antigens presented by the pDCs themselves, but also to (ii)
third-party antigens presented by non-suppressive APCs (78).
Notably, all of the T-cells achieved anergy when cultivated in
vitro with a low quantity of IDO-expressing DCs, suggesting
that in vivo levels (estimated at 0.5% of all TDLN cells) are
sufficient to direct the entire TDLN toward a tolerogenic climate.
The immunosuppressive effects of IDO+ pDCs are elicited
by inhibitory effects on CD8+ T-cell responses, but also by
GCN2-dependent activation of mature CD4+ CD25+ Tregs.
In vitro CTLA-4 blockade significantly inhibited IDO-induced
activation of Tregs in co-cultures, underlining the essential
role of CTLA-4 in this pathway. Importantly, Tregs can trigger
upregulation of IDO expression in DCs via CTLA-4 ligation
with B7 receptor molecules on DCs (58). Fully activated Tregs
reciprocally upregulate PD-L1 and PD-L2 expression on target
DCs, suggesting IDO-induced Treg activation proceeds via a
self-amplifying loop. Reverse signaling via other ligand-receptor
pathways than CTLA-4/B7 interaction to induce IDO expression
on DCs such as GITR, ICOS and CD200 has also been reported
(59, 134, 135). In addition to the described rapid and potent
mechanism of activating mature Tregs, IDO+ pDCs also
upregulate TGFβ-mediated FoxP3 expression in naïve CD4+

CD25− cells, hereby polarizing CD4+ T-cell differentiation
toward the phenotype of suppressive Tregs. IL-6 production is
simultaneously blocked in these naïve CD4+ CD25− cells which
prevents their conversion into Th17-like effector T-cells (47, 60).
Intriguingly, tumor cells are involved in the upregulation of IDO
expression in pDCs by shedding of the extracellular domain of
the type III TGF-B receptor (sTGFBR3). A decrease in tumor-
associated TGFBR3 expression increased TGFβ-dependent
upregulation of IDO in pDCs within the primary tumor and
TDLN of murine models of breast cancer and melanoma (61).

Myeloid conventional DCs (mDCs, characterized by CD11c+

CD123−) are also documented to express IDO. Despite the
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fact that both murine CD8α+ and CD8α− dendritic cells (resp.
cDC1 and cDC2) express IDO upon in vitro stimulation with
IFNγ, only IDO expression on cDC1s seems to be functionally
active as evidenced by the Kyn concentration in the supernatant.
Addition of IFNγ-stimulated cDC1s to Th1 cells caused up
to 40% of Th1 cells to undergo apoptosis. In case of cDC2s,
the proportion of Th1 cells undergoing apoptosis was equally
low when co-cultured with unstimulated or IFNγ-stimulated
cDC2s (64, 65). Besides IFNγ-mediated upregulation of IDO
expression in mDCs, tumor cells promote mDC tolerization
in the tumor microenvironment via paracrine Wnt-mediated
signaling. Wnt5a secreted by melanoma cells activates β-catenin
in DCs which upon nuclear translocation binds the TCF/LEF1
transcription factor responsive elements subsequently inducing
IDO expression in an IFNγ-independent manner (62, 63). IDO
expression in murine lung cancer models was uniquely observed
in CD11b+ CD11c− DCs, which were predominantly CD8α−

(79). IDO expression has also been detected in a rare murine
splenic cell type having phenotypic attributes of cDC1s (CD8α+,
CD80/CD86, MHCII) combined with expression of markers of
the B-cell lineage (CD19+, Pax5 and surface Ig) (136).

In addition to DCs differentiating from common dendritic
progenitor cells (pDCs and mDCs), human monocyte-
derived DCs (moDCs) are identified as IDO-competent APCs.
Immunomodulatory properties of IDO+ moDCs are identical
to those described for pDCs and mDCs, including stimulation
of Treg differentiation from naïve CD4+ CD25− cells and
suppression of T-cell responses (53, 67, 68). IDO expression
seems to be dependent on the maturity status of moDCs and is
limited to CD83+ moDCs. Compared to IDO− moDCs, IDO+

moDCs release a different pattern of cytokines (less IL-6 &
IL-10, more IL-1β & IL-15) and upregulate surface markers as
CD80, CD86, PD-L1, and PD-L2 (69). The different cytokine
expression profile suggests altered functionality in IDO+

moDCs. Remarkably, direct cell-contact between immature
moDCs and mast cells has been observed to upregulate IDO in
moDCs. This depends on interaction between PD-1, expressed
by tissue resident mast cells, and PD-L1/PD-L2 on moDCs (70).

A role for IDO in the IFNγ-mediated differentiation of
monocytes into M2-type macrophages has also been proposed
(72, 73). M2-macrophages are associated with tumor progression
in prostate, colon, breast cancer, gastric and ovarian cancer
(137–144). In vitro stimulation of monocytes with IFNγ

increased the M2/M1 ratio, while silencing of IDO in monocytes
resulted in upregulation of pro-inflammatory M1-macrophages
(74). In melanoma, macrophages constituted the predominant
source of IDO expression in brain metastases (145). In
agreement with these observations, IDO expression was detected
in CD163+ (M2-type) macrophages infiltrating the tumor
microenvironment in Hodgkin lymphoma, and associated with
shortened survival in these patients (71). A negative prognostic
effect was confirmed in an independent Hodgkin lymphoma
cohort, and the proportion of macrophages expressing both IDO
and PD-L1 correlated with IFNγ gene expression (146). In vitro
stimulation of human monocyte-derived macrophages showed
that the early T-cell activation marker CD40L synergized with
IFNγ for IDO upregulation (54). IDO-expressing macrophages

interfered with T-cell activation, halting cell-cycle progression in
the G1-phase. In multiple myeloma patients, tumor cells were
described to secrete IL-32, triggering phosphorylation of STAT-
3 and nuclear translocation of NFkB, subsequently inducing
IDO expression in macrophages (55). Moreover, IDO+ IL-32-
educated macrophages suppressed proliferation of CD4+ T-cells
when co-cultured in vitro.

Strong expression of IDO by tumor cells associates with a
higher level of tumor-infiltrating MDSCs in melanoma (34).
MDSCs are myeloid cells with potent suppressive activities
against effector lymphocytes in tumor immunology (147). IL-6
was found to be critical as an effector cytokine of IDO-driven
MDSC activity and subsequent metastasis in lung cancer (36).
MDSCs are also capable of expressing IDO, promoting tumor
growth, and T-cell inhibition. The frequency of IDO+ MDSCs
was positively associated with the amount of FoxP3+ Tregs
and had a negative impact on patient outcome in breast cancer
patients receiving neoadjuvant chemotherapy (75). In the tumor
microenvironment of murine lung cancer models a subgroup
of monocytic (Gr1int CD11b+) MDSCs were defined as the
main source of IDO expression (79). IDO+ MDSCs in a lung
cancermousemodel were evidenced to impair AMPK andmTOR
function, which are metabolic regulators in energy homeostasis
during cellular stress (80). Because of reduced signaling of these
regulators, tumor-residing CD8+ T-cells upregulate checkpoint
molecules, such as PD-1, CTLA-4, LAG-3, and TIM-3, reflecting
the exhausted state of these cells. The molecular mechanisms
underlying aberrant expression of IDO in MDSCs remain
partially unclear. As described above, IFNγ is the most potent
inducer of IDO expression in DCs and macrophages. IFNγ-
triggered IDO expression mainly occurs trough the STAT-1
pathway (5, 57, 148). However, in human breast cancer or
hematological cancer no changed IFNγ expression or STAT-
1 signaling in MDSCs could be observed (39, 76). IDO was
upregulated in breast cancer-derived MDSCs via IL-6-triggered
STAT-3 activation, which activated the non-canonical NFκB
pathway resulting in enhanced transcriptional activity of the IDO
promoter (56).

Endothelial Cells
Physiological expression of IDO in endothelial cells (ECs)
is limited, but has been extensively demonstrated in vessels
of the villous chorion and in the spiral arteries of the
decidua in humans during pregnancy (149). During the course
of pregnancy endothelial IDO expression extends from the
subtrophoblastic capillaries to larger vessels in the villi and
the chorionic plate (150). Gestational age is associated with an
increased Kyn/Trp ratio in the placenta, reflecting enhanced
IDO activity. Endothelial IDO expression during pregnancy
has been implicated in various important functions such as
immune tolerance, antimicrobial protection, and optimization
of placental perfusion (151–155). Antimicrobial as well as
immunoregulatory properties have been designated to IDO-
positive ECs. Stimulation of human brain microvascular ECs
with IFNγ restricted growth/replication of viruses, bacteria, and
parasites (153, 156, 157). In addition to these antimicrobial
effects, IDO-mediated degradation of Trp in brain microvascular
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ECs is responsible for a significant reduction of T-lymphocyte
proliferation. This is in line with observations made in IDO-
transfected ECs, which failed to stimulate allogeneic T-cell
responses while anergy was induced in allospecific T-cells (81). A
role for IDO-expressing ECs in the regulation of blood pressure
has been observed, as IDO activity in murine ECs—measured
by Kyn and Trp concentrations in plasma—resulted in arterial
vessel relaxation through involvement of adenylate and soluble
guanylate cyclase pathways (158). Furthermore, increased plasma
Kyn/Trp has been associated with endothelial dysfunction and
dysregulated immune responses during human sepsis (159,
160). Intriguingly, a recent study reported that patients with
microvascular endothelial dysfunction had a >2-fold increased
risk of developing solid-tumor cancer over a median follow-up
period of 6 years (161).

Endothelial IDO expression has been described in several
malignancies (71, 85, 87, 88, 90, 162, 163). In melanoma, IDO
expression was prominent in CD31+ high endothelial venules
(HEV) in the stroma surrounding the tumor (85). Endothelial
IDO expression in the peritumoral stroma of the primary tumor
was consistent with expression in the corresponding sentinel
node. Notably, IDO positivity in ECs persisted in metastatic
melanoma tissue developing at a median time of 3.4 years
(41.5 months) after first surgery. Its expression was a negative
independent prognostic marker for recurrent-free survival and
overall survival. Furthermore, endothelial IDO expression was
associated with reduced CD8+ T-cells and increased FoxP3+

Tregs in the tumor microenvironment. Interestingly, in patients
with IDO+ ECs in the sentinel node enhanced IDO expression
in the peripheral blood was detected, suggesting that endothelial
IDO expression impacts systemic immunity (86). Similar
observations were made in colorectal cancer, including a highly
consistent expression pattern in the primary tumor, TDLNs (both
tumor-invaded and tumor-uninvaded) and distant metastases
(87). Endothelial IDO expression was more prevalent in MSI-
H tumors compared to microsatellite stable (MSS) tumors. A
negative effect on recurrence-free survival was observed for
endothelial IDO expression, independent from disease stage,
MMR status and CD8 count in the primary tumor.

In contrast, low IDO mRNA in the primary tumor of renal
cell cancer patients was an independent unfavorable prognostic
marker (88). Immunohistochemical analyses revealed that IDO
was exclusively expressed by ECs, in contrast to the tumor cells
which were IDO-negative. Another study in renal cell carcinoma
confirmed absence of tumoral IDO expression and revealed that
responders to anti-PD-1 therapy had stronger endothelial IDO
expression compared to non-responders (89).

Little is known on the signaling pathways inducing IDO
expression in ECs. Human umbilical vein ECs were reported
to induce IDO upon stimulation with IFNγ (82) or TNFα, and
these act synergistically when combined (81). IFNγ was also
evidenced to upregulate IDO expression in human saphenous
endothelial cells (164) and human corneal endothelial cells
(165). In rats, IDO expression was induced in ECs by IFNγ-
mediated activation of IKKα, which in turn stimulates the
non-canonical NFκB pathway (83). In human invasive ductal
carcinoma, IFNγ was demonstrated to be a potent inducer

of endothelial IDO expression, which subsequently negatively
affected the synthesis and secretion of stromal thrombospondin 1
(TSP1) via Trp deprivation. Reduced expression of TSP1, which
is a large matricellular glycoprotein, supports cancer cells to
evade tumor dormancy (90). Intriguingly, IDO was also induced
when ECs were co-cultured with a tumorigenic metastatic triple
negative breast cancer cell line (MDA-MB231). Tumor cells were
a source of IFNγ in the co-culture, inducing IDO expression
in ECs. Similarly, mRNA expression of IDO in lymphatic EC
was significantly upregulated when co-cultured with CD4+ T-
lymphocytes and a gastric cancer cell line (OCUM12) (162).
Treatment of murine experimental melanoma with CD40
immunotherapy resulted in upregulation of IFNγ signaling
and subsequent expression of IDO by ECs (84). Interestingly,
CD40 mAb combined with an IDO inhibitor (epacadostat)
delayed tumor growth in these mice, while activation of TILs
was increased.

Lymphatic endothelial cells (LECs) have been implicated to
attribute to a climate of systemic peripheral tolerance. Lymphatic
vessels transport antigens and DCs to lymph nodes, where naïve
cells are primed via cross-reaction. Despite their facilitating role
in the migration and homeostasis of naïve T-cells, it has been
described that LECs are involved in the induction of anergy of
activated T-cells. An in vitro study observed that human LECs
in lymph nodes induced IDO expression upon IFNγ-stimulation
and impaired CD4+ T-cell proliferation when co-cultured (91).
It is hypothesized that LECs promote CD8+ T-cell tolerance by
the upregulation of inhibitory molecules including PD-L1 and
IDO (166–168).

Stromal Fibroblasts and Mesenchymal
Cells
Tumor-surrounding stroma consists of fibroblasts, mesenchymal
stromal cells, inflammatory cells, endothelial cells, and pericytes,
which are all embedded in the extracellular matrix produced
by fibroblasts (169, 170). Cancer associated-fibroblasts
(CAFs) are the dominant stromal cell type and promote an
immunosuppressive tumor microenvironment and tumor
growth. IDO expression by CAFs was reported to be increased
in the stroma of human esophageal cancers compared to non-
tumor esophageal tissues (163). CAFs isolated from human
metastatic melanoma and hepatocellular carcinomas have been
documented to interfere with NK-cell mediated cancer cell killing
(98, 99). CAFs expressed IDO and PGE2 when co-cultured with
NK-cells, and impaired NK-cell secretion of granzyme B and
perforin. Moreover, expression of NK-cell activation receptors
such as NKp30 and NKp44 was downregulated. In addition to its
suppressive effects on NK-cells, IFNγ-stimulated expression of
IDO by dermal fibroblasts has been observed to induce apoptosis
in CD4+ and CD8+ T-cells, B-cells and monocytes (100). In
contrast to immune cells in the Trp-depleted microenvironment
in this study, keratinocytes and endothelial cells were resistant
and their proliferation was not altered. Another study highlighted
low survival of the overall CD4+ T-cell population when co-
cultured with IDO+ (compared to IDO−) fibroblasts (103).
However, the frequency of the CD25+ FoxP3+ CD4+ subset
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was increased and these T-cells exhibited classic functional
characteristics of Tregs (CTLA-4, IL10, and TGFβ). IFNγ is
recognized as a potent inducer of IDO in fibroblasts (92, 93, 103).
Additionally, the COX2/PGE2 pathway was suggested to
mediate IDO induction in CAFs. Overexpression of COX2 by
breast cancer cells was documented to trigger PGE2 secretion,
subsequently upregulating STAT3-mediated transcription of
IDO in fibroblasts (97). Strong expression of IDO by CAFs
was associated with decreased disease-free and metastasis-free
survival in breast cancer patients.

In addition to CAFs, mesenchymal cells are able to
express IDO in the tumor-surrounding stroma. Bone marrow-
derived mesenchymal stem cells [also known as multipotent
mesenchymal stromal cells (171), both abbreviated MSCs] are
recruited to sites of tissue injury, where they have the potential
to differentiate into osteoblasts, adipocytes, and chondrocytes
and mediate tissue repair (172). In cancer, bone marrow-derived
mesenchymal stem cells are recruited to the primary tumor where
they differentiate into CAFs (173–175). Similar to CAFs, IDO
can be induced in mesenchymal stem cells by IFNγ (94–96).
IDO expressing mesenchymal stem cells are also involved in
inhibition of T-cell function (96) and expansion of Tregs (104).
Mesenchymal stromal cells were demonstrated to be involved in
the differentiation of monocytes into immunosuppressive M2-
macrophages (101).

Besides CAFs and MSCs, the tumor-surrounding stroma also
consists of pericytes. In normal conditions, pericytes participate
in the regulation of blood flow and vessel permeability, and
provide important mechanical and physiological support to
ECs (176–178). The reciprocal communication between ECs
and pericytes is crucial for vessel remodeling, maturation,
and stabilization (177, 179, 180). Pericytes promote tumor
angiogenesis, and once detached from tumor vessels they
are able to differentiate into CAFs, thereby mediating
an immunosuppressive tumor microenvironment (181).
Intriguingly, resting pericytes were reported to activate
alloreactive T-cells while IFNγ-stimulated pericytes suppress
T-cell proliferation. Immunophenotyping of IFNγ-stimulated
pericytes revealed IDO as one of the most upregulated gene
transcripts, together with other inhibitory molecules such as PD-
L1, PD-L2, and CAECAM1 (82). In this study, IDO expression
in pericytes was verified as the principal mechanism accounting
for negative regulation of T-cell proliferation. In primary
ovarian cancer, IDO-positive tumor-associated vessels were
predominantly mature blood vessels covered by pericytes (102).

IDO IN THE PERIPHERAL BLOOD

IDO expression in the peripheral blood can be measured by
direct methods such as single-cell RNA sequencing and flow
cytometry allowing intracellular detection of IDO in specific
PBMC subsets. Another method is quantification of Trp and Kyn
in plasma/serum via ultra-performance liquid chromatography–
tandem mass spectrometry (UPLC-MS/MS). Since enzymatic
activity of IDO is involved in the first and rate-limiting step of
the catabolism of Trp to Kyn and its downstream metabolites,

increased Kyn/Trp is regarded as a surrogate for enhanced IDO
activity. Several studies in different solid and hematological
cancer types have related increased serum (or plasma) Kyn/Trp
ratio to worse survival outcome (4, 182–186). A higher Kyn/Trp
ratio has been linked to metastasis, higher tumor size, and
advanced disease stages (4, 187, 188). Furthermore, a role for
serum Kyn/Trp in predicting resistance to systemic treatment
has been reported in several malignancies (79, 187, 189–192).
In a large number of stage IV melanoma and renal cell cancer
patients treated with anti-PD-1 therapy, a high increase in
Kyn/Trp during therapy compared to baseline was associated
with significantly reduced progression-free survival (193).

Although Kyn/Trp seems to have clinical relevance, the exact
source of this IDO expression is unclear since its detection
in serum/plasma is an indirect method measuring enzymatic
IDO activity. Serum Kyn/Trp in human penile squamous cell
carcinoma patients correlated with IDO expression in cancer
cells but not with IDO expression on tumor-infiltrating immune
cells (194). A recent study profiling Kyn/Trp in more than 900
human cancer cell lines demonstrated that secreted Kyn can be
attributed to both IDO and TDO expression by tumor cells (195).
However, another study observed a correlation of the Kyn/Trp
ratio with PD-L1 and IDO but not with TDO mRNA levels in
melanoma samples after 4 cycles of anti-PD-1 immunotherapy
(193). Nevertheless, the authors argued that additional sources of
Trp to Kyn degradation outside the tumor may exist. In support
of this, ovarian cancer patients with high serum Kyn/Trp had
strong IDO expression in both tumor cells and pericytes (102). In
glioblastoma, diminished therapeutic response to CTLA-4/PD-
L1 mAbs in IDO−/− mice compared to WT mice was observed,
indicating the requirement for germline IDO to achieve maximal
survival benefit from immune checkpoint therapy against brain
tumors (196). Serum Kyn/Trp levels were significantly lower in
IDO−/− mice compared to WT mice. Notably, no change in
Kyn/Trp levels of isolated brain from glioblastoma WT mice
and IDO−/− mice was noted. These findings suggest that non-
tumor cell IDO activity contributes to a pool of Kyn in serum that
facilitates responsiveness to immune checkpoint blockade. In line
with these observations, serum Kyn/Trp measured by UPLC-
MS/MS correlated with IDO expression in PBMCs measured
by flow cytometric analysis of peripheral blood samples of
melanoma patients (86). This correlation suggests that serum
Kyn/Trp reflects metabolic activity of IDO-expressing circulating
immune cells.

Only a few studies report on in vivo expression of
IDO by specific subsets of immune cells in the peripheral
blood. Munn et al. (197) observed low to undetectable
levels of IDO in monocytes isolated from fresh PBMCs.
Monocyte-derived CD123+ macrophages upregulated IDO
expression when stimulated with IFNγ in vitro. Surprisingly,
IDO was constitutively expressed in human CD123+ DCs
in peripheral blood, but activation with IFNγ was still
required for functional enzymatic activity. IDO+ CD123+ DCs
expressed MHC II and costimulatory molecules and were
effective stimulators of T-cell proliferation when incubated
with an IDO-inhibitor, suggesting that these cells could act as
competent APCs.
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DCs are observed to constitutively express IDO, but an
additional set of triggering signals during antigen-presentation is
required for its activity. Monocyte-derived DCs obtained from
peripheral blood of melanoma patients were demonstrated to
upregulate IDO expression upon in vitro activation by CD40L
and IFNγ. During an immune response, activated DCs interact
with IFNγ-expressing CD8+ T-cells via CD40-CD40L ligation,
subsequently mediating NFκB-dependent IDO upregulation in
DCs (108, 198). Furthermore, IDO activity during DC activation
was observed to be involved in the maturation of DCs, as Trp
deprivation regulated expression of CCR5 and CXCR4 and DC
responsiveness to chemokines (199). Another IDO-triggering
signal can be elicited by DC B7-1/B7-2 ligation with CTLA-
4/CD28, the latter being predominantly expressed by Tregs (200).
Subsequent to the activation of IDO on DCs by activated Tregs,
IDO+ DCs drive differentiation of naïve CD4+ CD25− T-cells
into mature Tregs (201–204).

Expression of IDO by DCs has been demonstrated in
peripheral blood of melanoma patients. IDO expression was
predominantly found in CD123+ pDCs in addition to monocytic
MDSCs (mMDSCs), and to a lesser extent in polymorphonuclear
MDSCs (pmnMDSCs) (86). Circulating pDCs and MDSCs were
key players in the systemic response in melanoma, as they
had an independent prognostic effect on survival of melanoma
patients (205). Furthermore, IDO activity in peripheral blood
was positively correlated with levels of circulating PD-L1+

CD8+ T-cells and CTLA-4+ Tregs, underlining the close
interconnection between these immunosuppressive markers in
the blood circulation (86, 206). In early epithelial ovarian
cancer, the level of IDO+ mMDSCs and IDO+ pmnMDSCs
was significantly higher in the peripheral blood compared to the
tumor microenvironment (207).

DISCUSSION

IDO expression in cancer has been described in a wide variety
of cells both at the level of the tumor microenvironment and the
peripheral blood. Depending on the exact location of expression,
different induction pathways and effector functions have been
observed. Several inflammatory cytokines such as IFNγ, IL-1,
IL-6, IL-32, TNFα, and TGFβ were evidenced to drive IDO
induction. Soluble factors excreted by tumor cells such as Wnt5a
and sTGFBR3 are capable of inducing IDO in immune cells. Vice
versa, immune cells such as CD8+ T-cells in highly inflamed
tumors were found to mediate induction of IDO in tumor cells
via IFNγ signaling. The mechanisms that induce IDO expression
and its various physiological and pathophysiological roles are
currently incompletely understood but may be important in
human biology in general and medical oncology in specific.

There is ample evidence on the role of IDO in tumor
immune escape. The suppressive effects on T-cell responses in
the different compartments of the tumor microenvironment are
well-documented in both animal and human studies. Enzymatic
activity of IDO in tumor cells, as well as in endothelial cells,
APCs, MDSCs, and fibroblasts has been reported to stimulate
anergy of effector T-cells, while Treg activity is enhanced. In

addition, naïve CD25− CD4+ T-cells are polarized toward the
immunosuppressive FoxP3+ CD25− CD4+ phenotype while
their conversion into Th17-like T-cells is blocked. In addition
to the inhibition of antitumor immune responses, tumoral IDO
expression promotes lymphangiogenesis and neovascularization,
further facilitating tumor progression.

In the different compartments, IDO expression is closely
interconnected with other immune checkpoint molecules already
targeted by current immunotherapies. In the local tumor
microenvironment, CTLA-4 expression in Tregs upregulates
IDO in DCs, which reciprocally promotes Treg activation.
This interplay of immune checkpoints is also evidenced in
the peripheral blood, where IDO expression by PBMCs was
demonstrated to be associated with increased circulating PD-
L1+ CD8+ T-cells and CTLA-4+ Tregs. In addition, blockade
of CTLA-4 and/or PD-1 has been reported to upregulate IDO
expression as a result of the increased IFNγ-production by
reactivated effector T-cells. Immunomonitoring of blood samples
can highlight such dynamic shifts in ongoing immune responses.
In NSCLC, RCC and melanoma patients the baseline value
of systemic Kyn/Trp as well as its dynamics during treatment
course were associated with patient outcome (189, 193). In this
way the Kyn/Trp ratio could be a marker best capturing IDO
activity at a specific moment and perhaps could have relevance
in therapeutic monitoring.

In the context of immunotherapy, the immunosuppressive
role of host cell expressed IDO is supported by a striking delay
in tumor growth in anti-CTLA-4 treated IDO knockout mice
compared to WT mice (208). Pharmacological inhibition of
IDO by 1-methyl-tryptophan (1MT) combined with anti-CTLA-
4 resulted in rejection of established tumors and resistance to
secondary challenge in mice inoculated with B16 melanoma.
Tumor rejection by anti-CTLA-4/1MT therapy was associated
with enhanced infiltration of functional CD8+ and CD4+

T-cells in the tumor. Notably, the combination therapy is
synergistic irrespective of detectable IDO expression in tumor
cells, though therapeutic efficacy was reduced against B16
melanoma cells engineered to overexpress IDO. Synergistic
retardation of tumor outgrowth by anti-CTLA-4, anti-PD-L1
and/or IDO inhibition (INCB23843) was confirmed in a murine
B16.SIY melanoma model (209). In preclinical models, IDO
blockade has been demonstrated to be effective as part of
combination therapy including immune checkpoint therapy,
DNA-damaging chemotherapy and radiotherapy (21, 210). In
a 4T1 breast tumor bearing mouse model, local radiotherapy
combined with intratumoral CpG upregulated IDO expression in
neoplastic epithelial cells. Systemic 1MT significantly decreased
IDO activity (as measured by serum Kyn/Trp) and augmented
the antitumor efficacy of local radiotherapy and intratumoral
CpG (210).

Several IDO inhibitors tested in phase 1/2 clinical trials
showed promising results. INCB024360 (epacadostat), a
competitive, selective inhibitor of IDO, was well-tolerated in
a first-in-human phase 1 study with near maximal inhibition
achieved (measured by decreases in plasma Kyn levels) at
doses ≥100mg twice daily (BID) (211). Phase 1/2 studies
evaluated epacadostat in combination with anti-CTLA-4
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(ipilimumab) (212) and anti-PD-1 [nivolumab (213) and
pembrolizumab (214)] and showed encouraging antitumor
activity in multiple advanced solid tumors. However, a phase
3 trial in unresectable or metastatic melanoma (ECHO-
301/KEYNOTE-252) failed to show any benefit of the addition
of epacadostat to pembrolizumab (215). Results of this trial
raised questions concerning IDO inhibition strategies in cancer
treatment, however there are certain caveats (216). The dose
of epacadostat used in ECHO-301 is debated as a maximum
reduction in Kyn levels of only 50% was seen for this 100mg
dose in phase 1 studies. In addition, pharmacodynamic data
reported for epacadostat were based on plasma measurements
of Kyn, while IDO expression in the tumor microenvironment
was not investigated (211). Baseline IDO expression or Kyn/Trp
levels were not employed as inclusion criteria in the ECHO-
301 study, and patients who previously received an adjuvant
CTLA-4-inhibitor or interferon treatment were also included.
Importantly, in a melanoma cohort receiving adjuvant IFN-
α2b enhanced Kyn/Trp levels were detected compared to
untreated patients (217). Furthermore, melanoma patients
who did not respond to anti-CTLA-4 (ipilimumab) combined
with stereotactic body radiotherapy showed an increase in the
Kyn/Trp ratio during treatment compared to baseline Kyn/Trp
(191). These data indicate that certain (immuno-) therapies
may upregulate IDO activity, raising the question whether an
enhanced dose of epacadostat would have been needed in the
ECHO-301 study in order to fully block IDO activity.

BMS-986205, an irreversible IDO1 inhibitor, was
demonstrated to reduce both serum (>60% mean reduction
at a dose from 100 to 200mg) and intratumoral (up to
90% reduction) Kyn levels (218). Currently, BMS-986205 in

combination with anti-PD-1 therapy is investigated in several
phase 2 trials (219–221). Besides IDO-specific inhibitors,
other approaches to inhibit this pathway continue to be
considered. Indoximod, a Trp mimetic, restores the activity of
master metabolic kinase mTORC1 in effector T-cells, reversing
autophagy triggered by Trp depletion (222). By targeting a
downstream convergent effector mechanism used by IDO, as
well as IDO2 and TDO, indoximod might prove less sensitive
to negative feedback mechanisms that may result in treatment
resistance (223).

Further research is needed to better understand the exact
biological functions of IDO but also of the two other
Trp-degrading enzymes IDO2 and TDO in the different
compartments in cancer (224, 225). Increased insights in how
these enzymes affect cancer immune escape and disease outcome
could facilitate patient stratification in future clinical studies. The
next step would be to investigate how these insights can be used to
reverse this negative immune climate, thereby paving the way to
personalized immuno-oncology possibly already in an early stage
of cancer.
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