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The regulation of gene expression in a cell relies to a major extent on transcription factors, proteins which recognize and bind
the DNA at specific binding sites (response elements) within promoter regions associated with each gene. We present an
information theoretic approach to modeling transcriptional regulatory networks, in terms of a simple ‘‘sequence-matching’’
rule and the statistics of the occurrence of binding sequences of given specificity in random promoter regions. The crucial
biological input is the distribution of the amount of information coded in these cognate response elements and the length
distribution of the promoter regions. We provide an analysis of the transcriptional regulatory network of yeast Saccharomyces
cerevisiae, which we extract from the available databases, with respect to the degree distributions, clustering coefficient,
degree correlations, rich-club coefficient and the k-core structure. We find that these topological features are in remarkable
agreement with those predicted by our model, on the basis of the amount of information coded in the interaction between the
transcription factors and response elements.
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INTRODUCTION
With the development of high throughput experimental tech-

niques [1] a large amount of data on gene interactions [2] is now

available [3–6], revealing a complex network. The organizational

principles underlying these genetic regulatory networks are of

great experimental [3,7–9] and theoretical [10–15] interest.

In this paper we would like to present an information theoretic

approach to modeling genetic interaction networks. We believe

that this approach provides an understanding of how interactions

based on shared information might arise spontaneously between

subsequences of any sufficiently long linear code, even when this

code is completely random, and how a complex network emerges

as a result.

We construct a null model of a transcriptional regulatory

network (TRN) by adapting the ‘‘sequence-matching’’ rule which

we have introduced earlier [16,17] as a condition for the

establishment of edges between nodes of a network. A sequence

S is said to match another sequence S9 if it is contained in S9 as an

uninterrupted subsequence. In the case of the TRN, the nodes

consist of genes, with their associated promoter regions (PRs) and

the transcription factors (TFs) which they code, if any. To model

this network, we label TFs by the binding sequences they

recognize, and represent the PRs by another set of (typically

longer) sequences. The conditions that need to be satisfied for a TF

to recognize and bind a specific DNA sequence within a promoter

region are mimicked by the sequence-matching rule between the

sequences associated with the respective TFs and PRs.

The biological input to the model consists of the effective length

distribution of the binding sequences recognized by the transcrip-

tion factors of yeast [3,9] and the form of the length distribution of

the intergenic regions [18], in the absence of more specific data

regarding the lengths of the promoter regions. By effective length

we mean the bit-wise information content (site specificity) of

a binding motif together with its variations and experimental

uncertainties in its determination. The empirical binding

sequences of the TFs are reported [3,9] in an extended alphabet

(e.g. ‘‘rACGCGt’’ for the transcription factor MBP1) specifying

the base preferences or the binding affinities as a set of letters with

variable case. We have converted the information contents coded

via this extended alphabet into to a binary code by assigning zero,

one and two bits representing low, medium and high information

contents (see the Results and the Methods sections).

Our model is a null model in the sense that no further

knowledge specific to the TRN of yeast is provided apart from the

distribution of the amount of information coded in the cognate

response elements; no assumptions are made regarding the actual

amino acid code of a TF, nor its possible three dimensional folding

pattern; all possible refinements involving steric constraints,

chromatin folding, trans-vs. cis-regulation, etc. have been

neglected. A TF is simply labeled by a binary string whose length

is drawn from the effective bit-length distribution of the cognate

response elements, and this string is then queried in the randomly

composed strings representing the PRs, to establish an interaction.

Since the specific content of the strings does not enter into the

assumptions of the model, the strings are composed randomly,

with uniform probabilities. Thus our null model is designed to test

the null hypothesis that the topology of the TRN is essentially
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determined by the exchange of information between the cognate/

cognate response elements, of given length distributions.

In order to test the predictions of this model against real data,

we make a detailed analysis of the topological features of the

directed network corresponding to the TRN of yeast using the

available data [3–6] (see Table 1 for the databases used). We have

also investigated (supporting Text S1) the frequency of ‘‘3-motifs,’’

namely the frequency of occurrence of different directed edge

configurations which may be found within connected sub-graphs

containing 3 nodes.

We demonstrate that our model is able to capture with

convincing precision all the global topological features of this

directed network such as the distribution of the in-, out- and total

degree, i.e., number of neighbors per node [19–22], the clustering

coefficient [19–22] measuring the probability that the neighbors of

a node are connected to each other, the degree-degree correlation

[23,24], namely the correlation between the respective number of

neighbors of neighboring nodes, the rich-club coefficient [25,26]

indicating the extent of clustering among highly connected nodes,

and the k-core structure [19], displaying the hierarchical

organization of the links. This thorough topological characteriza-

tion allows us to discriminate between our model and pared-down

versions thereof, which capture some but not all of the above

features of the yeast network. In this sense the model we present

here is a minimal null model.

The focuses of both empirical and theoretical network-theory

approaches to gene regulatory networks have been studies of the

degree distribution [7,8] and network motifs [27–30]. Barabasi

and co-workers [31] have claimed that the global properties of

gene regulatory networks of yeast (Saccharomyces cerevisiae) and

Escherichia coli, as well as protein-protein interaction and metabolic

networks, can be modeled by the preferential attachment [11,20]

rule and that these networks are scale-free, with the degree

distribution having a scaling exponent [27] c,2.5. Smaller values

for this exponent can also be found in the literature [8,32].

Bergmann et al. [32] have suggested that the degree distribution

might have a universal scale-free behavior independent of any

particular organism. The claims of scale-invariance are typically

based on linear fits to the log-log plots of the degree distribution

data over narrow intervals of about two decades or less, and with

imperfect agreement between the data and the fit. The careful

analysis of Guelzim et al. [7] has revealed that the in- and out-

degree distributions are rather different, with the former having an

exponential-like decay and being confined to a much narrower

range. Regarding the local organization of such networks, statistics

of the various n-node motifs have been reported to be significantly

different from randomized versions of the same network [27–30],

and therefore assumed to be of functional or evolutionary

significance.

It should be mentioned that the idea of using the matching of

linear codes, as embodied in our sequence-matching rule, to model

the satisfaction of a broad set of requirements for the binding of

proteins to other molecules, is not entirely new. Complementarity

of binary sequences (‘‘bit-strings’’) of fixed uniform length

representing anticores and the antigens which ‘‘recognize’’ them

have been employed in modeling immune networks in the early

1990’s [33], although the emphasis at this stage was more on the

dynamics of small networks constructed in this way, than on their

topological features. There have also been several earlier studies of

models of gene regulatory networks on rather elaborate ‘‘Artificial

Genomes’’ [34] based on various alphabets and matching rules [35–

38], some of them coupled with the duplication and divergence

model introduced by Wagner [39–41]. The results are not uniform

and depend on the detailed assumptions made in the models.

The organization of the paper is as follows. In the Analyses

section, we elaborate in some detail the idea of an information-

theoretic approach to interaction networks. We explain the

sequence-matching rule and discuss the biological input that goes

into our model. In the Results section, our model simulations are

compared with a thorough characterization of the gene regulatory

network of yeast using the most comprehensive available data (see

Table 1). Here we also present the results of comparisons with

several, more restricted models, and with randomized networks.

Our conclusions are presented under Discussion. The Methods

section is reserved for more technical details.

ANALYSES

Information theoretic approach to interaction

networks
The information-theoretic approach we would like to present in

this paper is quite generic and promises to be widely applicable to

systems which can be described in terms of networks of interacting

nodes. In this approach, an interaction, represented as an edge

connecting a pair of nodes, is established if and only if a number of

more or less stringent constraints are fulfilled. The number and

strictness of the constraints may be quantified as a certain amount

of information, or code, that has to be shared between the two

nodes. The topology of the interaction network is then determined

by the distribution function of the required amount of shared

information between the interacting nodes.

The way in which we model the shared information, correspond-

ing to a set of constraints, is via a string-matching condition we have

introduced earlier [16,17]. In this ‘‘content-based model,’’ the

condition for establishing a connection is that a code, represented by

a string associated with one node, match, letter for letter, a sub-string

of the code associated with another node. In this model, matching

each successive letter will correspond to satisfying an additional

constraint. The number of constraints can thus be mapped to the

length of a string to be matched. The chance satisfaction of the

constraints is smaller, the longer the strings, or the larger the

alphabet from which they are constructed.

In fact, it can be shown that to a first approximation the

probability that a random string of length l1 is included inside

another random string of length l2 (l1#l2) is given by [17],

p(l1,l2)~1{ 1{
1

rl1

� �l2{l1z1

, ð1Þ

Table 1. Yeast databases.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Source Genes TFs Interacting Pairs

Fraenkel Laba [3] 2884 102 6441

Luscombe et al.b [4] 3459 142 7071

Yeastractc [5] 4252 146 12530

Kınıkoğlu et al.d [6] 3763 180 9135

Model 41676177 202614 1436 562067

ahttp://fraenkel.mit.edu/Harbison/release_v24/bound_by_factor/
bhttp://sandy.topnet.gersteinlab.org/index2.html
chttp://www.yeastract.com
dprivate communication
The number of interacting genes, TFs, and interacting pairs that appear in the
yeast regulatory network as obtained from different sources [3–6], and the
average values, obtained from one hundred realizations of our model (6the
standard deviations) with m= 0.1.
doi:10.1371/journal.pone.0000501.t001..
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where r is the number of letters in the alphabet from which the

strings are chosen independently and with equal probability for

each letter (1/4 for four nucleic acids, 1/2 for a binary code etc.).

This approximation is valid for lengths l22l1 smaller than or

comparable to rl1 , which amounts to the condition that

correlations arising from multiple occurrences of the shorter string

inside the longer one can be ignored. In fact, when rl1&l2 the

above expression reduces to

p(l1,l2)~
l2{l1z1

rl1
, ð2Þ

which is the naive result obtained by treating the probabilities of

a match of the shorter string along the l22l1+1 positions on the

longer string as independent. Also note that the average number of

occurrences, <n>, of the shorter randomly drawn string inside the

longer one is given exactly [42] by the right hand side of Eq. (2). We

see that Markov9s Inequality for integral valued random variables

implies that Prob(n$1)#<n> and re-expresses the fact that for

rl1wl2 the probability of having more than one occurrence can be

neglected.

To use a ‘‘lock and key’’ analogy to illustrate the idea of

simultaneously satisfying a number of constraints, the first string

may be regarded as the ‘‘key’’ combination that opens the ‘‘lock,’’

which in this case may be opened by more than one key (at most

l22l1+1 keys). The probability of a chance hit on one of the right

combinations decreases exponentially with l1, as exp(2l1 ln r).

Note that 2l1 ln r is in fact the so called ‘‘Shannon information’’

[43] of a random ‘‘key,’’ selected from an alphabet of r letters.

We may easily compute the information [43] coded in a string

of a given length, whose loci may have different sets of

probabilities for encountering different letters. This quantity can

then be used to define an effective length for a corresponding

string of random letters. This is described in the Methods section.

This approach seems to be particularly well-suited to the

description of gene regulatory networks, which operate on

a cognate/cognate response element basis. TFs are the cognates,

which bind the cognate response elements, i.e., the binding

sequences (regulatory sequences) within the PRs of different genes.

The ‘‘key’’ to the promoter region, so to speak, is the binding motif.

Sequence matching model for the transcription

regulatory network
The nodes of our model network correspond to genes, only a small

percentage of which code for transcription factors. With each node

we associate a sequence, which represents the PR through which

the corresponding gene may be regulated. With those nodes/genes

coding TFs, we also associate a second sequence, uncorrelated

with the first, representing the binding motif recognized by the TF.

For simplicity we assume that there is only one transcription factor

that is coded by each regulatory gene. (see Fig. 1a)

In our model the binding motifs and the PRs are represented as

random binary sequences (thus, with r = 2), whose lengths obey

different probability distributions. The TF binding motifs are

typically short sequences with a narrow length distribution [3,9],

since a TF selectively binds 5–10 bases and not much more. A

single TF can bind a number of similar sequences, and we have

used the information content of the binding motifs representing

these sequences in order to obtain a distribution of effective lengths

(see Fig. 1b) for the randomly generated binary sequences

representing our TF binding motifs. This is described in the

Methods section.

For the PRs we make the assumption that the lengths are

distributed in the same way as the lengths of the intergenic regions,

obeying long tailed power-law distributions [18] whose exponent is

the only free parameter in the model, and will be determined from

a comparison of the topological features of the model and the

experimental regulatory networks, as described in the next section.

We have tested whether a simpler assumption regarding the

distribution of the PR lengths could also suffice. Taking a constant

PR length for all genes leads to similar qualitative behavior,

although it performs worse when compared with actual yeast data

(see supporting Text S2).

The amount of information coded in these randomly generated

binding motifs and promoter regions thus constitutes the essential

biological ingredient of our model and dictates the overall

topology of the resultant networks.

The mechanism for establishing connections between nodes of

the gene regulatory network is given by the string matching

condition [16,17] described above, between the binding motifs of

the TFs and all possible uninterrupted subsequences of the PRs.

Figure 1. The model. (a) The mechanism of interaction between the genes as envisaged in our model. The genes are indicated by ellipses (green if
they code transcription factors (TFs), blue otherwise), the TFs by triangles with the associated binding motif (regulatory sequence) in the box
underneath. Non-TF proteins are symbolized by the ‘‘P’’ shape, and the promoter regions (PRs) upstream of each gene are shown as red boxes.
Binding occurs if the binding motif exactly matches a subsequence in the PR, as is the case here at PR4. PRs in the model are typically much longer
than depicted here. (b) Distribution of the amount of bit-wise information coded by each regulatory sequence recognized and bound by the 102 TFs
in the yeast genome, compiled from the recently published data by Harbison et al. [9]. This distribution is adopted as the length distribution of the
random regulatory sequences (‘‘binding motifs’’) in our model.
doi:10.1371/journal.pone.0000501.g001
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The (directed) network of regulatory gene interactions is obtained

by drawing a directed link from each TF-producing node A to all

those nodes B, B9, B0,… whose PRs contain the binding motif

associated with the TF coded by node A (see Fig. 1a and

supporting Text S3).

RESULTS

The yeast transcriptional regulatory network
To make a quantitative comparison with the yeast transcriptional

regulatory network possible, we choose the total number of genes

and the proportion of those genes coding for transcription factors

(4.8%, see Table 1) in conformity with the Yeastract data set [5].

The length distribution of the binding motifs in the model

genome was derived from the yeast data provided by Harbison et

al. [9], where the motifs were reported as letter sequences

comprising the symbols for the four bases {ATGC}, or the

symbols {YMKRSW} signifying a preference for any two out of

four bases, etc., with the corresponding lower case letters

indicating a lower confidence level. In order to account for such

variations in the information content of the motifs, we assigned

two bits to each of the letters {ATGC} appearing in the motif,

signifying a high information content at that position, one bit to

each of the letters {atgcYMKRSWymkrsw} and zero bits

otherwise. The length of the bit sequence obtained in this way

roughly corresponds to the amount of shared information,

measured by the Shannon entropy [43], required for the binding

of the TF. Performing this calculation (see the Methods section) for

each TF [9], we obtain the length distribution shown in Fig. 1b.

We assume that the lengths of the PRs follow a power law

distribution similar to that of the intergenic regions [18], with

pPR(l)!l{1{m, ð3Þ

where 0#m#2. We also stipulate that l is restricted to the interval

lmin#l#lmax, where lmin coincides with the peak of the motif-length

distribution shown in Fig. 1b, while lmax2lmin+1 = 250. In this

choice we are guided by the finding [9] that most of the probability

for encountering a TF binding site is contained within a window of

250 base pairs (bps) located approximately 100 bps upstream of

a gene. Note that the 250 bps window does not double as we move

from the four-letter alphabet to a binary one, because the

matching probabilities and the total number of positions at which

the TFs may bind are required to remain invariant under this

transformation. This amounts to preserving the average number of

matches of a four-letter RS of length l1 in a four-letter PR of length

l2, which is given by the right hand side of Eq. (2) (see the Analyses

section). The denominator in Eq. (2), namely rl1 , remains invariant

under the transformation from a four- to a two-letter alphabet, as

can be seen from the Methods section. For the numerator of Eq. (2)

to also remain unaltered, l2 should be changed such that l22l1
remains approximately unchanged; in particular, for l1%l2, it

means that l2 should be left unchanged.

Once the shape of the length distribution of the binding

sequences and the functional form, as well as the support, of the

length distribution of the PRs have been fixed through the

available biological data, the only remaining adjustable parameter

in our model is the exponent m of the power law distribution of PR

lengths, pPR(l).

Clearly, the length distribution for the PRs must be tested against

null assumptions, and this we do in Text S2. We find that, once the

form of the distribution has been chosen as in Eq. (3), any value of m
within the interval [0,2] performs reasonably well, while, say, fixing

all the PR lengths to be identical gives markedly different results.

In order to optimize the value of m, we could compare all the

available topological characterizations of randomly generated model

networks obeying the constraints on the number of nodes, the length

distribution of the binding sequences, for different values of 0#m#2,

with those of the yeast TRN. It is obviously desirable, however, to

find one number to compare with experiment, rather than, say, the

whole degree distribution or the degree-degree correlation function

knm(k). In fact, once pPR(l) is chosen to be of the power-law form given

in Eq. (3), then choosing m so that kmax, the maximum number of k-

cores [19] of the model, coincides with that of the network obtained

from one of the yeast data sources, is sufficient for the rest of the

topological features of the respective networks to fall right on top of

each other, as shown in Fig. 2 and Fig. 3.

We build our ensemble of model networks starting from 6000

nodes. Out of these, almost all the nodes with nonzero degree

belong to the largest connected component (see Table 1), whose

size depends on the value of m. The analyses for the degree

distributions, the rich-club coefficient and the k-core structure

have been performed for all the nodes with nonzero degree, while

the clustering coefficient and the degree-degree correlation have

been calculated on the largest connected component.

In Fig. 2, we show the k-core visualization (obtained by means of

the LaNet-Vi tool, http://arxiv.org/abs/cs.NI/0504107) of one

realization of the model network (left) and the Yeastract [5] data

(right). Here m has been fixed to 0.1, making the mean and the

mode of kmax for the model ensemble to coincide with the value we

compute from the Yeastract [5] database, at kmax = 9 (see Text S2

for details). Both the model and the experimental network exhibit

a highly hierarchical structure with a nested sequence of k-shells

and an almost exclusively radial arrangement of the edges. The

distinct hierarchical organization of the edges is not very sensitive

to the precise value of m, while the total number of shells decreases

as m increases. (see Text S2)

In Fig. 3, we report our results for the in-, out- and total degree

distribution [19–22], the clustering coefficient [19–22], the degree-

degree correlation [23,24] and the rich-club coefficient [25,26]

(the precise definitions of which are given in the Methods section),

with the choice of m= 0.1, i.e., the topological features displayed in

Fig. 3 are obtained without any further adjustment of m. Results

for the yeast TRN, which we have extracted from the Yeastract [5]

data have been superposed on the scatter plots of one hundred

independent realizations of randomly generated model networks

with identical parameters.

The total degree distribution is obtained by ignoring the

directionality of the interactions and is generally different from the

superposition of in- and out-degree distributions. In Fig. 3a,

Yeastract [5] data for the degree distribution is shown on top of

a scatter plot obtained by superposing the results of the ensemble

of model networks. The average total degree of the yeast TRN

extracted from Yeastract [5] is kYeastract = 5.9, while that found

from our model is kModel = 6.9 with the standard deviation

sk = 0.7. In Fig. 3b, we exhibit the in-degree distribution obtained

from the Yeastract [5] data, and the corresponding scatter plot.

The out-degree distribution of the yeast and model networks has

a rather large scatter of points due to the relatively small number

of TFs. Comparing with the scatter plot obtained from one

hundred realizations, we find again that the actual yeast data falls

within the boundaries set by the model ensemble (Fig. 3c).

In Fig. 3(d,e,f), we report the three topological coefficients,

namely, the clustering coefficient, the degree-degree correlation

and the ‘‘rich-club’’ coefficient, that go beyond degree-distribu-

tions in characterizing the network. The agreement is extremely

good; in particular, the shoulder observed in the ‘‘rich-club’’

coefficient in Fig. 3f, a feature common to both gene regulation
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and protein-protein interaction networks [26], is captured

accurately in our model. The average clustering coefficient for

yeast is CYeastract = 0.08, while CModel = 0.06 with the standard

deviation sc = 0.01.

We have compared the topological properties of our model

networks with those of the TRN of yeast obtained from the different

sources listed in Table 1. The number of interacting nodes in these

data sets vary between 2884 and 4252, while the number of

interacting pairs vary between 6441 and 12530. All the data sets give

rise to statistically similar topological features as can be seen by

superposing the data points from all different sources on the scatter

plots obtained from our model (see Fig. 1 of Text S4). The

topological features computed from all the different data sets are

reproduced faithfully with a single m optimized with respect to

Yeastract only.

Comparison with randomized results and null-null

models
In this section we briefly discuss comparing the topological features

of our model with randomized versions thereof, and with pared-

down models which incorporate only a few elements of our model,

selected to mimic only certain phenomenological properties of the

target network, but not incorporating either the full biological

information in the form of realistic length distributions, or the full

sequence matching rule. These pared-down versions of our model

are designed to act as null-hypotheses with respect to the null-model

we have constructed, and therefore we will call them ‘‘null-null’’

models. The details of the computations and figures are presented in

Text S5.

To check the significance of our results, we have subjected both

the real and the model networks to a rewiring of the edges while i)

keeping the degree distributions fixed while ignoring the di-

rectionality and ii) conserving the directionality so that the in- and

out- degree distributions are kept fixed separately.

Randomly exchanging the endpoints of pairs of edges while

keeping only the total degree of each node fixed, destroys the

hierarchical structure, and the topological features computed here

are radically altered. Rewiring the model network and yeast TRN

while keeping the in- and out-degree of each node separately

invariant by conserving the directionality of the edges, leaves all of

the topological features displayed in Figs. 2 and 3 practically

unchanged.

It should be noted that, in our model the lengths (and the

contents) of the binding sequence with which we label the TF and

the PR associated with the same node are assigned independently

of each other. Thus there is no correlation between the in- and

out-degrees of a given node. Our model is, therefore, a null model

in this respect. Invariance of the topological features under

a random rewiring which conserves the in- and out- degree

distributions, suggests that the in- and out-degree distributions

together are able to determine all of the global topological features

of the network in question. The achievement of our model is that it

does not have to import these degree distributions from empirical

data; it is able to capture them by means of the string-matching

rule and the length distributions of the TF and PR sequences

appropriate to the organism under study.

To double check our randomization procedure, we have

simulated an ensemble of configuration model networks [44],

whose in- and out-degree sequences are extracted from different

realizations of our content-based model. We connect the nodes

randomly, while respecting the in- and out-degree assignments (see

Text S5 for details). The topological features of the resulting

networks are indistinguishable from the model ensemble.

To see whether we could reproduce certain features of the yeast

TRN using only the fact that there are two types of nodes in this

network, those coding for TFs, and others that do not, we

constructed an Erdös-Rényi type of null-null model, where out-

edges connect the TF-coding nodes to randomly picked nodes in the

network with a probability p given by the density of edges on the

yeast TRN. The resulting network is a superposition of two Erdös-

Rényi random graphs. The results are quantitatively different from

the yeast TRN in all respects, as shown in Text S5; however,

qualitatively, they are somewhat reminiscent of the yeast network.

A coarse-grained, or mean-field, version of our model is obtained

if, instead of the fluctuations coming from the chance coincidence of

Figure 2. The hierarchical structure of the TRN as revealed by the k-core decomposition. The k-core visualization of a single realization of our
model network (Left) obtained with the visualization tool lanet-vi (http://arxiv.org/abs/cs.NI/0504107) The length distribution exponent of the PR
sequences has been adjusted to m= 0.1 to match the number of k-cores to that obtained from Yeastract data (Right). Dots represent the nodes of the
network, while edges between nodes depict connections. Nodes belonging to different k-shells are indicated by different colors (on the right hand
side) and are arranged around concentric circles, whose average radius decreases with k. In particular, a node of a given shell is placed just inside
(outside) the corresponding circle, if it is preferentially connected to lower (higher) k-shells. The sizes of the dots indicate the degree of the respective
nodes; see legends to the left of the figures for representative sizes.
doi:10.1371/journal.pone.0000501.g002
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individual strings, one takes the ensemble averaged probability for

a matching to occur between strings of given lengths, as in Eq. (1).

This can be thought of as a hidden-variable model [45], where,

instead of just the two types of nodes considered above, one has

a superposition of a whole spectrum of Erdös-Rényi networks, with

the connection probabilities p(li,kj), between pairs of nodes i and j,

with binding motifs and PRs of length li and kj. Simulation results of

this null-model are presented in Text S5.

The fidelity of the mean-field version to the yeast TRN is

indistinguishable from that of the full content-based model. This

gives us confidence that analytical calculations of ensemble

averaged properties are quite meaningful. It should be re-

membered that i) the length distributions of the PR or binding

strings have been extracted from empirical data using our

information-theoretical approach to the binding specificities of

the binding motifs, and ii) that the connection probabilities p(l,k)

were derived from the string-matching condition.

DISCUSSION
Our results support our hypothesis that the topology of the TRN is

predominantly determined by the interactions between the TFs

and the response elements. In our model these interactions are

schematized via the sequence-matching rule for the sharing of

information between the cognates/cognate response elements.

The close structural similarity between the model and the real

yeast transcriptional regulatory network, with respect to a diverse

set of criteria shows that they are part of the same statistical

ensemble of networks [46]. This observation is further supported

by a comparison of the frequency of various triangular network

motifs (not to be confused with the ‘‘binding motifs’’ in the text), as

provided in Text S1.

It should be noted that the present approach could also be

adapted to model the topology of the gene regulatory network of E.

coli, by taking into account the fact that in the prokaryotic genome

the genes are organized into operons, each operon being regulated

by a single promoter region. Work on this problem is in progress.

The sequence-matching rule should be viewed as an in-

formation-theoretical constraint, where the interaction between

two genes requires the fulfillment of a set of conditions which we

symbolically represent as the matching of two random sequences.

The more stringent the prerequisites of the interaction, the longer

is the random binding sequence that is to be matched. The length

of the PR establishes the size of the phase space in which the motif

is to be sought. The properties of the network are then determined

by the distributions obeyed by the lengths of the binding motifs as

well as the promoter regions.

Figure 3. Topological features. Above: Degree distributions extracted from the Yeastract [5] data (red circles), superposed on the corresponding
degree distributions of one hundred realizations of the model network (black dots). From left to right, (a) The total degree distribution with an inset
showing a log-linear plot for k/kav#10, where one may observe that both the model and the data points almost fall on a straight line. (b) The in-
degree distribution plotted on a semi-logarithmic scale. (c) The out-degree distribution plotted on a log-log scale. The axes are scaled by the
appropriate average total degree in order to factor out sample-to-sample fluctuations in the network size. Below: Comparison of (d) the clustering
coefficient c(k), (e) the typical degree-degree correlations between neighboring nodes knm(k), and (f) the rich-club coefficient r(k), from left to right,
for 100 realizations of the model (black dots) and the Yeastract data (red circles).
doi:10.1371/journal.pone.0000501.g003
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Interpreted within an information-theoretical framework, our

model has sufficient generality to accommodate other interactions

based on constraint satisfaction mechanisms, such as protein

networks, where the interactions are dictated by certain steric and

chemical conditions.

The topological features of the networks investigated here, and

shown to be shared by the yeast transcriptional regulatory

network, strongly point to the possibility that these networks did

not have to be assembled from scratch, but rather emerged

spontaneously, given any sufficiently long, complex linear code,

and a mechanism for the transcription of some of its subsequences

into molecules (proteins) that in their turn have an affinity for parts

of this code and bind it. That the length distribution of these

sequences (and not their contents) is sufficient to reproduce the

topological features investigated here, indicates a certain level of

robustness to point mutations.

Our model provides a means to roughly predict the parameters

of the length distribution of the regulatory sequences in other

organisms (assuming, e.g., a Gaussian form), given their regulatory

network topology. Even more significantly, it may help identify the

biologically relevant topological features that may have been

acquired in the course of evolution, which require more specific

information than the length distributions to be pinpointed, and

hence are not captured by our model.

METHODS

Bit-wise information content
In this model we have assumed that the information content of

a sequence can be computed as the sum of the information content

of each letter in the sequence, i.e., that the letters are not

correlated, although their relative frequencies of occurrence may

depend on their position. We have moreover, assumed that

positions within the sequence have equal significance, i.e., the

maximum amount of information which can be contained in any

position within the sequence is uniform.

In a given sequence of length L, with letters chosen from an

alphabet of length r, the information content, which is the negative

of the Shannon entropy [43], is given by I~
PL

j~1 Ij with

Ij~
Xr

i~1

fij ln fij , ð4Þ

where fij, i = 1,…,r are the relative frequencies of the different

letters at each position j in the sequence. Note that Ij = 0 if we

know for sure that a certain (e.g., ith) letter and no other, will

appear (in which case the relative frequency fij = 1 and fi9j = 0, for

i9?i). Thus, Shannon information is the amount of information

which we receive from a signal over and above what we already

knew about the system. Let us define a relative Shannon

information, R = SjRj;SjIj+L ln r, which is the difference between

I and the Shannon information communicated by a signal

composed from an alphabet with equi-probable letters. This is

the definition of information content which we will use. (Note that

the so called log-odds matrix, where one takes ln(fij.pij), where pij is

the so called ‘‘background’’ probability, here taken to be uniformly

equal to 1/r, is related but not quite the same, since the natural

logarithms are not multiplied in this case by the respective

frequencies in computing the information content. The Kullback-

Leibler (information) divergence [47] is another closely related

measure, which, for a uniformly random background distribution,

is identical to the relative information defined here.)

For a four-letter alphabet, the length increment which the jth

member of the sequence will contribute, is,

dLj~
Rj

ln 4
: ð5Þ

The bit-wise information content of a sequence is the number of

binary digits 0,1, needed to code the same amount of information.

Thus the bit-wise length increment of the same character will be

dlj~
Rj

ln 2
~2 dLj : ð6Þ

However, dlj is not, in general, an integer (neither is dLj).

Therefore a coarse graining, which entails a certain amount of

arbitrariness, is called for. In the context of transcriptional gene

regulation, the binding sequences are reported in Harbison et al.

[9] in an enriched alphabet, with upper case letters indicating

a high preference, lowercase letters a weaker preference, with the

letters {ATCG} for the nucleic acids, the ‘‘ambiguity codes’’

{SWRYKM} for pairs of letters out of the four, i.e., S = C or G,

W = A or T, R = A or G, Y = C or T, K = G or T, M = A or C, the

codes {HBVD} for different triplets out of the four letters, and

finally, N indicating ‘‘no preference.’’ Plotting dlj on the real line

for all the empirically encountered binding motif elements, we find

that these values fall into distinct clusters over the interval [0,2],

grouped according to their codes within this enriched alphabet.

Thus, for example the interval (1.04,2] corresponds to {ATGC},

(0.3,1.04] to {actgswrykm}, and [0,0.3] to the letter {n}. We

accordingly make the following choice for a coarse grained, integer

valued Dlj,

Dlj~

2 for dljw1:04

1 for 0:3vdljƒ1:04

0 for dljƒ0:3

8><
>: , ð7Þ

with the bit-wise length of a sequence being finally given by SjDlj.

Note that, in computing the relative information content,

instead of assuming equal probabilities for the different letters of

the alphabet, we could have taken the approximate proportions of

0.3, 0.3, 0.2 and 0.2 of the letters {ATCG}. Then, the Shannon

information for a random sequence composed of these letters with

the aforesaid probabilities would have been 21.366 rather than

21.386 = 2ln4. This introduces a uniform shift of the relative

information content by a small increment, 0.02. The length

increment per character thus gets uniformly shifted by 0.02/

ln2 = 0.029. Since the shift is uniform, taking the same criteria for

the coarse graining procedure yields an identical spectrum of bit-

wise length increments as the one obtained with equi-probable

random letters for the nucleic acids.

Topological quantifiers of complex networks
The degree k of a node is the number of nodes connected to it.

When the graph is directed, one distinguishes in-, out-, and total

degrees of a node, with their corresponding distributions. In the

measures below we have ignored the directionality of the network.

The clustering coefficient is given [19–22] by the formula:

Ci~
Di

ki(ki{1)=2
, ð8Þ

where Di is the number of triangles that contain node i. The

quantity C(k) plotted in Fig. 3d is the average of Ci over the nodes

with degree k.
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The degree-degree correlation function knm(k) is [24,23]

knn(k)~
X

k0

k0p(k0jk), ð9Þ

where p(k9|k) is the conditional probability that a node with degree

k is connected to a node with degree k9.

The ‘‘rich-club’’ coefficient [25,26] r(k) is the total number e.K

of edges connecting nodes with degree greater than k, normalized

by the maximum possible number of such connections,

r(k)~
ewk

Nwk(Nwk{1)=2
, ð10Þ

where N.K is the total number of nodes with degree greater than k.

The hierarchical organization of a network is revealed by the k-

core decomposition, which performs a successive pruning on the

least connected vertices of a network [19]. At each step one

removes all nodes with a degree less than k along with their edges

and continues in this manner until all nodes have at least degree k.

The remaining nodes constitute the k-core. Next, k is incremented

by one, and the process is repeated until no nodes are left. The k-

shell is defined as the set of nodes that belong to the k-core, but not

the (k+1)-core. The k-core decomposition provides a highly

detailed topological characterization of the network, if, besides

the total number of shells, the distribution of the nodes over the

shells and inter- and intra-shell connectivity [48] are also taken

into account. (see Text S2)
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