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Abstract

Background: Central nervous system (CNS) trauma and neurodegenerative disorders trigger a cascade of cellular
and molecular events resulting in neuronal apoptosis and regenerative failure. The pathogenic mechanisms and
gene expression changes associated with these detrimental events can be effectively studied using a rodent optic
nerve crush (ONC) model. The purpose of this study was to use a mouse ONC model to: (a) evaluate changes in
retina and optic nerve (ON) gene expression, (b) identify neurodegenerative pathogenic pathways and (c) discover
potential new therapeutic targets.

Results: Only 54% of total neurons survived in the ganglion cell layer (GCL) 28 days post crush. Using Bayesian
Estimation of Temporal Regulation (BETR) gene expression analysis, we identified significantly altered expression
of 1,723 and 2,110 genes in the retina and ON, respectively. Meta-analysis of altered gene expression (=1.5, <-1.5,
p < 0.05) using Partek and DAVID demonstrated 28 up and 20 down-regulated retinal gene clusters and 57 up
and 41 down-regulated optic nerve clusters. Regulated gene clusters included regenerative change, synaptic plasticity,
axonogenesis, neuron projection, and neuron differentiation. Expression of selected genes (Vsnl1, Syt1, Synpr and Nm1)
from retinal and ON neuronal clusters were quantitatively and qualitatively examined for their relation to axonal
neurodegeneration by immunohistochemistry and gRT-PCR.

Conclusion: A number of detrimental gene expression changes occur that contribute to trauma-induced
neurodegeneration after injury to ON axons. Nrn1 (synaptic plasticity gene), Synpr and Syt1 (synaptic vesicle fusion
genes), and Vsnl1 (neuron differentiation associated gene) were a few of the potentially unique genes identified that were
down-regulated spatially and temporally in our rodent ONC model. Bioinformatic meta-analysis identified significant
tissue-specific and time-dependent gene clusters associated with regenerative changes, synaptic plasticity,
axonogenesis, neuron projection, and neuron differentiation. These ONC induced neuronal loss and regenerative
failure associated clusters can be extrapolated to changes occurring in other forms of CNS trauma or in clinical
neurodegenerative pathological settings. In conclusion, this study identified potential therapeutic targets to
address two key mechanisms of CNS trauma and neurodegeneration: neuronal loss and regenerative failure.
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Background

Central nervous system (CNS) trauma and neurodegener-
ative disorders trigger a cascade of cellular events resulting
in extensive damage to neurons [1-5]. The non-permissive
regenerative environment is due to expression of inhibi-
tory cues [3,6-12], glial scarring [5,13], slow clearance of
axonal debris [14], and CNS inflammation [15,16]. Regen-
erative failure is a critical endpoint of these destructive
triggers culminating in neuronal apoptosis [3,17,18] and
inhibition of functional recovery.

The rodent optic nerve crush (ONC) model is an effect-
ive. model for CNS trauma and regeneration failure
[19-25]. The easy accessibility of the optic nerve (ON), an
extension of the CNS, and the reproducibility of the ONC
model make it an effective tool to study CNS trauma.
Changes in gene expression in rodent ONC models have
been previously studied [22,26-30] and include gap associ-
ated protein 43 (Gap43) [31-33], glial fibrillary acidic pro-
tein (Gfap) [34-36] and neurofilament deregulation after
crush injury [37]. Furthermore, progressive retinal gan-
glion cell (RGC) degeneration has been associated with
loss of trophic support [38,39], stimulation of inflamma-
tory processes/immune regulation [40,41], and apoptotic
effectors [39,42-45]. In addition, multiple injury models
have been utilized to assess the fate of RGCs after ocular
injuries that include ischemia/reperfusion, ON irradiation,
ON transections, and traumatic ON injury in rodent and
primate models [22,30,46-50].

Although previous studies with CNS trauma models
have addressed gene expression changes related to neur-
onal apoptosis [18,26,39,51], current gaps still exist for
identifying long-term neuroprotective and regeneration
inducing targets. Additionally, most expression studies
for the ONC model have only been performed in the
retina or the optic nerve head [3,22,29]. We adopted a
distinct strategy from previously published literature by:
(a) simultaneously focusing on both the retina and ON,
(b) detailing an extended time-course after acute axonal
trauma and (c) centering on neurodegeneration and
regenerative failure. To pinpoint specific degenerative
pathways and identify crucial genes involved with patho-
logical axonal injuries, it is essential to create an extensive
molecular gene profile underlying neuronal degeneration
and regeneration failure mechanisms. Our study systemat-
ically and temporally identified these degenerative mecha-
nisms that ensue after such an insult. To prevent the
progression of the disease, new drug therapies geared to-
wards neuroprotection and effective axonal regeneration
are required. The purpose of this study was to detect and
quantify progressive temporal degenerative changes by: (a)
analyzing gene clusters in the retina and ON using Affy-
metrix microarrays in the neural, immune, and glial cells
following ONC and (b) identifying temporal and spatial
expression patterns of key gene targets within the retina
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and ON after trauma. These data will allow the identifica-
tion of a wide range of potential therapeutic targets associ-
ated with neuronal loss and regenerative failure.

Results

This study highlights common as well as distinct gene
expression responses of the retina and ON to ONC in-
jury. To better understand the molecular mechanisms
associated with neurodegenerative processes after injury,
we first examined the survival of neurons in the ganglion
cell layer (GCL) after acute axonal trauma by histo-
logical examination of the retinas over an extended 28-
day period, which is a well-established time line for RGC
death [19]. Second, we identified significant cluster-
based changes occurring sequentially in the retina and
ON by meta-analysis of the array data. Third, we identified
key clusters associated with neuron degeneration to isolate
potential underlying damaging gene expression changes
occurring within the retina and ON. Lastly, the expression
of selective genes was confirmed quantitatively and quali-
tatively to validate our array data and examine expression
of potential therapeutic targets that are affected by CNS
trauma.

Survival of neurons and specificity of gene expression
changes following ONC
There was a progressive decrease of neurons in the retinal
ganglion cell layer (RGCL) following ONC as assessed by
Nissl stained retinal flat mounts (Additional file 1: Figure
S1A). Approximately 50% of the cells in the RGCL are
RGCs, while the remaining cells consist of displaced ama-
crine cells, astrocytes, and microglia [19,52-55]. ONC dir-
ectly damages the ON, eventually leading to the selective
death of RGCs. The severity of injury to the RGCs after
ONC can vary between studies and depends on: the spe-
cies and strain of animal used, the quantity of axons af-
fected by the crush, the distance from the globe at which
the lesion is performed, the amount of force applied at the
site of the lesion, the method used to evaluate damage,
and the length of time post crush [37,46,56-58]. A signifi-
cant sequential decline of RGCL neurons is seen as early
as 14 days post crush (dpc) within our model (81.43% +
16.9% survival, p < 0.01) with increased decline by 21 dpc
(58.72% + 5.70% survival, p < 0.001) and culminating in al-
most complete loss of RGCs by 28 dpc (54.21% + 8.27%
survival, p < 0.001) (Additional file 1: Figure S1B).
Microarrays were performed following ONC on har-
vested retina and ON samples from naive, 3, 7, 14, 21 and
28 dpc mice (n=5). For the analysis, the retina and ON
samples were separately pooled for the experimental and
control groups at each time point. Time-course microarray
data analysis is challenging in pooled data because each
sample has slight variations independent of other samples.
These errors can be mitigated to an extent by analyzing the
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significant temporal changes of genes in pooled samples
using the Bayesian estimation of temporal regulation
(BETR) analysis [59]. This evaluation allowed us to delin-
eate the differences in percentage of gene changes occur-
ring temporally after ONC within the retinal and ON
datasets. BETR probabilities were determined for the total
18,786 genes identified within each dataset. BETR probabil-
ities ranged from 0 to 1 with O being the least significantly
changed genes temporally and 1 being the most. Genes
were then classified into frequency bins based on the range
of BETR probabilities.

In the retinal dataset, only 9.17% (1,723 genes out of
18,786 genes) had the highest BETR probabilities within
frequency bin 10 (BETR probability - 0.9 to1.0) indicat-
ing only a small specific percentage of total genes were
altered temporally after ONC trauma (Additional file 2:
Figure S2A, Additional file 3: Table S1A). Furthermore,
within the ON dataset, only 11.23% (2,110 genes out of
18,786 genes) were in the highest BETR probability
range (Additional file 2: Figure S2B, Additional file 3:
Table S1B). The small subset of genes identified by
BETR analysis correlates with regenerative failure and
degeneration that occurs within the retina and ON.

Cluster specific gene classification following ONC

To extract meaningful biological information from the
array data, we used the public data-mining tool Database
for Annotation, Visualization and Integrated Discovery
(DAVID) to cluster all differentially expressed genes into
mechanistic biological categories. Temporal cluster classifi-
cation is crucial for identifying the neuronal loss mecha-
nisms that are sequentially regulated after trauma. Based
on PARTEK fold change levels (> 1.5 and < -1.5 compared
to the corresponding contralateral control eyes, g-value
defined by the FDR analogue of the p < 0.05), we temporally
categorized the clusters within three gene ontologies (GO);
molecular function (MF), biological process (BP) and cellu-
lar component (CC) according to the Mus musculus
genome within the DAVID database.

A total of 28 up-regulated clusters and 20 down-regulated
clusters were significantly identified in the retinal dataset
(p<0.05) and 57 up-regulated clusters and 41 down-
regulated clusters were identified within the ON dataset
(Tables 1, 2, 3 and 4). To outline neurodegenerative mecha-
nisms, key clusters were identified relating to neuronal loss
and regeneration failure from both the retinal (Figure 1)
and ON (Figure 2) clusters previously classified in Tables 1,
2, 3 and 4. Each of these key clusters contained a group of
genes significantly (p < 0.05) correlating with that specific
cluster. The temporal patterns of the microarray gene
ratios were graphed according to their association with
these clusters for the retina (Figure 1) and ON (Figure 2).

Retinal clusters associated with neuronal loss and regen-
eration failure included the clusters neuron projection,
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Table 1 Temporal classification of up-regulated retinal
gene cluster changes following ONC

Gene ontology Clusters Time P value
point

Molecular function  Structural eye protein 3dpc  1.90E-06
Eye development 3dpc  4.50E-03
Extracellular matrix binding 3dpc 530E-03
Calcium ion binding 7 dpc  3.30E-02
Structural eye lens protein 21 dpc 2.20E-11
Structural molecular activity 21 dpc  4.60E-06

Biological process  Response to wounding 3dpc 1.00E-04
Inflammatory response 3dpc  3.80E-04
Defense response 3dpc 590E-04
Positive regulation of immune 3dpc 1.20E-02
system response
Rho protein signal transduction 3 dpc  5.90E-03
Regulation of signal proliferation 3 dpc  2.70E-02
Defense response 7 dpc  5.40E-04
Inflammatory response 7 dpc  1.60E-02
Response to wounding 7 dpc  4.70E-02
Sensory perception 14 dpc  8.80E-03
Neurological system process 14 dpc  2.30E-02
G-protein coupled receptor 14 dpc  3.90E-02
signaling pathway
Macromolecular complex 28 dpc  1.30E-02
assembly
DNA packaging 28 dpc  3.10E-02
Positive regulation of protein 28 dpc  4.50E-02
kinase activity

Cellular Extracellular region part 3dpc  3.20E-03

component
Extracellular matrix 3dpc 7.60E-03
Lysosome 3dpc  3.40E-02
Extracellular region part 7 dpc  3.50E-02
Microsome 14 dpc 1.70E-02
Intermediate filament 14 dpc  3.70E-02
Ribosome 21 dpc  5.00E-03

Gene expression fold-change values were grouped individually from naive
eyes and ONC eyes out to 28 days post crush (dpc). Genes were highlighted
based on fold values for up-regulated (>1.5) retinal datasets. The selected
genes were analyzed by gene ontology (GO) based cluster identification at
each time point using DAVID. Significance was determined using the Benjamini
multiple test correction, GO enrichment score x” test and Fishers Exact test
(p < 0.05).

regulation of axonogenesis, neuron projection morpho-
genesis, neuron differentiation and axon clusters (Figure 1).
Of particular interest was the gene Neuritin 1 (Nrnl),
which was identified within the neuron projection
morphogenesis and neuron differentiation clusters
(Figure 1C, D). NRNI1 is a secreted GPI-linked protein
that stimulates axonal and dendritic arbor growth [60].
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Table 2 Temporal classification of down-regulated retinal
gene cluster changes following ONC

Gene ontology Clusters Time P value
point
Molecular Structural eye lens protein 7 dpc  3.80E-15
function
Structural eye lens protein 28 dpc  2.60E-14
Pattern binding 28 dpc  3.80E-02
Biological Chromatin assembly 7 dpc  4.80E-04
process
Regulation of axonogenesis 21 dpc  740E-03
G-protein coupled receptor 21 dpc  2.00E-04
signaling pathway
Neurological system process 21 dpc  7.10E-03
Intermediate filament bundle 21 dpc  6.40E-05
process
Microtubule based process 21 dpc  5.10E-03
Axonogenesis 21 dpc  1.70E-02
Neuron projection morphogenesis 21 dpc  2.00E-02
Neuron differentiation 21 dpc  4.20E-02
Cell morphogenesis involved in 28 dpc  1.20E-02
differentiation
Cellular Nucleosome 7 dpc  7.50E-05
component
Neuron projection 21 dpc  5.00E-05
Axon 21 dpc  6.50E-05
Neurofilament 21 dpc  1.60E-04
Intrinsic to membrane 21 dpc  1.30E-02
Neuron projection 28 dpc  9.90E-03
Chromosome 28 dpc  3.10E-02

Gene expression fold-change values were grouped individually from naive
eyes and ONC eyes out to 28 days post crush (dpc). Genes were highlighted
based on fold values for down-regulated (< —1.5) retinal datasets. The selected
genes were analyzed by gene ontology (GO) based cluster identification at each
time point using DAVID. Significance was determined using the Benjamini
multiple test correction, GO enrichment score x* test and Fishers Exact test
(p < 0.05).

Down-regulation of Nrnl mRNA expression within the
microarray was observed to be biphasic with an initial de-
cline through 7 dpc, a slight increase at 14 dpc and a fur-
ther decrease by 21 dpc (Figure 1C, D). These biphasic
patterns may indicate a transient attempt at neuroprotec-
tion/neuroregeneration early in the response to injury.
ON clusters associated with neuronal loss and regener-
ation identified from the ON cluster tables (Tables 3 and 4)
included positive regulation of axonogenesis, regulation of
synaptic plasticity, neuron projection, synaptic transmission
and neurofilament cytoskeleton organization (Figure 2).
Neuron projection and synaptic transmission clusters
both identified key genes called synaptotagmins (Syt) that
participate in axonal regeneration, including synaptic pro-
jection and proper axonal targeting. Expression of Syt
genes was elevated in the ON at 21 dpc (Figures 2C, D).
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By analyzing the retina and ON simultaneously, we
were able to observe the temporal response of gene ex-
pression in the retina and ON individually as well as in
comparison to each other. Neurofilament (NF) genes
were identified in most of the retinal and optic nerve
clusters. Decreased expression of neurofilament medium
(Nefin) and light chain (Nefl) genes in the retina at 3 and
21 dpc (Figure 1) preceded neuronal loss after axonal
damage (Additional file 1: Figure S1B). However, by 28
dpc Nefin and Nefl expression was elevated in the ON
(Figures 2C and E). This pattern of NF expression is
consistent with previous studies identifying NF dysregu-
lation during neurodegeneration [61-74].

Validation of key target genes having differential
expression by qRT-PCR

Analysis of pooled microarray samples does not account
for the potential variations that exist between samples
and may mask individual sample differences. To confirm
individual samples follow the same trend of expression
as the microarray data, we used qRT-PCR to determine
the expression levels of target genes in each sample. For
the retina, we verified two genes (Nrul and Vsnll) that
have been previously identified as RGC markers [75,76].
Nrnl had similar expression patterns as Vsn/1 (Figure 3A
and B, respectively), and expression of each gene was
significantly correlated with the corresponding micro-
array ratios (Nrnl R?=0.96, Vsnll R?=0.73) (p<0.05)
(Additional file 4: Tables S2A and B). Both genes dis-
played a biphasic level of expression with significantly de-
creased expression from basal naive levels at 3 and 21 dpc
and modestly decreased expression at 14 dpc (p < 0.05,
n =5) (Figure 3).

In the ON dataset, Nrnl, synaptotagmin 1 (SytI) and
synaptoporin (Synpr) expression levels were validated by
qRT-PCR. We observed significantly increased expres-
sion of Nrnl at 28 dpc versus all time-points (p < 0.05,
n=>5) (Figure 4A). The qRT-PCR results significantly
correlate with the microarray data (R*=0.86, p <0.05)
(Additional file 4: Tables S2A and B). Sytl expression
was significantly up-regulated at 21 dpc (p < 0.05, n=5),
in contrast to all the other time points (Figure 4B).
These results were similar to Syt microarray ratios, in
which Sytl expression was elevated only at the 28 dpc
period. The shift in the time course of gene up-regulation
is most likely due to various individual samples that were
masked in the pooled microarray samples. Therefore, the
linear regression correlation between both sets of data
was less than 0.5 (R?=0.07) (Additional file 4: Tables
S2A and B). Increased expression of synaptoporin
(Synpr) was observed at 28 dpc (Figure 4C) and correlated
significantly with gene microarray ratios (R*=0.71,
p <0.05, n=5) (Additional file 4: Table S2B). Expression
of Synpr has been shown in neurons while SyzI has been
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Table 3 Temporal classification of up-regulated ON gene
cluster changes following ONC

Gene ontology Clusters Time P value
point

Molecular Chemokine activity 3dpc 6.50E-06

function
Growth factor binding 3dpc 1.10E-03
Actin binding 3dpc  9.10E-03
Serine type endopeptidase 7 dpc  7.10E-04
inhibitor activity
Chemokine activity 14 dpc  6.70E-09
Cytokine activity 14 dpc  6.00E-06
Chemokine activity 21 dpc  1.60E-04
Cytokine binding 21 dpc 4.30E-04
lon channel activity 28 dpc  1.20E-09
Calcium ion binding 28 dpc  7.70E-07
GABA receptor activity 28 dpc  4.30E-04
Neurotransmitter binding 28 dpc  4.00E-03
Calcium channel activity 28 dpc  9.10E-03
Protein kinase activator activity 28 dpc  8.80E-03

Biological Defense response 3dpc  6.20E-05

process
Translation 3dpc 1.20E-03
Cell cycle 3dpc 3.10E-06
Leukocyte activation 3dpc 2.10E-04
Actin cytoskeleton organization 3dpc 6.80E-03
Regulation of adaptive immune 3dpc 3.60E-04
response
Positive regulation of programmed 3 dpc  1.20E-03
cell death
Positive regulation of axonogenesis 3 dpc  2.10E-02
Sensory perception 7 dpc  2.90E-02
Immune response 14 dpc  3.40E-08
Chemotaxis 14 dpc  2.60E-07
Response to wounding 14 dpc 1.10E-06
Cell activation 14 dpc  5.70E-05
Defense response 21 dpc  1.60E-08
Response to wounding 21 dpc  4.00E-06
Chemotaxis 21 dpc  2.60E-06
Regulation of adaptive immune 21 dpc  540E-06
response
Phagocytosis 21 dpc 7.10E-03
Neuropeptide signaling pathway 21 dpc  2.50E-02
lon transport 28 dpc  2.70E-06
Transmission of nerve impulse 28 dpc  6.30E-08
Synaptic transmission 28 dpc  1.20E-06
Synaptic vesicle transport 28 dpc  4.60E-03
Regulation of synaptic plasticity 28 dpc  240E-03
Regulation of synaptic transmission 28 dpc  6.40E-03
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Table 3 Temporal classification of up-regulated ON gene
cluster changes following ONC (Continued)

Synaptogenesis 28 dpc  1.50E-02
Cell adhesion 28 dpc  3.20E-02
Cellular Chromosome 3dpc 1.50E-09
component
Extracellular region part 3dpc 880E-08
Collagen 3dpc  6.00E-03
Focal adhesion 3dpc 7.20E-03
Anchoring junction 3dpc  250E-02
Extracellular region 7 dpc  9.80E-04
Extracellular region 14 dpc  3.30E-03
Cell surface 14 dpc  2.80E-04
Extracellular region 21 dpc  2.60E-04
Synapse part 28 dpc  1.90E-13
Postsynaptic membrane 28 dpc  1.90E-07
Neuron projection 28 dpc  3.30E-07
Dendrite 28 dpc  2.30E-05
Synaptosome 28 dpc  3.10E-04
Postsynaptic density 28 dpc  5.60E-03
Synaptic vesicle 28 dpc  2.60E-03

Gene expression fold-change values were grouped individually from naive
eyes and ONC eyes out to 28 days post crush (dpc). Genes were highlighted
based on fold values for up-regulated (>1.5) optic nerve datasets. The selected
genes were analyzed by gene ontology (GO) based cluster identification at each
time point using DAVID. Significance was determined using the Benjamini
multiple test correction, GO enrichment score x” test and Fishers Exact test
(p <0.05).

shown in both neurons and is critical in fusion events of
astrocytes [77-81]. In addition to synapse formation, SytI
has also been shown to regulate the formation of axonal
filopodia and branching [80]. The induction of both Synpr
and Sytl expression may be related to synaptic vesicle
fusion and release, and the roles of both genes in ONC
need to be further explored.

Immunohistochemical analysis of validated gene targets
Whole retinas were utilized for microarray analysis, po-
tentially masking the changes specific to the RGCs, as they
comprise only about 0.5% of the whole retina [82]. To de-
termine temporal protein expression patterns occurring
specifically within the RGCs of the GCL, we performed
retinal immunostaining. We first tested the expression of
Brn3a (brain-specific homeobox/POU domain protein 3A),
a well-known marker for RGCs [57,83,84]. As expected, we
observed a progressive decrease in Brn3a expression after
ONC within the GCL (Figure 5A and D). These results
demonstrate a temporal decline in RGCs after axonal
injury.

Retinal immunostaining for Vsnll and Nrnl proteins
confirmed apparent temporal changes in protein expres-
sion after ONC. Within the naive retinal sections,
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Table 4 Temporal classification of down-regulated ON
gene cluster changes following ONC

Gene ontology Clusters Time P value
point
Molecular Calmodulin binding 3 dpc 6.50E-04
function
Voltage gated ion channel 3 dpc 6.70E-04
activity
lon binding 3 dpc 3.90E-04
Enzyme binding 3 dpc 5.80E-03
GABA receptor activity 3 dpc 6.70E-03
Ligand gated ion channel 3 dpc 1.80E-02
activity
Calmodulin binding 7 dpc 1.30E-02
Calcium dependent 7 dpc 1.40E-04
phospholipid binding
Nuclease activity 21 dpc 2.50E-02
Microtubule binding 21 dpc 2.50E-02
Motor activity 21 dpc 1.80E-02
Cytokine activity 28 dpc 2.90E-02
Biological Potassium ion transport 3 dpc 4.80E-05
process
Cation transport 3 dpc 5.30E-04
Neurotransmitter transport 3 dpc 3.80E-03
Synaptic transmission 3 dpc 1.40E-02
Calcium ion transport 3 dpc 1.10E-02
Neurofilament cytoskeleton 3 dpc 1.20E-03
organization
Intermediate filament 3 dpc 2.00E-03
cytoskeleton organization
Neurotransmitter transport 3 dpc 3.80E-03
MAPKKK cascade 3 dpc 240E-02
Microtubule based process 7 dpc 1.10E-02
Visual perception 14 dpc 4.40E-05
Cognition 14 dpc 6.50E-03
Neurological process 14 dpc 1.40E-02
Microtubule based process 21 dpc 1.30E-05
Lipid biosynthetic process 21 dpc 2.20E-02
Visual perception 28 dpc 3.20E-10
Sensory perception 28 dpc 2.90E-02
Eye development 28 dpc 4.80E-05
Immune response 28 dpc 4.70E-02
Cellular Synapse 3 dpc 4.30E-06
component
Cell junction 3 dpc 6.30E-04
Post synaptic membrane 3 dpc 1.10E-03
Presynaptic membrane 3 dpc 5.20E-05
Synapse part 7 dpc 2.90E-04
Cell junction 7 dpc 3.90E-03
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Table 4 Temporal classification of down-regulated ON
gene cluster changes following ONC (Continued)

Cell projection 7 dpc 3.10E-03
Clathrin coated vesicle 7 dpc 1.00E-02
Cytoskeleton 21 dpc 2.30E-02
Anchored to membrane 28 dpc 4.30E-02

Gene expression fold-change values were grouped individually from naive
eyes and ONC eyes out to 28 days post crush (dpc). Genes were highlighted
based on fold values for down-regulated (< —1.5) optic nerve datasets. The
selected genes were analyzed by gene ontology (GO) based cluster identifica-
tion at each time point using DAVID. Significance was determined using the
Benjamini multiple test correction, GO enrichment score x* test and Fishers
Exact test (p < 0.05).

approximately 50% of the GCL cells were positive for
Vsnll/Brn3a and 47% were positive for Nrnl/Brn3a
(Figure 5E and F). A biphasic protein expression pat-
tern was observed for Vsnll with decreased expression
in the nerve fiber layer (NFL) and inner plexiform layer
(IPL) at 7 dpc, increased expression at 14 dpc com-
pared to the naive retina, and a complete loss of ex-
pression by 28 dpc (Figure 5B). Focusing on the GCL,
the staining pattern also changed at 7 dpc and became
more cytoplasmic, in contrast to the diffuse pattern ob-
served in the naive retinas (Figure 5E). These data ver-
ify the Vsnll mRNA expression data (Figure 3A).

A similar biphasic expression pattern was observed for
Nrnl with peak expression at 14 dpc (Figure 5C) and in-
creased nerve fiber layer staining pattern with the GCL
at 7 dpc (Figure 5F). Compared to Vsnll, Nrnl immuno-
staining was observed in the ganglion cells and NFL, but
not as extensively within the IPL. In addition, previous
studies of retinal Nrnl in-situ hybridization exhibited
predominant expression within the ganglion cell layer
[85], which agrees with our IHC study.

Temporal Sytl, Synpr and Nrnl protein expression
patterns were determined in longitudinal sections of the
ON. Images were examined at each time point for each
protein as represented by Figure 6A. At 7 dpc, all pro-
teins were individually co-labeled with Nfl to show
localization of the axons and the pattern of staining for
each protein within the ON (Additional file 5: Figure S3
G-I). The expression pattern of Synpr and Nrnl was not
as intense as Sytl (Additional file 5: Figures S3 G-I) but
still colocalized with Nfl staining. In contrast, the stain-
ing pattern of Sytl colocalized with Nfl and also within
the cells surrounding the ON axons (Additional file 5:
Figure S3 G). Increased expression of Sytl was evident
at 14, 21 and 28 dpc (Figure 6B and C). Elevated levels
of Sytl were seen within the cytoplasmic region of ON
cells through the time course post crush (Figure 6B).
Synpr protein expression within the ON was evident at
21 and 28 dpc (Figure 6D and E). Similar to Sytl expres-
sion, Synpr cytoplasmic staining was observed within the
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Figure 1 Temporal changes of specific retinal gene clusters related to neuronal loss and regeneration failure. Neuron specific and axonal
regeneration related neuronal clusters were selected from the retinal GO tables; and the microarray ratios of the genes within each of these
clusters were graphed temporally (0 to 28 days post crush (dpc)). Neuronal clusters identified included (A) neuron projection, (B) regulation of
axonogenesis, (C) neuron projection morphogenesis, (D) neuron differentiation and (E) axon. Significance of these clusters was determined using
the Benjamini multiple test correction, GO enrichment score y° test and Fishers Exact test (p < 0.05).
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ON cells (Figure 6D). The temporal protein expression
pattern of Sytl and Synpr followed the mRNA expression
patterns (Figure 4B and C).

In contrast to Sytl and Synpr, Nrnl ON protein ex-
pression levels (Figure 6F and G) did not match mRNA
expression data (Figure 4A). Increased expression of
Nrnl was observed at 14 and 21 dpc (Figure 6F), while
increased mRNA expression was observed at 28 dpc
(Figure 4A). The offset in the time course for protein ex-
pression compared to mRNA expression can be expected

due to both mRNA half-life stability and rates of protein
synthesis to degradation.

Discussion

Signaling pathways involved in RGC degeneration are
quite complex, and identifying correct target molecules
that can mitigate neuronal degeneration and failed re-
generation are necessary to develop new neuroprotec-
tion strategies. We utilized the ONC mouse model to
understand the mechanisms involved in RGC death.
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ONC directly damages the ON, leading to a progressive
loss of RGCs. We identified temporal gene expression
changes in the retina and ON after ONC. Key genes asso-
ciated with neuronal loss and regenerative failure were
identified in both retina and ON, and the expression
changes were validated by qRT-PCR and immunostaining.

Previously it has been shown that genetic background
has an influence on susceptibility to neuronal damage in
different inbred mouse lines after neurodegenerative
stimuli [20]. C57BL/6 mice are more resistant to ONC,
while BALB/c mice are more susceptible to this axonal in-
jury. However, both strains display similar susceptibility to

spinal cord injury [20,86]. The differences observed be-
tween strains could be partly due to variability in immune
response, differences in neuronal stress pathways, and/or
activation of alternate cell death pathways [20,87]. In
addition, albino rodents are more susceptible to light-
induced retinal damage, causing photoreceptor cell death
and subsequent retinal degeneration [88,89]. However, ret-
inal degeneration not induced by external factors has not
been previously reported in BALB/c] mice. Thus, our
BALB/c] ONC model is extremely useful for studying the
potential mechanisms underlying neuronal cell death due
to its susceptibility to crush injury.
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Previous ONC studies have observed changes in gene
expression within the retina [22,46,90-93] and glial based
responses within the ON [29]. Analyzing the retina and
ON simultaneously allowed the identification of individ-
ual clusters related to neuronal loss and regenerative
failure within each tissue separately as well as allowed us
to observe the temporal response of gene expression oc-
curring in both the ON and retina with progressive in-
jury to these two tissues.

Neurofilament genes were identified in both the retina
and ON datasets. Atypical accumulations of NFs are asso-
ciated with several neurodegenerative disorders [61-74],
and dysregulation of NFs and NF aggregation accompany
axonal damage after CNS trauma. NFs have also been
associated with CNS diseases and axonal degenerative
processes [94]. We show temporal differences in neuro-
filament expression between the retina and ON sug-
gesting crucial gene changes occur after trauma in the
retina and ON. There is progressive decline of retinal
Nfl expression compared to the elevated expression
within the ON out to 28 dpc. These results are consistent
with a model in which axonal damage precedes retinal
neuronal degeneration and accumulation of damage asso-
ciated genes occurs within the ON before soma degener-
ation. The changes in expression patterns identified in our
ONC model correlate with previous studies identifying
NF dysregulation during neurodegeneration [61-74].

The RGCL comprises multiple cell types including
RGCs, amacrine cells, astrocytes, microglia, and vascular
cells that interact with the RGC somas. After ONC,
these cells also initiate degenerative pathways causing
RGC apoptosis [95,96]. Thus, the deregulation of genes
observed within the retina is not restricted to RGCs and also
represent gene expression of the surrounding cells. Glial fi-
brillary acidic protein (Gfap), a marker of astrogliosis, is up-

regulated after CNS trauma and is used as a universal
index of retinal injury [34,96]. Gfap is initially up-
regulated after ONC [35,36] and showed a similar ex-
pression pattern in our retinal dataset. After injury of
CNS axons, glial responses around the affected area are
increased, and this may contribute to trauma-induced
neurodegeneration [97]. By identifying key clusters as-
sociated with degeneration of neurons and axonopathy,
we were able to isolate potential target genes (Vsull,
Nrnl, Sytl, Synpr).

Vsnll gene is a member of the neuronal subfamily of
EF-hand calcium sensor proteins. These proteins play
vital roles in cellular signal transduction and neuropro-
tection/neurotoxicity and have been implicated in neu-
rodegenerative diseases [98,99]. Vsnll is predominantly
expressed in isolated immuno-panned rat RGCs [75]
and has also been shown to specifically label the inner
retina (amacrine and RGCs) and the inner plexiform
layer of rat, chicken, and bovine retinas [100]. In our
study, expression of the Vsn/l gene was down-regulated
after ONC, which may prevent the survival of RGCs. Al-
though the precise functional roles of Vsnll are still un-
clear, Vsnll proteins may play key roles in membrane
trafficking, neuronal signaling, and differentiation [99].
As ON axonal transport is inhibited after ONC, de-
creased levels of Vsnll may contribute to the deleterious
effects on axonal transport mechanisms seen in ONC.

Functionally, Nrn1 acts as a ligand to the insulin recep-
tor [101] and cleavage of the GPI anchor by phospholipase
C allows the soluble secreted form to be cell independent
[102]. The GPI membrane bound anchor of Nrnl allows
growth promotion as it can stimulate axonal plasticity,
dendritic arborization, and synapse maturation in the
CNS [60,102]. Conditional knockout of the Nrnl gene de-
lays development, maturation of axons and dendritic
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Figure 4 mRNA expression patterns of selected optic nerve genes following ONC insult. Pooled microarray mRNA expression changes
were validated in individual samples by gRT-PCR. Relative fold change in each sample was determined based on a 2 fold exponential using mRNA
expression values normalized to Gapdh and the contralateral control eye. Fold values of each gene presented as mean + SEM. (A) Neuritin 1
(Nrn1), (B) Synaptotagmin 1 (Syt7) and (C) Synaptoporin (Synpr). Statistical significance for each time-point determined by one-way ANOVA -Tukey
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arbors, synaptic maturation, and effective learning [103].
Neurotrophins such as nerve growth factor (NGF), brain-
derived neurotrophic factor (BDNF) and neurotrophin-3
(NT-3) as well as neuronal activity can potentiate the ex-
pression of Nrnl [104,105]. NGF induces expression of
Nrnl, which increases neurite outgrowth in a variety of
experimental models [104,106,107]. Our studies suggest
that after axonal insult, RGCs initially increase Nrnl ex-
pression for axonal regeneration to overcome obstructed
transport mechanisms. These regenerative supportive
mechanisms are lost 14 dpc because by then most of the
RGCs have been damaged, and the survival of these neu-
rons has progressively decreased. The correlation of ret-
inal protein expression of Nrnl at 14 dpc mimics the
elevated expression of Nrnl at the same time-point within
the ON. Taken together, these data suggest that the dy-
namic regulation of Nrnl may be an effort for axonal re-
generation after ONC.

The relative abundance of protein expression may not
be proportional to the relative mRNA levels. This lack of
correlation in mRNA and protein expression levels could
be due to mRNA stability and/or rates of protein synthe-
sis and/or degradation. The slight increase in retinal
mRNA expression at 14 dpc (compared to 3 and 7 dpc)
is maybe increasing the translation of the Nrnl within
the RGCs soma and Nfl, which is then transported
downstream to the ON axons.

The optic nerve includes not only the axons of the
RGCs but also astrocytes, microglia, and oligodendro-
cytes that interact with RGC axons as well as each other
[29]. Thus, the expression of genes observed within the
ON may represent the beneficial or detrimental effects
of neighboring cells surrounding the RGC axons. Differ-
entially regulated genes within the ON expression
microarray also identified other key genes associated
with synaptic transmission (Syt1 and Synpr) and synaptic
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Figure 5 Expression of Brn3a, Vsnl1 and Nrn1 in the retina following ONC. Progressive loss of RGCs observed with Brn3a and a biphasic
pattern of expression observed for Vsnl1 and Nr1. Time course of retina sections from naive, 7, 14, 21 and 28 dpc (days post crush) are indicated
on the top of the panel. Fluorescence micrographs of retinal tissue sections were immunolabeled with: (A) Brn3a (red), (B) Vsnl1 (green) and

(C) N1 (green). Zoomed 50um length images of the GCL from each of the respective panels above were cropped to show RGC specific staining for
naive, 7 and 28 dpc: (D) Brn3a (red), (E) Vsnl1 (green) and (F) Nrn1 (green). Blue staining indicates DAPI labeled nuclei and all panels show red
immunostaining for Brn3a. Scale bar =50 um, n = 3. Photomicrographs were captured at 400X original magnification.
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plasticity gene (Nrnl) that participate in axonal regener-
ation, including synaptic projection, and proper axonal
targeting.

A collection of signaling mechanisms link both axonal
tips and dendritic terminals to neuronal soma and nucleus
by motor-dependent transport machineries. Signaling com-
plexes could be transported either in endosomes, or as
non-endosomal complexes associated with importins and
dynein [108]. Essential membrane components of synaptic
vesicles and synaptic transmission associated proteins
are translated in the soma and get transported to the
growing distal ends of extending neurites after crush in-
jury [109,110]. In addition, synaptic vesicles are localized

to small vesicles within the neuron, particularly in neur-
onal axonal processes [111]. Eventually, as axonal trans-
port is inhibited after ONC due to glial scarring [5,13],
there is decreased transport of proteins involved in neuro-
protection and synaptic plasticity. This causes deleterious
effects, eventually leading to decreased synaptic plasticity
and transmission at distal ends.

Syt proteins act as synaptic calcium sensors for vesicle
fusion in conjunction with SNAREs that facilitate intra-
cellular membrane fusion events [112-114]. Syts have a
conserved mechanism of action and are crucial for neur-
onal Ca**-triggered vesicle fusion [115]. Previous studies
have shown Syt to participate in axonal regeneration,
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Figure 6 Expression of Syt1, Synpr and Nrn1 in the optic nerve following ONC. Differential protein expression of Syt1, Synpr and Nrn1
observed within cytoplasmic region of ON cells following trauma. Optic nerve sections from naive, 14, 21 and 28 dpc (days post crush) are indicated
on the top of the panel. (A) lllustrative images captured at each time point for each protein. Fluorescence micrographs of optic nerve tissue sections
were captured at 600x magnification and immunolabeled with: (B) Syt1 (green), (C) Syt1 and DAPI, (D) Synpr (green), (E) Synpr and DAPI, (F) Nrn1
(green) and (G) Nm1 and DAPI. Blue staining indicates DAPI labeled nuclei. (Scale bar =100 pm (100x), 25 um (600x), n = 3). Photomicrographs were
captured at 600x original magnification for the selected ON genes.
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including synaptic projection and proper axonal target-
ing [80,116]. In our study, Sytl was identified in ON
neuron projection and synaptic transmission clusters. It
appears that the ON attempts to initiate synaptic projec-
tion following ONC trauma as shown by the biphasic
mRNA and protein expression of Sytl.

Similarly, Synprs are essential membrane components of
synaptic vesicles [79]. Sympr has restricted distribution
within the CNS and is present in the telencephalic struc-
tures, hippocampus, olfactory bulb, and retina [77,117-119].
Synpr plays potential roles in the modulation of synaptic
transmission and specificity to neuronal circuitry [79]. In-
creased protein expression of Synpr in the ON was ob-
served at 21 and 28 dpc. The induction of both Synpr and
Sytl expression may be related to synaptic vesicle fusion
and release. After trauma, these synaptic vesicles get trans-
ported to the growing distal ends of extending neurites
[109,110]. Eventually, as the RGCs are trying to overcome
regenerative failure, they may increase expression of Syt
proteins within their axons in attempt to induce synaptic
plasticity and transmission at distal ends. Elevated expres-
sion of Synpr and Nrn1 suggests they are mediating synap-
tic differentiation as synaptic organizing proteins, but the
deregulation of mRNA expression and eventually protein
expression may be a futile attempt at ON regeneration in
late pathogenesis.

We have explored temporal gene expression changes
after ONC axonal injury that can be extrapolated to
other CNS traumas. Although there are gene expression
differences between the retina and brain, similar differ-
ences also occur within discrete regions of the brain as
each part of the brain has different motoric, sensory, and
cognitive functions. For example, gene expression in the
cerebellum differs the most from the other regions of
the brain [120,121] and has also been reported in inbred
strains of mouse brain [122]. In addition, inter-individual
differences have also been reported within a species [121].
As is the case while studying any trauma or disease model,
only a generic evaluation can be made in terms of rele-
vance to other regions in the CNS. In conclusion, the
ONC model has identified two key mechanisms of CNS
trauma and neurodegeneration: neuronal loss and regen-
erative failure. Dysregulation of Vsnll, Sytl, Synpr and
Nrnl gene expression may play an important role in neu-
rodegeneration and potentially provide unique targets for
intervention.

Conclusions

The current study delineates the gene expression pro-
file associated with neurodegeneration and regenerative
failure after ONC-induced CNS trauma. CNS trauma
causes degeneration of neurons and axonopathy, which is
evident in neurodegenerative diseases such as Parkinson’s,
Alzheimer’s, and glaucoma [1-5]. The susceptibility of the
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neurons to acute axonal injury allowed the identification
of gene expression changes that occur before neuronal
loss. Using the reproducible ONC model of CNS trauma,
we were able to: (a) examine gene expression changes
within the retina and ON, and (b) visualize protein expres-
sion patterns of key selected genes associated with neuron
loss and regenerative failure within the retina and ON
after ONC. BETR analysis of microarray gene expression
data was utilized to show that a select small subset of
genes was affected at multiple time points following ONC.
Bioinformatic meta-analysis identified gene clusters asso-
ciated with regenerative changes, synaptic plasticity, axo-
nogenesis, neuron projection, and neurodegeneration. A
neurite synaptic plasticity gene (Nrnl), synaptic vesicle fu-
sion genes (Synpr and Sytl), and neuron differentiation as-
sociated gene (Vsnll) were a few of the key temporally
regulated genes identified in our study. In conclusion, ana-
lysis of these gene arrays and protein expression patterns
allowed the detection, quantification and visualization of
key differentially regulated genes after ONC. This study
has identified potential pathogenic genes and possible new
therapeutic targets to address two key mechanisms of
CNS trauma: neuronal loss and regenerative failure.

Methods

Animals

BALB/c] mice aged 2—4 months were utilized for all
the experiments and were obtained from the Jackson
Laboratories (Bar Harbor, ME). The mice were housed
and maintained in a 12-hour light/dark cycle and fed ad
libitum. All procedures were performed in accordance
with Association for Research in Vision and Ophthalmol-
ogy Statement on the Use of Animals in Ophthalmic and
Vision Research and the University of North Texas Health
Science Center (UNTHSC) Institutional Animal Care and
Use Committee regulations (IACUC protocol # 2011/
2012-58-A04, approved October 8th 2012).

Mice were divided into three separate groups accord-
ing to the experiment. The time course of the ONC in-
cluded six different time-points (naive (0), 3, 7, 14, 21
and 28 dpc). To determine the percentage of neurons
surviving after crush, 8—9 mice per time-point were used
for retinal Nissl staining. For the microarray studies and
gqPCR validation, 5 mice were used per time-point. After
the retinal and ON tissues were harvested, the samples
were divided into two parts. cDNA was made from half
of each individual sample for qPCR validation, while the
remaining portion of samples were pooled to generate
one sample for each experimental time point. Micro-
array analysis was performed on control and ONC retina
and ON samples for each time point. To qualitatively
identify protein expression, three mice per time-point
were utilized for IHC.
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Optic nerve crush model

The ON of the left eye was crushed 0.5 mm posterior
from the globe for 4 seconds using the Nickell’s tech-
nique [19]. Briefly, mice were anesthetized by intraperi-
toneal injection of ketamine (100 mg/kg) and xylazine
(10 mg/kg) and an incision was made along the superior
orbital margin. The ON (left) was exposed and crushed
using a self-closing jeweler’s forceps to ensure reprodu-
cibility and constant force. Extreme care was taken not
to damage the ocular blood vessels. Indirect ophthal-
moscopy was performed to ensure retinal circulation
was not blocked. The contralateral eye was used as the
uncrushed control.

Characterization of optic nerve crush model

To quantify cell loss from the retinal RGCL, retinas
from fixed eyes were dissected, flat mounted and Nissl
stained with cresyl violet stain as previously described
[19,87,123]. Eyes were fixed in 4% paraformaldehyde in
phosphate buffered saline (PBS; 0.1M phosphate and
100mM NaCl buffer (pH 7.4)) for an hour at room
temperature. After fixation, the eyes were rinsed with
PBS, and the posterior cup isolated and placed in 0.3%
Triton-X 100 PBS for 16 hours at 22°C. The tissues were
then placed in 3% H,O, and NaH,PO, overnight. The
retinas were dissected, cut into four quadrants, and
mounted RGC side up on positively charged glass slides
(Fisher Scientific, Chicago, IL). The slides were then air
dried and flattened with coverslips using 10 g weights.
The dried retinas were stained with 1% cresyl violet acet-
ate in 0.25% acetate for 30—45 seconds. After staining,
the retinas were dehydrated in 90% and 100% ethanol
and cleared with xylene to reduce background staining
and mounted with a coverslip.

To determine the density of remaining RGCL neurons
within each retina, two digital images from each quad-
rant (peripheral and mid-peripheral region - four quad-
rants/retina) were captured at 400 X magnification. A
total of 8 images per retina were counted using Adobe
Photoshop software. Cell counts were analyzed by com-
paring the experimental retinas against the contralateral
control retinas (cell counts+SD) at each time point.
Quantification of percentage neuron survival following
ONC from 3 to 28 dpc was performed. Data points
(Additional file 1: Figure S1 B) represent mean + SD of
surviving neurons after crush normalized to contralat-
eral control eyes. Statistics were determined using one-
way ANOVA -Tukey post hoc test, ** p<0.01, *** p<
0.001, n = 8-9 eyes/time-point.

RNA processing

Fresh retina and ON samples (from the globe to the chi-
asm) were cleanly dissected without any contamination
from surrounding tissue. In brief, after euthanization
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each globe was harvested from the mouse eye socket at
the globe and optic nerve head (ONH) juncture. The
globe was transferred to a clean petri dish and opened
along the limbus. The retina was harvested from the
posterior cup and the ONH removed using a trephine.
For the ON, the skull was opened and each left and right
ON between the globe and chiasm was harvested separ-
ately. All samples were collected in 1 ml of TRIzol (Invi-
trogen, Grand Island, NY) and homogenized using 5
mm steel beads in the TissueLyser LT (Qiagen, Valencia,
CA) for five minutes at 50 oscillations/second. For
phase separation 50 pl of BAN Phase Separation Reagent
(Molecular Research Center, Cincinnati, Ohio) was added
to the homogenized samples, and samples were centri-
fuged at 14,000 rpm for 15 minutes. The upper aqueous
phase was transferred to an RNeasy mini column (Qiagen,
Valencia, CA) and processed according to manufacturer’s
protocol. The total RNA was re-suspended in 20 pl of
nuclease-free water and quantified using the Thermo
Scientific NanoDrop 2000 (NanoDrop products, Wil-
mington, DE). Integrity of the RNA was measured by
calculating the RNA integrity number (RIN) using the
Agilent Bioanalyzer (Agilent Technologies, Santa Clara,
CA), and samples with RIN values greater than 7 were
used for microarray analysis.

Affymetrix gene chip arrays

For microarray analysis, 420 ng of RNA from each retina
sample and 100 ng from each ON sample was pooled to
a total of 2100 ng and 500 ng, respectively, and this was
performed for each experimental and control group at
each time point. Microarray hybridizations were per-
formed at the University of lowa DNA Core Facility.
Total RNA (50 ng) was converted to SPIA (Single Pri-
mer Isothermal Amplification) amplified cDNA using the
WT-Ovation Pico RNA Amplification System, v2 (NuGEN
Technologies, San Carlos, CA). The amplified SPIA ¢cDNA
product was purified through a QIAGEN QIAquick PCR
Purification column (QIAGEN). Five micrograms of this
product were fragmented (average fragment size = 85 bases)
and biotin labeled using the NuGEN FL-Ovation ¢cDNA
Biotin Module (NuGEN Technologies). The resulting
biotin-labeled cDNA was mixed with Affymetrix eukaryotic
hybridization buffer (Affymetrix, Inc, Santa Clara, CA),
placed onto Affymetrix Mouse Gene 1.0 ST arrays and in-
cubated at 45°C for 18 h with 60 rpm rotation in an
Affymetrix Model 640 Genechip Hybridization Oven.
Following hybridization, the arrays were washed, stained
with streptavidin-phycoerythrin (Molecular Probes, Inc.,
Eugene, OR), and the signals were amplified with an anti-
streptavidin antibody (Vector Laboratories, Inc., Burlin-
game, CA) using the Affymetrix Model 450 Fluidics Station.
Arrays were scanned with the Affymetrix Model 3000
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scanner with 7G upgrade, and data were collected using
the using the GeneChip operating software (GCOS) v1.4.

Bioinformatic analysis of gene expression datasets
Microarray data were imported into the Partek Genomics
Suite 6.6 software (Partek Inc., Louis, MO) and normal-
ized based on the robust multi-array average (RMA). To
further confirm the purity of each extracted tissue, we ex-
amined the expression of retina specific genes in the ON
tissue and ON genes in the retina tissue. There was
greater expression of retina specific markers: Rho, Nr2e3,
Nrl and Crx in the retinal samples, while these genes were
at the lower limits of detection in the ON samples. Con-
versely, there was greater expression of myelin marker
genes Mag, Mobp, Mog, Mbp and Plp1 in the ON samples
compared to the retina samples. In addition, we tested ex-
pression levels of Rho and Mbp by qPCR in both tissues
(Additional file 6: Figure S4).

For the microarray analysis, the ONC samples were
compared to the control samples and the microarray ra-
tios and log, fold values calculated at each time point.
Up and down-regulated genes were identified for both
datasets (retina and ON) with a selective filter of >1.5
and < -1.5 fold values. The fold values were based on
the g-value defined by the FDR analogue of the p <0.05.
The genes were further analyzed using the publicly avail-
able bioinformatics software Database for Annotation,
Visualization and Integrated Discovery (DAVID). Gene
ontology (GO) based cluster analysis was performed to
identify possible enrichment of genes (GO enrichment
score calculated using a x* test) using differentially regu-
lated genes per time point. The Fishers Exact p value is
calculated by DAVID to identify GO enrichment based
clusters and any p < 0.05 were considered to be signifi-
cant based on the Benjamini multiple test correction
and were enriched in the annotation category [124,125].
Neuronal clusters were identified at specific time points
and their genes graphed temporally under each GO
category.

Identification of specific gene expression changes
following ONC by Bayesian estimation of temporal
regulation analysis

Analysis of time-course microarray data was performed
using Bayesian Estimation of Temporal Regulation (BETR)
analysis to account for any variations between individual
samples within the pooled samples. The BETR expression
probabilities were estimated using Probe Logarithmic In-
tensity Error with GC-background correction, a routine
built into the Affymetrix Power Tools toolkit. Expression
estimates for 11 housekeeping genes across all time-points
were used to create a linear model between the average
expression level and variance of each gene and housekeep-
ing genes. This model was used to simulate additional
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readings for all estimated transcripts at each time point,
which were subsequently used as additional inputs to the
BETR [59] R package. From this algorithm output final
BETR probabilities were determined for the total 18,786
genes identified within each of the retina and ON gene ex-
pression datasets (Additional file 3: Table S1 A, B). BETR
probabilities ranged from O to 1 with 0 being the least sig-
nificantly changed genes temporally and 1 being the most.
Genes were then classified into frequency bins based on
the range of BETR probabilities. Each frequency bin iden-
tified a range of 0.1 differences in BETR probabilities and
bins ranged from the lowest 1 (BETR probability range
of 0-0.1) to frequency bin 10 (BETR probability range
of 0.9-1) (Additional file 3: Table S1A, B). We consid-
ered low BETR probabilities of frequency bins <5 to re-
flect no significant changes in gene expression, while
high BETR probabilities (0.9-1.0) within frequency bin
10 to represent significant changes in gene expression
over time.

Microarray confirmation through real-time qRT-PCR

Quantitative real-time PCR (qPCR) was used to validate
the temporal gene microarray expression ratios for the
differentially expressed genes. From the retinal data sets,
two genes (Vsnll and Nrnl) were selected, while from
the optic nerve data set, three genes were chosen (Sytl,
Synpr and Nrnl) (Additional file 4: Table S2A). Reverse
transcription was performed using the iScript™ cDNA
synthesis kit (Bio-Rad Laboratories, Hercules, CA). Each
sample (500 ng of RNA) was reverse transcribed as per
manufacturer’s protocol. Gene specific primers were de-
signed (MGI database) (Additional file 7: Table S3) and
PCR products sequenced to confirm the specificity of
each primer’s transcript (Genewiz Inc, NJ). qPCR was
then performed in the BioRad CFX96 real time system
(Bio-Rad Laboratories, Hercules, CA) using the SSo-
Advanced™ SYBR Green master mix (Bio-Rad Laborator-
ies, Hercules, CA). Cycles for the qRT-PCR were run as
described in Additional file 8: Table S4. The cycle
threshold (C,) was assigned as log, of PCR amplification.
Technical duplicates for each sample were averaged, and
each ONC and control samples were normalized to their
own Gapdh C, values. The difference between the ONC
sample (experimental) and control sample AC, values
was used to determine the relative fold change in each
sample based on a 2 fold exponential. Control qRT-PCR
reactions were performed in the absence of a ¢cDNA
template. Gene expression fold changes were graphed
temporally for each dataset and compared to temporal
microarray ratios from the Partek analysis. Statistical
analysis for qPCR was performed using GraphPad Prism
Software (Mean + SEM) using one-way ANOVA (Tukey
post hoc test) with a p <0.05 considered statistically sig-
nificant. Regression analysis was performed between
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qRT-PCR and microarray ratios, and the R? coefficient of
determination calculated and p<0.05 were considered
statistically significant (Additional file 4: Table S2 B).

Immunohistochemistry

IHC was performed to validate protein expression of qRT-
PCR confirmed genes and to localize target proteins in the
retina and ON. Whole eyes were harvested and fixed in
4% paraformaldehyde for 2 hours at room temperature.
After fixation, the tissue was placed in 20% sucrose over-
night at 4°C and embedded in optical cutting temperature
(OCT) the next day. Sections (10 pm) were cut using a
cryostat (Leica Biosystems - Richmond, IL). Cross sections
of retina were transferred to Superfrost glass slides (Fisher
Scientific - Chicago, IL). Slides were incubated in PBS for
10 minutes and blocked with SuperBlock™ Blocking Buffer
(Fisher Scientific, Chicago, IL) at room temperature for
one hour. Primary antibodies (Additional file 9: Table S5)
were diluted in Superblock™. Each slide was probed with
the respective primary antibody and incubated overnight
at 4°C. Sections were then washed 3 times with PBS for 10
minutes each and incubated with Alexa Fluor secondary
antibody (Additional file 9: Table S5) for 1 hour at room
temperature. Slides were rinsed three times with PBS and
mounted with ProLong” Gold anti-fade reagent with DAPI
(Molecular Probes, Grand Island, NY). Sections were
observed and captured using a Nikon Eclipse Ti-U Micro-
scope (Nikon, Melville, NY) containing the Nuance Multi-
spectral imaging system and analyzed using Adobe
Photoshop CS5 software. Negative control images of ret-
ina and ON sections with no primary antibody are pre-
sented in Additional file 5: Figures S3 A-F.

Availability of supporting data
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