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Pressure overload–induced hypertrophy is a key step leading to heart failure. The Ca2þ-induced Ca2þ release (CICR)
process that governs cardiac contractility is defective in hypertrophy/heart failure, but the molecular mechanisms
remain elusive. To examine the intermolecular aspects of CICR during hypertrophy, we utilized loose-patch confocal
imaging to visualize the signaling between a single L-type Ca2þ channel (LCC) and ryanodine receptors (RyRs) in aortic
stenosis rat models of compensated (CHT) and decompensated (DHT) hypertrophy. We found that the LCC-RyR
intermolecular coupling showed a 49% prolongation in coupling latency, a 47% decrease in chance of hit, and a 72%
increase in chance of miss in DHT, demonstrating a state of ‘‘intermolecular failure.’’ Unexpectedly, these modifications
also occurred robustly in CHT due at least partially to decreased expression of junctophilin, indicating that
intermolecular failure occurs prior to cellular manifestations. As a result, cell-wide Ca2þ release, visualized as ‘‘Ca2þ

spikes,’’ became desynchronized, which contrasted sharply with unaltered spike integrals and whole-cell Ca2þ

transients in CHT. These data suggested that, within a certain limit, termed the ‘‘stability margin,’’ mild intermolecular
failure does not damage the cellular integrity of excitation-contraction coupling. Only when the modification steps
beyond the stability margin does global failure occur. The discovery of ‘‘hidden’’ intermolecular failure in CHT has
important clinical implications.

Citation: Xu M, Zhou P, Xu SM, Liu Y, Feng X, et al. (2007) Intermolecular failure of L-type Ca2þ channel and ryanodine receptor signaling in hypertrophy. PLoS Biol 5(2): e21.
doi:10.1371/journal.pbio.0050021

Introduction

In response to pressure overload, the heart produces an
adaptive response in the form of cardiac hypertrophy to
maintain adequate cardiac output and tissue perfusion [1–3].
In the early stage of hypertrophy, cardiac contractile
dysfunction is not present, and the ventricle is hemodynami-
cally compensated. When the pressure stimuli are persistent,
the heart usually undergoes functional deterioration, even-
tually leading to heart failure [3,4]. In the failure stage, the
heart becomes incapable of generating sufficient pumping
power. To prevent the pathogenesis of heart failure, one
strategy has been to stop or postpone the transition of
hypertrophy from the compensated stage toward the decom-
pensated stage [4]. Therefore, understanding the cellular and
molecular mechanisms involved in cardiac hypertrophy is
important for developing clinical therapies against heart
failure.

At the cellular level, the contractile power during
excitation-contraction coupling (E-C coupling) is governed
by a mechanism known as Ca2þ-induced Ca2þ release (CICR)
[5,6]. In this process, Ca2þ influx through L-type Ca2þ

channels (LCCs) on the cell surface membrane (including T-
tubules) activates ryanodine receptor (RyR) Ca2þ release from
the sarcoplasmic reticulum (SR) to generate cell-wide Ca2þ

transients [7–9]. Besides LCCs and RyRs, Ca2þ cycling
proteins, e.g., SR Ca2þ pumps (SERCA), Naþ-Ca2þ exchangers,
and their regulatory mechanisms, are also important in
determining the amplitude and kinetics of Ca2þ transients [8].

All these mechanisms have been studied in a wide variety of
hypertrophy and heart failure models [8,10–14]. Most studies
support the idea that the LCC activity does not change much
during hypertrophy and heart failure [11]. However, the Ca2þ

transients triggered by comparable LCC currents are de-
creased in amplitude and/or slowed in kinetics in most
models of decompensated hypertrophy (DHT) and heart
failure [11,13]. These studies lead to the notion that the Ca2þ

influx through LCCs becomes less effective in triggering RyR
Ca2þ release [13]. Yet the molecular details underlying
defective E-C coupling remain unknown. On the other hand,
studies on compensated hypertrophy (CHT), a stage prior to
DHT, show that the cellular aspects of E-C coupling still
appear to be normal or even slightly enhanced [15]. It is thus
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intriguing to know whether and when the intermolecular
process of CICR is modified and how the modification
eventually leads to cellular failure in E-C coupling.

During past years, we have developed a local Ca2þ imaging
protocol in conjunction with a loose-seal patch clamp
technique to investigate LCC-RyR intermolecular coupling
[9,16]. In the present study, we utilized this technique and an
aortic stenosis model to test the hypothesis that the
intermolecular coupling between an LCC and RyRs under-
goes a progressive modification during the development of
hypertrophy. Our results showed that hypertrophy resulted in
an increase in LCC-RyR coupling latency and a decrease in
intermolecular signaling efficiency, which started at the early,
compensated stage when cellular E-C coupling appeared
normal. Our findings provided intermolecular insights into
the remodeling of Ca2þ signaling during the pathogenesis
leading to heart failure.

Results

To elucidate the microscopic modification of E-C coupling
during hypertrophy, we created pressure-overload hyper-
trophy models induced by aortic stenosis [17]. About 7–11 wk
after aorta banding, hemodynamic and echocardiographic
measurements identified the status of CHT by increased left
ventricle (LV) wall thickness and normal contractile indices,
and the status of DHT by the onset of mild depression of
contractile indices in addition to thickened LV walls (Figure
1A, 1B, and 1C; Table S1). To characterize the cellular aspects
of E-C coupling, we combined a whole-cell patch clamp
technique and confocal line-scan imaging to record simulta-
neously LCC Ca2þ current (ICa) and intracellular Ca2þ

transients when the cell membrane was depolarized to 0
mV (Figure 1D). Cell capacitance (Figure S1A) and contrac-
tion (Figure S1B) were also measured. In DHT, despite the
unchanged ICa density and kinetics (Figure 1E and Figure S1C
and S1D), both the amplitude of Ca2þ transients and cell

contraction decreased significantly (Figure 1F and Figure
S1B). As a result, the gain of E-C coupling was significantly
lower than that of the control (Figure 1G). By contrast,
neither the amplitude of Ca2þ transients nor the gain of E-C
coupling was altered in CHT, indicating that the hyper-
trophy-associated E-C coupling deficiency occurs only in the
late, decompensated stage, but not in the early, compensated
stage.

LCC-RyR Coupling during Hypertrophy
To determine whether and how the intermolecular

coupling between LCCs and RyRs is modified in different
stages of hypertrophy, we utilized loose-patch confocal
imaging [9] to visualize simultaneously the Ca2þ sparklet
from an LCC and the triggered Ca2þ sparks from RyRs. The
visibility of LCC sparklets was enhanced by adding to the
pipette solution 20 mM Ca2þ and 10 lM FPL64176, an LCC
agonist that decreases the channel opening frequency, but
prompts long openings [9,18,19]. Upon depolarization of the
on-cell membrane patch, confocal line-scan imaging detected
two distinct populations of local Ca2þ signals (Figure 2A): the
steep, high-amplitude events, sensitive to ryanodine, were
Ca2þ sparks from RyRs; the flat, low-amplitude events,
resistant to ryanodine, but sensitive to nifedipine, were
Ca2þ sparklets from individual LCCs [9]. Examination of Ca2þ

sparks identified no significant differences in spark ampli-
tude (Figure 2B) and time to peak (Figure 2C), indicating that
the spark generation process per se was basically unaltered
during hypertrophy.
We then examined the probability of LCC-RyR coupling.

The three recordings in Figure 2A, selected from the control,
CHT, and DHT groups, show that individual LCC Ca2þ

sparklets activated Ca2þ sparks in a hit-or-miss fashion. To
quantify the probability for this stochastic process, we
derived a ‘‘hit index’’ from the percentage of Ca2þ sparks
that were apparently triggered by the first Ca2þ sparklets. The
hit index revealed a significant decay from 67 6 2% in the
control to 46 6 3% in CHT and 36 6 2% in DHT (Figure
2D). As a backup of this result, we also parameterized a ‘‘miss
index’’ by counting the percentage of depolarization pulses
that occurred without triggering any Ca2þ sparks. The ‘‘bare’’
traces increased from 39 6 3% in the control to 59 6 2% in
CHT and 6762% in DHT (Figure 2E). Hit index and miss
index, based on independent statistics from the loose-patch
imaging data, showed congruously that the intermolecular
coupling efficiency between LCCs and RyRs decreased
significantly not only in DHT, but also in CHT.
To further quantify the intermolecular aspects of E-C

coupling during hypertrophy, we went on to measure the
kinetics of LCC-RyR coupling. The LCC-RyR coupling latency
was gauged as the delay from the onset of an LCC sparklet to
the takeoff of a triggered RyR spark (Figure 3A). In each
experimental group, the coupling latency had a monotoni-
cally decaying distribution (Figure 3B). Exponential fitting
showed that the time constant for LCC-RyR coupling
increased progressively from 4.5 6 0.3 ms to 5.7 6 0.4 ms
in CHT and to 6.7 6 0.3 ms in DHT (Figure 3C).
With the prolongation of LCC-RyR coupling latency, an

LCC Ca2þ sparklet with a limited lifetime would have a
decreased chance to activate RyR Ca2þ release. Therefore, the
slowed coupling kinetics agrees well with the decreased
chance of hit or increased chance of miss of LCC-RyR

Author Summary

High blood pressure induces hypertrophy, a thickening of the
cardiac muscle that eventually leads to heart failure, a leading cause
of morbidity and mortality. The contractile power of the heart
depends in part on signaling between calcium channels on the cell
membrane (L-type Ca2þ channels) and calcium release channels on a
specialized calcium-regulating organelle called the sarcoplasmic
reticulum. This signaling process is defective in heart failure. We
have found that the signaling efficiency between a single L-type
channel and its controlled Ca2þ release channels decreases during
the transition from hypertrophy to heart failure. Moreover, we find
unexpectedly that the signaling failure between channels occurs
even before any obvious defect in the cardiac cell’s ability to
contract is seen. In normal cells, the timing between calcium influx
and release is rapid; but in hypertrophy before heart failure
manifests, there is a delay in this signaling process. In seeking the
underlying mechanisms of this intermolecular failure, we find that a
protein known as junctophilin, which anchors the sarcoplasmic
reticulum to the cell membrane system, is expressed at a lower level.
These results reveal early molecular events associated with the
progression of hypertrophy, and may provide new insights for
developing methods of early diagnosis and treatment to prevent
heart failure.
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coupling. Taken together, our data provide unequivocal
evidence that LCC-RyR coupling undergoes a progressive
failure during hypertrophy. Notably, this modification occurs
not only in DHT, but also in CHT, indicating that the
intermolecular failure starts as early as the compensated
stage, when the cellular E-C coupling appears intact.

Cellular Tolerance against Intermolecular Failure
How then, if at all, is LCC-RyR intermolecular failure

logically linked to the global performance of E-C coupling?
To seek an answer, we examined the cell-wide patterning of
Ca2þ release activities of local Ca2þ release sites. We
performed whole-cell voltage-clamp experiments and dia-
lyzed into the cell 10 mM EGTA, a slow Ca2þ buffer that
suppresses the spatiotemporal integral of Ca2þ without
interfering with CICR [19,20]. When the cell membrane was
depolarized to 0 mV, cell-wide Ca2þ release was visualized as a
line of discrete ‘‘Ca2þ spikes’’ [19,20] (Figure 4A), each
occurring at a T-tubule–SR junction (identified by the bright
Z-line structure in the black-and-white strips next to the
images in Figure 4A). Notably, the Ca2þ spikes tended to be
desynchronized in the groups with hypertrophy. To quantify
this phenomenon, we measured the time delay from
depolarization to the peak of each Ca2þ spike (Dspike,
illustrated in trace g of Figure 4B). We found that the time
distributions of Dspike became dispersed, with the peaks

shifting rightward in CHT and DHT in a progressive manner
(Figure 4C). Accordingly, the average Dspike increased
significantly in CHT and DHT (Figure 4D). These results,
consistent with the loose-patch data, provided independent
evidence that a microscopic defect of E-C coupling indeed
occurs as early as CHT.
The unique advantage of Ca2þ spike imaging is that it links

the local behavior of Ca2þ release to the global performance
of E-C coupling. Despite the desynchronization of Ca2þ

spikes, we found that the cell-wide time integral of Ca2þ

spikes in CHT could still reach a level similar to the control
(Figure 5A). In accordance, Ca2þ spikes could still be activated
at nearly 100% of T-tubules (Figure 5B). This phenomenon
suggested that within a certain limit, for which we adopted
the cybernetic term ‘‘stability margin,’’ the amount of cell-
wide Ca2þ release is stabilized against a moderate variation of
LCC-RyR intermolecular coupling efficiency. However, when
the failure of LCC-RyR coupling steps beyond the stability
margin, global performance of E-C coupling falls due to
insufficient activation of Ca2þ release units (CRUs) (Figure
5B) and a degraded time integral of Ca2þ release (Figure 5A).
As a proof of principle, we simulated the dependence of

the fractional activation of CRUs (R) on the sensitivity (S) of
RyRs to LCC Ca2þ influx (L). Based on the stochasticity of
LCC-RyR coupling [9], the R per unit time (dR/dt) relates
positively to L, S, and RyR availability. Due to the refractori-

Figure 1. Functional Characterization of the Aortic Stenosis Model

(A) Representative echocardiograms used to measure the ventricle wall thickness during cardiac cycles.
(B) and (C) Posterior wall thickness (PWd) (B) and fractional shortening (FS) (C) measured by echocardiography were compared among the control (n¼
13), CHT (n¼ 9), and DHT (n¼ 8) groups. A single asterisk (*) indicates p , 0.05, and double asterisks (**) indicate p , 0.01 compared with the control.
(D) Whole-cell patch clamp combined with line-scan confocal imaging was used to record simultaneously LCC Ca2þ currents (ICa, bottom) and Ca2þ

transients in ventricular myocytes from the control, CHT, and DHT groups. Only a sample from CHT is shown to avoid redundancy. The fluo-4
fluorescence (F) was normalized to background fluorescence before depolarization (F0). Ca2þ transient parameters were determined based on the
spatial average of F/F0 (middle panel).
(E) and (F) The amplitude of ICa normalized to cell capacitance (E) and the peak amplitude of the Ca2þ transient (F) were compared between groups. AU,
arbitrary units; pA/pF, pico ampere per pico faraday.
(G) The gain of E-C coupling was calculated as the peak F/F0 per unit ICa density.
doi:10.1371/journal.pbio.0050021.g001
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ness of Ca2þ release [19,21], the RyR availability is propor-
tional to (1 � R). Therefore, by the first order of approx-
imation,

dR
dt

}LSð1� RÞ: ð1Þ

The triggered Ca2þ release then produces a Ca2þ transient
C(t), which can be described by

dC
dt
¼ dR

dt
� k � C ð2Þ

where k represents the apparent rate constant for Ca2þ

removal from the cytosol. Assuming that both activation and
inactivation of LCCs follow exponential kinetics (Figure 6A),
Equation (1) predicts that, with the decrease of S, dR/dt
becomes reduced and dispersed (Figure 6B), reproducing the
data of Dspike in Figure 4C and 4D. Notably, despite the
progressive decrease in dR/dt, both R and C were initially
insensitive to S (red and orange lines in Figure 6C and 6D)
until the stability margin reached its edge (Figure 6E and 6F),
agreeing well with the data in Figure 5. Therefore, both
numerical simulation and experimental data support the idea
that a stability margin must be broached for global E-C
uncoupling to occur.
To test the above principle directly, we further designed an

experiment (Figure S2A) utilizing the principle that the LCC-
RyR coupling efficiency depends on the square of unitary
Ca2þ current [22]. When LCC unitary current was linearly
modulated by membrane voltage [9], the decrease of LCC-
RyR coupling efficiency resulted in a sigmoid relationship
between membrane voltage and Ca2þ transient amplitude
(Figure S2B), with the stability margin (light-colored bands in
Figure S2B) agreeing well with the simulated result (gray
bands in Figure 6F). Furthermore, the dynamic range of the
stability margin appeared as a function of the dwell time (T)
of ICa, which could also be reproduced by the simulation in
which slowed ICa inactivation (dashed line in Figure 6A)

Figure 2. Triggering a Ca2þ Spark by Activating a Single LCC

(A) Representative loose-patch confocal images (left) and their time
profiles (right) show that a 70-mV depolarization from resting potential
evoked RyR Ca2þ sparks (high-amplitude, rapid-takeoff events) and LCC
Ca2þ sparklets (flat, slow events) in a stochastic manner. Images were
selected from the control (top, showing two sparks that were triggered),
CHT (middle, showing the first sparklet, with a 21-ms time to peak, that
failed to trigger a spark), and DHT (bottom, showing two sparklets
without triggering sparks) groups.
(B) and (C) The amplitude (B) and the time to peak (C) of Ca2þ sparks did
not differ among groups. Each datum was an average of more than 120
events from six or more animals. The bars represent the following
groups: open bar, control; gray bar, CHT; and solid bar, DHT.
(D) and (E) The ‘‘hit index’’ (D) represents the percentage of Ca2þ sparks
that were apparently triggered by the first Ca2þ sparklets, whereas the
‘‘miss index’’ (E) denotes the percentage of depolarization pulses that
did not trigger any Ca2þ sparks. The percentages were first calculated on
a single-cell basis, and then averaged among more than 50 cells from six
or more animals. The bars represent the following groups: open bar,
control; gray bar, CHT; and solid bar, DHT.
doi:10.1371/journal.pbio.0050021.g002

Figure 3. Kinetics of LCC-RyR Coupling

(A) Illustration of a typical Ca2þ spark image (top) and its time profile
(bottom) showing the coupling latency from the onset of an LCC Ca2þ

sparklet to the takeoff of a triggered RyR Ca2þ spark.
(B) Distribution (bars) and exponential fits (lines) of coupling latency in
the control (top), CHT (middle), and DHT (bottom) groups.
(C) Time constants of coupling latency (sL) determined by the fits in (B).
The values of error bars were given by Sigmaplot software (http://www.
systat.com/products/sigmaplot/) during fitting. The bars represent the
following groups: open bar, control; gray bar, CHT; and solid bar, DHT. A
single asterisk (*) indicates p , 0.05, and double asterisks (**) indicate p
, 0.01 compared with the control.
doi:10.1371/journal.pbio.0050021.g003
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resulted in an extended stability margin (dashed lines in
Figure 6E and 6F).

Seeking Potential Mechanisms underlying the
Intermolecular Failure

In the present study, our results suggested that the
intermolecular failure started as early as the CHT stage,
when cellular E-C coupling still appeared intact. It was
therefore intriguing to explore the mechanism underlying
the intermolecular dysfunction. Many studies have shown
that SERCA activity is down-regulated, and Na/Ca exchange
up-regulated, in failing heart cells, both preventing the SR
from filling [8,11]. In order to test whether SR Ca2þ load plays
a role in the intermolecular coupling defect, we measured the
caffeine-induced Ca2þ transients using a lower-affinity Ca2þ

indicator, fluo-5F, to avoid indicator saturation [23]. How-
ever, as previously reported for other hypertrophy models
[13,24], we could not identify a difference in SR Ca2þ load in
resting cells of the control, CHT, and DHT groups (Figure
S3).

It has been postulated that a structural rearrangement
between SR and cell/T-tubule membrane may underlie the

defective E-C coupling in failing heart cells [13]. Many
laboratories found that the T-tubule structure indeed under-
goes structural degradation during heart failure [25,26],
leaving RyRs orphaned [27]. However, when we used the
same method [27] to examine LCC-RyR co-localization
(Figure S4A), we could not detect a change in our hyper-
trophy models (Figure S4B), indicating that the membrane
restructuring observed in the late, failing stage could not be
detected in the early, hypertrophy stage. To explore whether
any molecular event related to structural uncoupling accom-
panies the onset of intermolecular failure, we examined in
the CHT group the expression of junctophilin-2 (JP-2), a
protein anchoring SR to cell/T-tubule membrane and being
down-regulated in mouse models of dilated cardiomyopathy
[28]. Quantitative analysis using real-time reverse transcrip-
tase PCR (RT-PCR) showed that JP-2 mRNA expression,
normalized by GAPDH, was significantly decreased in CHT
(Figure 7). Therefore, despite the absence of an apparent
structural modification, a subtle physical alteration associ-
ated with decreased JP-2 expression is expected to contribute
to the earliest change in LCC-RyR coupling efficiency.

Figure 4. Visualization of ‘‘Ca2þ Spikes’’ at Individual T-tubule-SR Junctions

(A) Representative images in the control (left), CHT (middle), and DHT (right) groups. The cells were depolarized from�70 to 0 mV when 0.25 mM fluo-4
and 10 mM EGTA were included in the pipette electrode solution. The black-and-white strip next to each image is a positioning reference of Z-lines and
T-tubules derived from the background fluo-4 fluorescence prior to depolarization. The lowercase letters, a–i, indicate the positions of Ca2þ spikes
whose time courses are shown in (B).
(B) Typical time courses of Ca2þ spikes at positions noted in (A).
(C) Distributions and their Gaussian fits of the time to peak of Ca2þ spikes (Dspike) in the control (open bars and red line), CHT (gray bars and orange line),
and DHT (solid bars and green line) groups. The measurement of Dspike is illustrated in trace g in (B). The inset contrasts the fitted distributions among
groups.
(D) Comparison of the average of Dspike among groups. Each datum represents the average of approximately 400 spikes in seven or more cells from
three or more animals. The bars represent the following groups: open bar, control; gray bar, CHT; and solid bar, DHT. A single asterisk (*) indicates p ,
0.05 compared with the control.
doi:10.1371/journal.pbio.0050021.g004
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Discussion

The present study aimed to establish the intermolecular
basis for the modified E-C coupling during hypertrophy that
eventually leads to heart failure. Using rat models of CHT and
DHT, we characterized the cardiac E-C coupling at the
cellular, sub-cellular, and intermolecular levels. For DHT, our
data provided the molecular interpretation that the slowed
response of RyR to unitary LCC triggers results in an
increased chance of failure in LCC-RyR coupling, which then
leads to a degradation in intracellular Ca2þ transients. For
CHT, we found unexpectedly that intermolecular failure
proceeds in the background without altering cellular func-
tion of E-C coupling. The latter is of prominent clinical
significance, as it demonstrated a hint of pathogenesis at a
very early stage of heart failure.

Direct Determinants of E-C Coupling
The development of hypertrophy and heart failure is a

progressive remodeling characterized by increased wall
thickness, impaired diastolic function, excessive fibrosis,
increased myocardial stiffness, and altered expression of
genes encoding contractile, regulatory, and structural pro-
teins [1–4]. The present study has been focused on the
mechanisms that modify Ca2þ transient generation, which
depends directly on the following factors:
LCC activity: Depending on different models, LCC activity

is found to be either increased, decreased, or unchanged
during the transition from hypertrophy to heart failure
[13,14]. Our data in Figure 1E and 1G support the idea that
LCC regulation does not play a major role in the modification
of E-C coupling during hypertrophy.
Ca2þ release from RyRs: Depolarization-induced Ca2þ

transients can be explained by the spatiotemporal summation
of Ca2þ sparks [29,30]. Spontaneous Ca2þ sparks with
increased amplitude were found in hypertrophied sponta-
neously hypertensive rats [24], but not in salt-sensitive rats
[13]. In the present model of hypertrophy, Ca2þ sparks were
triggered by LCC Ca2þ influx. We identified no difference in
Ca2þ spark parameters, but found a desynchronization of
Ca2þ spike patterning. Desynchronized Ca2þ release has been
found previously in heart failure [31,32], and attributed in
part to an absence of early repolarization in the action
potential [32]. Here we show that desynchronization of Ca2þ

release has already begun in CHT, and is induced by
decreased efficiency of LCC-RyR coupling.
Efficiency of LCC-RyR coupling: The degraded E-C

coupling gain with unchanged ICa and Ca2þ sparks lead to
the idea that the efficiency of the LCC current to activate RyR
Ca2þ release may be decreased [13]. Here, using a loose-patch
spark imaging technique, we provided direct evidence that
the coupling kinetics between a single LCC and RyRs is

Figure 6. Simulation of Relationship between E-C Coupling Performance and LCC-RyR Intermolecular Coupling Efficiency

(A) Time course of ICa used in the numerical simulation. Curves were calculated as the product of exponential activation (time constant s¼ 20 ms) and
inactivation (time constant si ¼ 20 and 50 ms for the solid and dashed lines, respectively).
(B–D) Simulated time profile of the CRU activation per unit time (dR/dt) (B), cumulative CRU activation (R) (C), and the Ca2þ transient (D) when the RyR
sensitivity coefficient S was set at 1 (red), 0.5 (orange), 0.2 (green), 0.1 (blue), or 0.05 (black).
(E) Relationship between the maximal accumulative CRU activation (R‘) and S. Note the extension of the stability margin (from dark gray to light gray)
when si was prolonged from 20 ms (solid line) to 50 ms (dashed line).
(F) The S dependence of peak amplitude of the Ca2þ transient (Cmax) when si¼ 20 ms (solid line) or 50 ms (dashed line). The letters on the top denote
the stages that mimic prominent E-C coupling characteristics of the control (N), CHT (C), DHT (D), and heart failure (F) groups.
doi:10.1371/journal.pbio.0050021.g006

Figure 5. Global Performance of Ca2þ Spikes

(A) Comparison of the time integral of Ca2þ spikes in the control (open
circle), CHT (gray circle), and DHT (solid circle) groups. Each trace was an
average of seven or more cells from three or more animals.
(B) Rate of Ca2þ spike occurrence at individual T-tubules during
depolarization to 0 mV. The bars represent the following groups: open
bar, control; gray bar, CHT; and solid bar, DHT. The double asterisks (**)
indicate p , 0.01 compared with the control.
doi:10.1371/journal.pbio.0050021.g005
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slowed during hypertrophy, resulting in a status of inter-
molecular failure. Moreover, we demonstrated that the
deficiency occurs as early as CHT when the cellular perform-
ance of E-C coupling appears normal.

Based on the above discussion, we believe that decreased
LCC-RyR coupling efficiency is a major problem of E-C
coupling in hypertrophy, and also may represent the earliest
functional hint that heart failure is developing.

Factors underlying LCC-RyR Coupling Efficiency
To understand the modification of LCC-RyR coupling

efficiency, the following aspects need to be considered:
SR lumenal regulation: SR Ca2þ load not only determines

the amount of releasable Ca2þ, but also modulates the RyR
sensitivity to Ca2þ [8]. In many heart failure models, decreased
SR Ca2þ load [33,34] due to reduced expression of SERCA
protein [11,33] or impaired SERCA regulation by phospho-
lamban [35,36] are responsible, at least in part, for the E-C
uncoupling. Improving SR Ca2þ uptake function by expres-
sion of SERCA or the pseudophosphorylated mutant of
phospholamban can indeed improve the cardiac perform-
ance in heart failure models [37,38]. Even though, in many
failing models [13,24,39], including the hypertrophy models
in the present study (Figure S3), resting cardiomyocytes with
a normal SR Ca2þ load still exhibit degraded efficiency for
LCC Ca2þ influx to activate Ca2þ transients, suggesting that an
SR load-independent mechanism also underlies the defective
E-C coupling.

Molecular Modulation of RyRs: In failing hearts, it has been
found that RyRs are hyperphosphorylated, and the resulting
dissociation of FKBP12.6 is a major cause of the defective E-C
coupling [10,40]. Recently, contrary evidence has also been
presented [41]. Therefore, whether the defective LCC-RyR
coupling involves RyR modification is still under debate.

Structural coupling with LCCs: It has been postulated [42],
and recently simulated [43], that the local Ca2þ concentration
generated by LCCs and ‘‘seen’’ by RyRs varies by orders of
magnitude with the distance between junctional SR and
surface/T-tubule membrane. Hence, even a subtle change in

junctional structure may severely alter LCC-RyR signaling
efficiency. In heart failure models, structural degradation is
found in the T-tubule system [25,26], leaving many RyRs
orphaned [27]. Associated with the structural change, JP-2, a
protein that anchors junctional SR to cell membrane, is
down-regulated in cardiomyopathy models showing de-
creased Ca2þ transients but normal ICa [28]. In the present
study, we examined an earlier stage of hypertrophy exhibiting
normal Ca2þ transients and contractility. Although a struc-
tural change was not yet detectable, we did see that JP-2
expression was curtailed by half.
Taken together, LCC-RyR coupling efficiency is a multi-

factorial issue. Presently, the structural/ultrastructural mod-
ification associated with decreased JP-2 expression, which
would physically uncouple LCCs and RyRs, is the most
plausible mechanism underlying the functional coupling
failure between LCCs and RyRs. Therefore, the upstream
pathways that regulate JP-2 may become putative candidates
for therapeutic targeting against heart failure.

Relationship between Global Performance and
Intermolecular Failure
An interesting finding in the present study is that

intermolecular failure of LCC-RyR signaling occurs as early
as CHT when global E-C coupling appears intact. This finding
is backed up by several independent lines of evidence,
including (1) decreased chance of hit, (2) increased chance
of miss, (3) the prolonged latency of LCC-RyR coupling, and
(4) the prolonged delay and progressive temporal dispersion
of cell-wide Ca2þ spikes. An intriguing question is why and to
what extent cellular E-C coupling is capable of tolerating
intermolecular failure.
In heart cells, the intermolecular coupling between LCCs

and RyRs is intrinsically stochastic, rather than deterministic
[9]. The beauty of such a mode of control is that a RyR CRU
that once fails to respond to an LCC opening still has a
similar chance to be activated by later LCC openings [9]. In
the present study, we demonstrated that slowed kinetics and
increased chance of miss in LCC-RyR coupling in CHT did
not alter the time integral of Ca2þ spikes (Figure 5A),
suggesting that even when the CRUs are less responsive, they
are sufficiently activated before ICa inactivation at the
expense of Ca2þ release desynchronization. This speculation
is fully supported by our numerical simulation. With the
decrease of S, although the dR/dt (CRU activation per unit
time) becomes lower in peak, it lasts longer in time (Figure
6B). Within the stability margin, these two trends compensate
for each other, keeping the cumulative CRU activation (R)
relatively unchanged. However, with further decrease of LCC-
RyR coupling efficiency, an increasing fraction of CRUs tends
not to be activated before ICa inactivation (Figure 5B; green,
blue, and black lines in Figure 6C); global performance of
Ca2þ release declines.
In testing the principle that a stability margin must be

broached for cellular uncoupling to occur, we found that
decreasing LCC-RyR coupling efficiency by a factor other
than hypertrophy obeyed the same principle. Therefore, the
stability margin principle has general meaning in linking the
intermolecular aspect and the global aspect of E-C coupling.
In addition, both experimental and numerical data support
the idea that prolonged ICa exposure can extend the stability
margin (Figure 6E and Figure S2B). With an extended

Figure 7. Expression of Junctophilin-2 (JP-2) in Ventricular Myocytes of

Sham-Operated and CHT Rats

RNA of JP-2 was quantified by real-time quantitative RT-PCR; the
expression of JP-2 relative to GAPDH was found to be significantly lower
in the control (0.089 6 0.010) compared to CHT (0.046 6 0.007) group (n
¼ 4 rats). Double asterisks (**) indicate p , 0.01 compared with control.
doi:10.1371/journal.pbio.0050021.g007
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stability margin, the global performances become less
influenced by intermolecular failure. Therefore, finding
strategies that extend the stability margin, e.g., by targeting
LCC inactivation, may have potential implications in devel-
oping therapeutic treatments against heart failure.

Materials and Methods

Aortic stenosis model. Ascending aortic stenosis surgery was
performed in male Sprague-Dawley rats (body weight, 50–55 g,
obtained from the Medical Experimental Animal Center of Peking
University) as described previously [17]. Briefly, rats were anesthe-
tized with a ketamine-xylazine mixture (5:3, 1.32 mg/kg intra-
peritoneally). The thorax was opened and a silver clip (0.9-mm
inside diameter) was placed on the ascending aorta. Sham-operated
animals underwent an identical procedure but without the clip. To
characterize the model, echocardiographic measurements were made
using a Vivid 7 Dimension cardiovascular ultrasound system (GE
Healthcare, Fairfield, Connecticut, United States) as described
previously [43]. A 2.0-F high-fidelity nanometer-tipped catheter
(SPR-838; Millar Instruments, Houston, Texas, United States) was
introduced through the right carotid artery and retrogradely across
the aortic valve in the left ventricle to measure hemodynamic
parameters [43]. The parameters measured are listed in Table S1.

Whole-cell patch clamp. Single ventricular myocytes were isolated
using an enzymatic method described previously [44]. The cells were
bathed in an extracellular solution containing (in mM): 137 NaCl, 4.0
KCl, 1.0 CaCl2, 1.2 MgCl2, 1.2 NaH2PO4, 10 glucose, 0.02 tetrodotoxin,
and 10 HEPES, (pH 7.35) adjusted with NaOH. An EPC7 amplifier
(List Medical Electronic, Darmstadt, Germany) was used for the
whole-cell patch clamp technique. For Ca2þ transient measurement,
the patch pipette filling solution contained (in mM): 127 CsCl, 10
NaCl, 1 MgCl2, 5 MgATP, 15 tetraethylammonium chloride, 10
HEPES, and 0.2 fluo-4 pentapotassium (Molecular Probes, Eugene,
Oregon, United States), (pH 7.2) adjusted with CsOH. When Ca2þ

spikes occurring at T-tubules were measured, 10 mM EGTA and 4 mM
CaCl2 were included in the pipette solution with the CsCl decreased
to 115 mM. ICa was activated by 200-ms depolarization pulses at 10-s
intervals.

Loose-seal patch clamp. The loose-seal patch clamp technique, as
described previously [9], was performed using the same setup as in the
whole-cell patch clamp. A glass pipette with a resistance (Rp) of 3–5 MX
(;1 lm at the tip) was gently pressed onto the cell surface to form a low-
resistance seal (Rs ¼ 20–30 M). The patch membrane voltage (VP) was
determined based on resting potential (RP) and command voltage (Vcom)
by VP¼RP�VcomRs/(RsþRp). The pipettes were filled with extracellular
solution except that 20 mM Ca2þ and 10 lM FPL64176 were included to
facilitate the visualization of Ca2þ sparklets from LCCs.

Confocal imaging. For whole-cell experiments, the Ca2þ indicator
fluo-4 was already in the pipette solution. To load fluo-4 in loose-
patch experiments, cells were incubated in 2.5 lM fluo-4 AM
(Molecular Probes) in extracellular solution for about 5 min in the
dark at 37 8C. Ca2þ transients, Ca2þ spikes from individual T-tubules,
and Ca2þ sparks were measured using a Zeiss LSM-510 inverted
confocal microscope (Carl Zeiss, Oberkochen, Germany). All image
data were taken in the line-scanning mode along the long axis of the
myocyte excited at 488 nm. The Ca2þ level was reported as F/F0,
where F0 is the resting or diastolic fluo-4 fluorescence.

RNA isolation and quantitative real-time RT-PCR. Total RNA from
isolated ventricular myocytes was extracted using Trizol reagent, and
first-strand cDNA was generated using the ImProm-II Transcription
System (Promega, Madison, Wisconsin, United States). Quantitative
real-time RT-PCR was performed using the primers of junctophilin
type-2 (59-AGGCGGGTGCCAAGAAGAAG-39; 59-CGATGTTCAG-
CAGGATCACCA-39) and GAPDH (59-ATCAAGAAGGTGGTGAAG-
CA-39; 59-AAGGTGGAAGAATGGGAGTTG�39). Amplifications were
performed in 35 cycles using an Opticon continuous fluorescence
detection system (Bio-Rad, Hercules, California, United States) with
SYBR Green fluorescence (Molecular Probes). Each cycle consisted of
30 s at 94 8C, 30 s at 56 8C, and 30 s at 72 8C. All samples were
quantified using the comparative Ct method for relative quantitation
of gene expression, normalized to GAPDH [45].

Statistical analysis. Results are expressed as mean plus or minus the
standard error of the mean (SEM). Statistical analysis was performed
using the Student t-test for unpaired samples; a value of p , 0.05 was
considered significant. When fitted data were compared, their
difference was divided by the standard error and compared with
the standard normal distribution. During the experiments, we
considered the time difference between CHT (7–9 wk after surgery)
and DHT (9–11 wk). Sham-operated controls were set for each group.
As the data from these two control groups did not differ significantly,
they were combined together as the ‘‘control’’ group in this
manuscript.

Supporting Information

Figure S1. Comparison of Cell Capacitance, Contraction Amplitude,
and Kinetics of ICa among Control, CHT, and DHT

Comparison of cell capacitance (A), contraction amplitude (B), and
kinetics of ICa (C–E) among control, CHT, and DHT groups (n � 16
cells from four or more rats for each group). The kinetics of ICa is
characterized by the fast (C) and slow (D) time constants. A single
asterisk (*) indicates p , 0.05.

Found at doi:10.1371/journal.pbio.0050021.sg001 (19 KB PDF).

Figure S2. Experimental Test of the Numerical Model in Figure 6

(A) Representative records of the experiment. The cell membrane was
first depolarized beyond reversal potential (toþ80 mV), which could
not activate Ca2þ transient, and then repolarized to various potentials
(�20 to þ50 mV), which activated ICa with different amplitudes. The
resulted Ca2þ transient was recorded by confocal microscopy.
(B) The sigmoid relationship between Ca2þ transient amplitude and
membrane potential. Note the leftward shift of the curves when ICa
duration shortens.

Found at doi:10.1371/journal.pbio.0050021.sg002 (64 KB PDF).

Figure S3. SR Ca2þ Load as Assessed by the Amplitude of Ca2þ

Transient Induced by Quick Local Perfusion of 20 mM Caffeine

The low-affinity Ca2þ indicator, fluo-5F was used to avoid indicator
saturation. No significant difference (p . 0.05) could be identified
among the control, CHT, and DHT groups (n � 15 cells from three or
more rats for each group).

Found at doi:10.1371/journal.pbio.0050021.sg003 (17 KB PDF).

Figure S4. LCC Distribution Relative to RyRs

(A) Representative immunostaining images of LCC (red) and RyR
(green) distribution in cardiomyocytes.
(B) Percentage of LCC fluorescence co-localized with that of RyRs (n
� 10 cells from three rats in each group).

Found at doi:10.1371/journal.pbio.0050021.sg004 (31 KB PDF).

Table S1. In Vivo Hemodynamic and Echocardiographic Measure-
ments

Found at doi:10.1371/journal.pbio.0050021.st001 (73 KB PDF).
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