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Abstract: Background: Severe spinal deformity is a risk factor for proximal junctional kyphosis (PJK)
in surgery for adult spinal deformity (ASD). However, standing X-ray imaging in patients with
dynamic spinal imbalance can underestimate the risk of PJK because of compensation mechanisms.
This study aimed to investigate whether preoperative dynamic spinal alignment can be a predictive
factor for PJK. Methods: We retrospectively included 27 ASD patients undergoing three-dimensional
(3D) gait analysis before surgery. Dynamic spinal parameters were obtained using a Nexus motion
capture system (Vicon, Oxford, UK). The patients were instructed to walk as long as possible around
an oval walkway. The averaged dynamic parameters in the final lap were compared between patients
with PJK (+) and with PJK (−). Results: PJK occurred in seven patients (26%). The dynamic angle
between the thoracic spine and pelvis was larger in patients with PJK (+) than in those with PJK (−)
(32.3 ± 8.1 vs. 18.7 ± 13.5 ◦, p = 0.020). Multiple logistic regression analysis identified this angle as an
independent risk factor for PJK. Conclusions: Preoperative thoracic anterior inclination exacerbated
by gait can be one of preoperative independent risk factors for PJK in patients undergoing corrective
surgery for ASD.

Keywords: PJK; 3D gait analysis; adult spinal deformity; degenerative lumbar kyphoscoliosis; spinal
sagittal alignment; dynamic spinal alignment

1. Introduction

Corrective surgery for adult spinal deformity (ASD) is a principal means to improve
the quality of life by restoring whole spinal alignment [1]. Proximal junctional kyphosis
(PJK) is a representative complication of corrective surgery for ASD. The incidence of PJK
was previously reported as 20–40% [2–7]. It occasionally requires extended instrumenta-
tion surgery for instrument failure, sagittal malalignment, or neurological compromise,
representing a substantial burden for patients. As risk factors for PJK, patient- and sur-
gically related factors such as older patients, low bone mineral density (BMD), severe
spinal malalignment, and longer fused range of spinal correction surgery were previously
reported [7]. A meta-analysis investigated other risk factors, and over 20 factors were
suggested, but they are difficult to apply to clinical practice [8] because severe deformity
itself is a characteristic of ASD. Thus, the prevention of PJK remains to be established
despite numerous efforts to overcome this complication [9–12].

Although worsening spinal alignment during gait was reported in patients with
ASD [13], it can barely be detected using conventional standing X-ray images. Three-
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dimensional (3D) gait analysis can provide quantitative assessment of spinopelvic align-
ment change and the failure of compensatory mechanisms during gait [13–16]. Among
patients with the spinal malalignment that gait exacerbates, static standing X-ray image
assessment can result in underestimating severe spinal deformity. Even if these patients
are at a high risk of PJK, they cannot be assessed adequately by conventional assessment
before surgery. Thus, we hypothesized that PJK would be affected by preoperative dynamic
spinopelvic alignment change during gait. In this study, we sought to investigate whether
preoperative dynamic spinal alignment aggravated by gait, as determined by 3D gait
analysis, can be a risk factor for PJK.

2. Materials and Methods
2.1. Study Design and Participant Data

We conducted an observational case–control study within a cohort of patients who
underwent spine surgery. We retrospectively included patients with ASD who underwent
corrective surgery over three spinal levels and gait analysis at our university hospital
between December 2015 and March 2020. The radiographic inclusion criteria were as
follows: able to stand without any support during X-ray imaging; pelvic incidence minus
lumbar lordosis (PI—LL) > 10◦; sagittal vertical axis (SVA) > 4 cm; and pelvic tilt (PT) > 20◦,
as spinal parameters related to sagittal malalignment according to the SRS-Schwab ASD
classification [17]. The exclusion criteria were as follows: (1) proximal junctional failure
after another spinal surgery; (2) unable to stand alone during X-ray imaging because of
pain or weakness in lower extremities; and (3) <1-year follow-up after surgery.

The demographic data included sex, height, body weight, bone mineral density
(BMD) by dual-energy X-ray absorptiometry (DEXA), and fused spinal level. ASD is often
complicated by vertebral fractures, and the lumbar DEXA is likely to be higher than the
actual bone density, which is reported to deviate significantly from the hip DEXA [18]. In
addition, lumbar DEXA does not correlate well with the vertebral body failure load [19].
Based on these reports, we used the BMD of the femur because discrepancies due to
osteosclerosis after vertebral body fracture were expected. The radiographical assessments
are listed in Section 2.2.

The present study was conducted within an appropriate ethical framework, and in
accordance with the Declaration of Helsinki and its contemporary amendments. The study
design was approved by the ethics committee of our institute. Written informed consent
was obtained from all patients included in this study.

2.2. Radiographic Assessment

We assessed the whole spine parameters digitally before surgery as a static evaluation.
Spinal parameters included sagittal vertical axis (SVA); thoracic kyphosis (TK, T5-12);
lumbar lordosis (LL, L1-S1); pelvic tilt (PT); pelvic incidence (PI); T1 pelvic angle (TPA);
coronal Cobb angle of the thoracolumbar and lumbar scoliosis (Cobb); and coronal balance
(C7-CSVL, the distance between a C7 plumb line and the center sacral vertical line). PI–LL
was calculated from the values obtained. We measured all parameters in the same manner
both preoperatively and postoperatively. All patients were asked to stand normally and
look straight ahead in the radiographic exam [20]. PJK was defined as a proximal junctional
angle (PJA) > 10◦ soon after operation and >10◦ progression of PJA [3]. The PJA and
postoperative spinal parameters were assessed at 1 year after surgery. Using this definition
of PJK, the patients were classified into PJK (+) and PJK (−) groups. There were no patients
who required additional surgery before 1 year postoperatively.

2.3. Surgical Procedure

All surgeries in this analysis were performed or supervised by the senior authors, who
are experienced board-certified spinal surgeons. For the anterior segment from L2 to L5,
extreme lateral interbody fusion (XLIF®, Nuvasive, SanDiego, CA, USA) with a mini-open
technique was conducted to achieve correction. Interbody fusion was also performed
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at L5–S1 with conventional posterior lumbar interbody fusion. An anterior vertebral
body corpectomy with an expandable cage was performed in patients with deformity
caused by vertebral collapse. Subsequently, posterior decompression and correction with
an open approach and pedicle screw system were performed. Total facetectomy was
performed when needed to achieve sufficient correction. Pedicle subtraction osteotomy
was not performed in the present series. We did not add hooks, sublaminar taping, cement
augmentation, or other preventive surgical techniques to avoid PJK. The chief surgeon
decided the upper instrumented vertebra (UIV) and the lower instrumented vertebra
(LIV) depending on each case through conference, and the decision was approved as our
consensus.

2.4. Gait Analysis and Dynamic Spinal Parameter

The 3D gait analysis was conducted using a Nexus motion capture system (Vicon,
Oxford, UK) comprising 16 cameras and 38 reflective markers variously attached on the
head, spinal spinous processes, pelvis, and upper and lower limbs of the patients (Figure 1).
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Figure 1. Reflective markers were placed on the spinal spinous and pelvic processes.

The trials consisted of the patients walking for as long as they could around an oval
walkway in a laboratory room. The patients could stop whenever they felt too fatigued
to walk any more. The walkway comprised two parallel 10 m straight paths and two
semicircular paths of approximately 1 m in radius. Table 1 lists the spinal markers and
dynamic spinal parameters obtained from the gait analysis.

Table 1. Dynamic spinal alignment parameters.

Parameter Definition Marker Unit

T-SVA thoracic sagittal distance between the reflective markers C7 T12 mm
T-CVA thoracic coronal distance between the reflective markers C7 T12 mm
L-SVA lumbar sagittal distance between the reflective markers T12 S1 mm
L-CVA lumbar coronal distance between the reflective markers T12 S1 mm
S-SVA whole spinal sagittal distance between the reflective markers C7 S1 mm
S-CVA whole spinal coronal distance between the reflective markers C7 S1 mm

T-SA thoracic sagittal angle between the vertical axis and the line
connecting the spinal markers C7 T12 ◦



J. Clin. Med. 2022, 11, 5871 4 of 12

Table 1. Cont.

Parameter Definition Marker Unit

T-CA thoracic coronal angle between the vertical axis and the line
connecting the spinal markers C7 T12 ◦

L-SA lumbar sagittal angle between the vertical axis and the line connecting
the spinal markers T12 S1 ◦

L-CA lumbar coronal angle between the vertical axis and the line
connecting the spinal markers T12 S1 ◦

S-SA whole spinal sagittal angle between the vertical axis and the line
connecting the spinal markers C7 S1 ◦

S-CA whole spinal coronal angle between the vertical axis and the line
connecting the spinal markers C7 S1 ◦

P-SA sagittal angle between the horizontal axis and the line connecting the
reflective markers on the ASIS and PSIS ASIS PSIS ◦

P-CA coronal angle between the horizontal axis and the line connecting the
reflective markers on the ASIS and PSIS ASIS PSIS ◦

T-P SA thoracic sagittal angle between the line connecting the spinal markers
and the line connecting the reflective markers on the ASIS and PSIS C7 T12 ◦

T-P CA thoracic coronal angle between the line connecting the spinal markers
and the line connecting the reflective markers on the ASIS and PSIS C7 T12 ◦

L-P SA lumbar sagittal angle between the line connecting the spinal markers
and the line connecting the reflective markers on the ASIS and PSIS T12 S1 ◦

L-P CA lumbar coronal angle between the line connecting the spinal markers
and the line connecting the reflective markers on the ASIS and PSIS T12 S1 ◦

S-P SA
whole spinal sagittal angle between the line connecting the spinal
markers and the line connecting the reflective markers on the ASIS

and PSIS
C7 S1 ◦

S-P CA
whole spinal coronal angle between the line connecting the spinal
markers and the line connecting the reflective markers on the ASIS

and PSIS
C7 S1 ◦

SVA, sagittal vertical axis; CVA, coronal vertical axis; SA, sagittal angle; CA, coronal angle; P SA, pelvic sagittal
angle; P CA, pelvic coronal angle; ASIS, anterior superior iliac spine; PSIS, posterior superior iliac spine.

Figure 2 summarizes each dynamic spinal parameter. These spinal parameters were
recorded continuously during all trials. The mean values of the parameters for each lap
were calculated as the parameters for the lap. We sampled the parameters of the final lap,
which is considered to exhibit the most exacerbated alignment.

2.5. Statistical Analysis

All continuous values are described as mean ± standard deviation (SD). We compared
all parameters between the group with PJK (+) and the group with PJK (−) using an
unpaired Student t-test. A Shapiro–Wilk test was used for each dynamic parameter to
evaluate the normal distribution. The post hoc analysis for the Student t-test was performed
using G-power software (version 3.1.9.6, Dusseldorf, Germany). Preoperative variables
associated with PJK (p < 0.10) on univariate analysis were included in a multivariate logistic
regression model with forward stepwise algorithms. Variables that did not fit the model
significantly were rejected. Odds ratios (ORs) and 95% confidence intervals (CIs) were
calculated. A Hosmer–Lemeshow test was used as a statistical test for the goodness of fit of
the logistic regression model. All statistical analyses except for the post hoc power analyses
were conducted using JMP statistical software for Windows (version 16; SAS, Cary, NC,
USA). p < 0.05 was considered significant for tests of statistical difference.
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Figure 2. (a) Sagittal parameters: the dotted white line indicates a perpendicular line to the floor.
The dotted brown line indicates the perpendicular line to the surface created from the two ASIS
and two PSIS points (pelvic surface). SVA was defined by the sagittal distance between C7–T12
(T–SVA), T12–S1 (L–SVA), and C7–S1(S–SVA). SA was defined by the sagittal angle of C7–T12 line
(T-SA), T12–S1 line (L-SA), and C7–S1 line (S-SA) from the perpendicular line. PSA was defined by
the sagittal angle between the floor and the pelvic surface. T-PSA, L-PSA, and S-PSA were defined
by the sagittal angle of C7–T12 line (T-P SA), T12–S1 line (L-P SA), and C7–S1 line (S-P SA) from
the perpendicular line to the pelvic surface; (b) coronal parameters: the dotted white line indicates
a perpendicular line to the floor. The dotted brown line indicates the perpendicular line to the
surface created from the two ASIS and two PSIS points (pelvic surface). CVA was defined by the
coronal distance between C7–T12 (T-CVA), T12–S1 (L-CVA), and C7–S1 (S-CVA). CA was defined
by the coronal angle of C7–T12 line (T-CA), T12–S1 line (L-CA), and C7–S1 line (S-CA) from the
perpendicular line. PCA was defined by the coronal angle between the floor and the pelvic surface.
T-P CA, L-P CA, and S-P CA were defined by the sagittal angle of C7–T12 line (T-P SA), T12–S1 line
(L-P SA), and C7–S1 line (S-P SA) from the perpendicular line to the pelvic surface. (T), thoracic; (L),
lumbar; (S), whole spinal; SVA, sagittal vertical axis; SA, sagittal angle; P SA, pelvic sagittal angle;
ASIS, anterior superior iliac spine; PSIS, posterior superior iliac spine.

3. Results
3.1. Patient Inclusion and Demographic Data

First, we included 36 patients with ASD who underwent gait analysis and corrective
surgery. Nine patients met the exclusion criteria; therefore, 27 were eventually included in
this analysis (Figure 3).

The cohort included seven male and 20 female patients. PJK occurred in seven (26%;
one male and six females) of them. There were no significant differences in age, height,
body weight, or BMD. In addition, neither sagittal nor radiographic parameters, including
C7SVA, TK, LL, and PI–LL, were significantly different preoperatively (Table 2).
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Figure 3. Patient inclusion flow chart. PJK (+) is the patient group with a proximal junctional angle
(PJA) >10◦ soon after surgery and >10◦ progression of the PJA. PJK (−) is the patient group with a
proximal junctional angle (PJA) <10◦ soon after surgery or <10◦ progression of the PJA.

Table 2. Patient demographics.

Parameter PJK (+) PJK (−) p

n 7 20
Sex (male, female) 1 6 4 16

Age (years) 67.5 ±6.24 68.6 ±10.2 0.969
Height (cm) 146.7 ±7.8 151.1 ±35.3 0.340

Body weight (kg) 52.9 ±12.3 49.6 ±14.1 0.668
BMD (g/cm2) 0.63 ±0.1 0.60 ±0.2 0.669

YAM (%) 77.3 ±8.6 73.6 ±25.9 0.635

Preop

C7SVA (mm) 115.9 ±51.9 112.7 ±58.1 0.900
TK ◦ 20.5 ±11.8 16.3 ±15.6 0.524
LL ◦ 6.3 ±16.8 11.7 ±20.3 0.703
PT ◦ 36.7 ±9.4 31.6 ±14.8 0.436
PI ◦ 52.3 ±12.8 49.6 ±15.4 0.501

TPA ◦ 39.7 ±11.4 35.5 ±16.7 0.625
PI–LL ◦ 46.0 ±19.5 37.8 ±23.2 0.463

C7CSVL (mm) 3.6 ±31.3 4.6 ±28.9 0.742
Coronal Cobb

angle◦ 37.4 ±21.7 24.1 ±15.5 0.102

Mean ± standard deviation; n, number of patients; BMD, bone mineral density; YAM, young adult mean; C7SVA,
C7 plumb line to sagittal vertical axis distance; TK, thoracic kyphosis; LL, lumbar lordosis; PT, pelvic tilt; PI,
pelvic incidence; TPA, T1 pelvic angle; PI–LL, PI minus LL, C7CSVL, C7 plumb line to central sacral vertical line
distance; PreOp, preoperative parameter.

Vertebral body corpectomy for osteoporotic vertebral fracture was performed in two
patients with PJK (+) and two with PJK (−). In the postoperative assessment, in the standing
X-ray images, C7SVA, TK, and LL were significantly greater, and PI−LL was significantly
smaller in PJK (+) (TK, 49.3 ± 12.2 vs. 26.3 ± 15.3, p = 0.002; LL, 54.0 ± 10.8 vs. 34.5 ± 17.7,
p = 0.012; PI–LL, −9.0 ± 12.3 vs. 9.4 ± 20.1, p = 0.033) (Table 3).

3.2. Three-Dimensional Gait Analysis (Dynamic Spinal Parameters)

In the preoperative 3D gait analysis, the thoracic–pelvic spinal angle (T-PSA) in
patients with PJK (+) was significantly larger than that in patients with PJK (−) (32.2 ± 8.1
vs. 18.7 ± 13.5◦, p = 0.020). No significant differences existed in any parameter except for
T-PSA (Table 4).

Other sagittal parameters (T-SVA, L-SVA, S-SVA, T-SA, L-SA, S-SA, L-PSA, and S-PSA)
were not significantly different. There was no difference in the dynamic coronal parameters
(Table 5). Potential variables (T-PSA and L-PSA levels) were included in the multiple
logistic regression model. This model found that T-PSA was an independent preoperative
factor significantly associated with PJK (OR, 1.23; 95% CI, 1.031–1.477; p = 0.0005). The
Hosmer–Lemeshow test result showed that the model was a good fit (p = 0.858).



J. Clin. Med. 2022, 11, 5871 7 of 12

Table 3. Postoperative spinal parameters.

Parameter PJK (+) PJK (−) p

Fused levels 10.4 ±2.0 7.7 ±3.7 0.069
C7CSVL (mm) 15.3 ±22.9 6.5 ±15.2 0.258

Coronal Cobb angle ◦ 10.8 ±15.5 10.4 ±13.3 0.638
C7SVA (mm) −8.3 ±35.8 40.2 ±48.2 0.023 *

TK ◦ 49.3 ±12.2 26.4 ±15.3 0.002 *
LL ◦ 54.0 ±10.8 34.9 ±18.3 0.015 *
PT ◦ 19.8 ±10.8 19.9 ±12.9 0.978
PI ◦ 45.1 ±6.6 43.7 ±11.2 0.769

TPA ◦ 12.5 ±10.8 17.6 ±12.6 0.357
PI–LL ◦ −9.0 ±12.2 9.4 ±20.1 0.033 *

* p < 0.05; CSVL, central sacral vertical line distance; C7S VA, C7 plumb line to sagittal vertical axis distance; TK,
thoracic kyphosis; LL, lumbar lordosis; PT, pelvic tilt; PI, pelvic incidence; TPA, T1 pelvic angle; PI–LL, PI minus
LL.

Table 4. Dynamic sagittal parameters between each group.

Parameter PJK (+) PJK (−) p

T-SVA (mm) 158.4 ±36.8 118.2 ±46.6 0.050
L-SVA (mm) 15.0 ±21.3 27.4 ±31.8 0.351
S-SVA (mm) 194.8 ±56.2 165.1 ±74.5 0.347

T-SA ◦ 33.5 ±9.2 25.1 ±12.1 0.107
L-SA ◦ 4.9 ±8.1 10.0 ±11.8 0.300
S-SA ◦ 25.0 ±7.2 20.4 ±9.9 0.278
P-SA ◦ 92.4 ±4.4 90.2 ±22.3 0.802

T-P SA ◦ 32.3 ±8.1 18.7 ±13.5 0.020 *
L-P SA ◦ -1.9 ±14.1 5.1 ±11.2 0.193
S-P SA ◦ 22.5 ±7.2 14.5 ±12.1 0.116

* p < 0.05. T, thoracic; L, lumbar; S, whole spinal; SVA, sagittal vertical axis; SA, sagittal angle; P-SA, pelvic sagittal
angle; -P SA, sagittal angle of each spinal segment to the pelvic surface.

Table 5. Dynamic coronal parameters between each group.

Parameter PJK (+) PJK (−) p

T-CVA (mm) 10.8 ±31.7 8.2 ±19.9 0.802
L-CVA (mm) 1.4 ±13.8 −3.0 ±19.5 0.589
S-CVA (mm) 11.2 ±31.4 7.7 ±34.6 0.819

T-CA ◦ 3.4 ±8.4 2.2 ±5.1 0.655
L-CA ◦ 0.6 ±5.5 0.4 ±9.5 0.960
S-CA ◦ 1.7 ±4.6 1.4 ±5 0.909
P-CA ◦ 88.5 ±7.5 86.1 ±20.3 0.764

T-P CA ◦ 5.1 ±12.2 −0.2 ±11.1 0.305
L-P CA ◦ −4.2 ±11.8 −0.4 ±10.7 0.435
S-P CA ◦ 3.1 ±9.2 −0.7 ±8.2 0.326

T, thoracic; L, lumbar; S, whole spinal; CVA, coronal vertical axis; CA, coronal angle; P-CA, pelvic coronal angle;
-P-CA, coronal angle of each spinal segment to the pelvic surface.

3.3. Post Hoc Power Analysis of Student’s T-Test

We performed a post hoc power analysis for unpaired two-group comparisons with
significant differences. The effect size was calculated from the mean and standard deviation
of the T-PSA of each group and was determined to be 1.48. The effect size and sample size
of this analysis indicated that the power (1–β error probability) was 0.90, indicating an
adequate sample size.

3.4. Representative Case

A 64-year-old woman with adult spinal deformity and 3D gait analysis before surgery
underwent corrective surgery for her main complaint of low back pain. The sagittal
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parameters on preoperative standing X-ray imaging were as follows: C7SVA, 54.2 mm;
TK, 33.1◦; LL, 41.7◦; PT, 20.7◦; PI, 50.2◦; TPA, 19.8◦ (Figure 4a). PJK was detected on
postoperative radiographic imaging at 6 months. At the postoperative year 1 follow-up,
PJA was 31.2◦, and the progression of PJA was 11.2◦ (Figure 4b,c).
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Figure 4. (a) Representative case of PJK preoperative standing X-ray images indicated the following
spinal parameters: C7SVA, 86 mm; TK, 20◦; LL, 20◦; PT, 30◦; PI, 53◦; TPA, 32◦; and PI–LL, 23◦.
(b) postoperative images show that the PJA was 20.2. (c) PJA developed 6 months postoperatively.
The PJA was 31.2◦ in the first year postoperatively, and the change was 11.2◦. This patient complained
of implant prominence and pain in the proximal junctional area, but refused reoperation.

Figure 5 shows the posture during the gait analysis. Before walking, the patient seemed
relatively balanced in a standing upright position before the gait analysis (Figure 5a). The
thoracic part began to lean forward in the first lap (Figure 5b). In the final lap, soon before
quitting the trial, the tilt of the thoracic spine leaned further forward (Figure 5c). The
superimposed image of posture during gait showed a change in thoracic spine tilt between
the first (T-P SA 17.9◦) and the final lap (T-P SA 27.0◦) (Figure 5d). This patient complained
of implant prominence and pain in the proximal junctional area, but refused reoperation.
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Before starting to walk, the patient seemed relatively balanced in an upright standing position before
the gait analysis (a). When starting the walk, the thoracic region began to lean forward in the first
lap (b). In the final lap, soon before quitting the trial, the tilt of the thoracic spine leaned further
forward (c). A superimposed image of the posture during gait showed a change in the thoracic spine
tilt between the first (T-P SA 17.91◦) and the final lap (T-P SA 26.94◦) (d).

4. Discussion

The present study investigated the association of preoperative dynamic spinal malalign-
ment exacerbated by gait with postoperative PJK incidence. The preoperative T-PSA was
larger in patients with PJK (+) than it was in those with PJK (−) with sufficient sample
size. The multiple logistic regression analysis revealed that preoperative T-PSA was an
independent factor significantly associated with PJK. The preoperative demographic data
of both groups indicated no significant difference in age, osteoporosis, or sagittal alignment
in the standing X-ray images.

SVA is one of the parameters indicating the severity of whole-spine deformity and is
exacerbated while walking [20], but it is directly influenced by compensation from pelvic
retroversion and knee flexion. By contrast, T-PSA, which is defined as the angle between
the thoracic spine and the pelvis, could subtract the effect of pelvic retroversion and can
be interpreted as an independent parameter from compensation by the pelvis and lower
extremities. In this study, T-SA, P-SA, and S-SVA, for which pelvis compensation can have
an impact, were not different between the two groups, whereas the difference of T-PSA
was evident between the PJK (+) and PJK (−) groups. Walking disrupts the compensation
because of muscle fatigue, even in the paravertebral muscles [20]. The difference between
the two groups may be due to the fact that back muscle failure is more evident in the PJK
group than in the no PJK group due to walking fatigue.

A previous 3D gait analysis for PJK showed that excessive pelvic anteversion during
short walking periods is an independent risk factor for PJK [21]. It concluded that walking
disrupts pelvic compensation, resulting in the more severe whole-spine malalignment
than static X-ray assessment. Meanwhile, this study revealed that the patients had an
anterior tilt of the thoracic spine despite effective compensation in the lumbar spine and
pelvis during gait, suggesting that the sufficient muscular endurance required to properly
compensate the thoracic spine, lumbar spine, and pelvis may differ. Previous reports have
investigated the relationship between PJK and lower muscularity in representative levels of
the paravertebral muscle [21,22], and low muscular endurance in the paravertebral muscle
around the thoracic spine can explain this anterior-tilting thoracic spine. The muscularity
in each spinal level may vary among patients with ASD, and thus, the lower muscular
endurance in the thoracic spine level compared to in the lumbar spine and the lower
extremities may cause the compensated, but tilting forward thoracic spine, leading to a
large T-PSA, indicating a risk of PJK.

In the postoperative X-ray image assessment, TK and LL were significantly larger and
PI-LL was significantly lower in patients with PJK (+). PI–LL < 0 has been reported as a risk
factor for PJK [23]. Excessive postoperative LL for PI results in a PI–LL mismatch as well as
inadequate correction. Patients with an excessively flexible thoracic spine preoperatively are
more likely to have reciprocal change in unfused thoracic spine, leading to the development
of PJK. Age-adjusted appropriate alignment is suggested as a goal for ideal alignment to
prevent PJK in the elderly [24], while another study emphasized the importance of strict
correction to achieve better ODI outcomes, especially in elderly Japanese patients [25].
These studies indicated that we need to consider the optimal alignment on a patient-by-
patient basis. Patients with a tendency for the thoracic spine to tilt forward during walking
may have an over-reciprocal change after corrective surgery for ASD, but to our knowledge,
no previous study has investigated the relationship between spinal alignment during gait
and spinal change after surgery. Therefore, adequate alignment in patients with a large
T-PSA after walking should be investigated in future study.
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Some limitations should be addressed. First, we did not investigate the patient-
reported outcome of quality of life (QoL). PJK was reported as having no effect on a
patient’s QoL, but subsequent studies have gradually clarified its relationship with QoL.
We need to investigate further the relationship between clinical outcome and this gait
analysis. Second is the possibility of selection bias. This study included patients with
corrective surgery and preoperative gait analysis. It is ideal that all patients underwent gait
analysis before corrective surgery, but the indication of gait analysis was determined by the
patient and examination room schedule before surgery. Because of this, this patient group
had a limited sample size. Power analysis indicated that the sample size was sufficient, but
the possibility of a type II error cannot be ruled out. In future study, we need to collect
a larger sample size. Finally, the accuracy of the reflective marker on the skin should be
considered. To reduce the measurement error, we instructed patients to wear prepared
tight clothes and put the markers on them. Soft tissue thickness is difficult to overcome,
especially on the lumbar spine [26]. The 3D gait analysis system in the present study
included the influence of soft tissue on the accuracy of the marker placement, but the
influence of the lumbar lordosis was minimized in the analyzed population because most
patients had reduced lumbar lordosis due to ASD.

5. Conclusions

The present study indicated that thoracic kyphosis exacerbated by gait, as determined
by 3D gait analysis, can be a preoperative independent risk factor for PJK in patients with
ASD undergoing corrective surgery. By contrast, lumbar spinal change was not significantly
different between patients with PJK (+) or PJK (−). To assess risk, dynamic thoracic anterior
tilt should be assessed carefully, rather than lumbar spine alignment alone.
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