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Recent research shows that majority of the druggable human proteome is yet to be 
annotated and explored. Accurate identification of these unexplored druggable proteins 
would facilitate development, screening, repurposing, and repositioning of drugs, as 
well as prediction of new drug–protein interactions. We contrast the current drug targets 
against the datasets of non-druggable and possibly druggable proteins to formulate 
markers that could be used to identify druggable proteins. We focus on the markers that 
can be extracted from protein sequences or names/identifiers to ensure that they can be 
applied across the entire human proteome. These markers quantify key features covered 
in the past works (topological features of PPIs, cellular functions, and subcellular locations) 
and several novel factors (intrinsic disorder, residue-level conservation, alternative splicing 
isoforms, domains, and sequence-derived solvent accessibility). We find that the possibly 
druggable proteins have significantly higher abundance of alternative splicing isoforms, 
relatively large number of domains, higher degree of centrality in the protein-protein 
interaction networks, and lower numbers of conserved and surface residues, when 
compared with the non-druggable proteins. We show that the current drug targets and 
possibly druggable proteins share involvement in the catalytic and signaling functions. 
However, unlike the drug targets, the possibly druggable proteins participate in the 
metabolic and biosynthesis processes, are enriched in the intrinsic disorder, interact with 
proteins and nucleic acids, and are localized across the cell. To sum up, we formulate 
several markers that can help with finding novel druggable human proteins and provide 
interesting insights into the cellular functions and subcellular locations of the current drug 
targets and potentially druggable proteins.

Keywords: drug targets, druggability, druggable human proteome, drug-protein interactions, protein-protein 
interactions, intrinsic disorder

INTRODUCTION
Knowledge of the drug-target interactions is essential for numerous applications including screening 
of drug candidates (Schneider, 2010; Núñez et al., 2012; Dalkas et al., 2013; Tseng and Tuszynski, 
2015), drug repositioning and repurposing (Chong and Sullivan, 2007; Haupt and Schroeder, 2011; 
Oprea and Mestres, 2012; Hu and Bajorath, 2013; Li et al., 2016), characterization and mitigation of 
side-effects of drugs (Lounkine et al., 2012; Wang et al., 2012b; Kuhn et al., 2013; Tarcsay and Keserű, 
2013; Hu et al., 2014), and prediction of novel protein-drug interactions (Wang et al., 2016a; Lotfi 
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Shahreza et al., 2017; Ezzat et al., 2018; Hao et al., 2019; Wang 
and Kurgan, 2019; Wang and Kurgan, 2018; Wang et al., 2019). 
Recent analysis reveals that over 95% of the currently known 
drug targets are proteins and that these proteins facilitate about 
93% of known drug-target interactions (Santos et al., 2017). 
Thus, we focus on the drug-protein interactions and we use the 
term “drug target” as a synonym for the protein drug target. 
While earlier works report about 400 drug targets (Hopkins 
and Groom, 2002; Russ and Lampel, 2005), subsequent studies 
annotate as many as over 600 drug targets in human (Santos et al., 
2017). Furthermore, the druggable human proteome, defined as 
the full complement of the human drug targets (Hopkins and 
Groom, 2002; Russ and Lampel, 2005; Rask-Andersen et al., 
2014; Cimermancic et al., 2016; Hu et al., 2016), is expected to 
be much larger. Early estimates place the number of human drug 
targets at around 3,000 (Hopkins and Groom, 2002; Russ and 
Lampel, 2005). A more recent analysis approximates this number 
at 4.5 thousand (Finan et al., 2017), which corresponds to about 
22% of the human genome. While the historically typical drug 
targets include G-protein coupled receptors, nuclear receptors, 
ion channels, and some of the enzymes (Overington et al., 2006; 
Imming et al., 2007), recent works suggest that many of the non-
enzymes (e.g., scaffolding, regulatory, and structural proteins) 
and proteins involved in specific protein-protein interactions 
(PPIs) should be targeted by drugs (Makley and Gestwicki, 2013; 
Ozdemir et al., 2019), effectively expanding the list of potential 
drug targets. These observations point to the fact that many of 
the drug targets remain to be discovered and characterized. The 
search for these proteins relies on the concept of druggability, 
which was originally defined based on the presence of structure 
that favors interactions with drug-like compounds where the 
corresponding interactions provide desired therapeutic effects 
(Hopkins and Groom, 2002; Russ and Lampel, 2005; Keller 
et al., 2006). In a purely structural context, druggability is related 
to binding of a compound to a given protein target with high 
affinity (< 1 µM) (Sheridan et al., 2010; Radusky et al., 2014). We 
focus on the former definition where both the interactions and 
the therapeutic effects are considered.

One of the key elements in the quest to find druggable proteins 
is to identify functional and structural characteristics that 
differentiate drug targets from the non-drug targets (Zheng et al., 
2006; Lauss et al., 2007; Bakheet and Doig, 2009; Zhu et al., 2009b; 
Zhu et al., 2009c; Bull and Doig, Mitsopoulos et al., 2015; 2015; 
Feng et al., 2017; Kim et al., 2017). In one of the earliest works, 
Chen et al. concentrated on the analysis of structural fold types, 
target family representation and similarity, pathway associations, 
tissue distribution, and chromosome location for the drug 
targets (Zheng et al., 2006). A similar analysis that considered 
cellular functions, pathway associations, tissue distribution, and 
subcellular and chromosome location of the drug targets was 
published soon after by Lauss and colleagues (Lauss et al., 2007). 
More recent studies have shifted the focus towards characteristic 
features of the target protein sequence and structure. Bakheet 
and Doig used a relatively small set of 148 targets to analyze 
several sequence properties (chain length, hydrophobicity, 
charge, and isoelectric point), putative secondary structure and 
transmembrane regions, inclusion of signal peptides, selected 

set of post-translational modifications (PTMs), as well as the 
previously studied subcellular location and functions (Bakheet 
and Doig, 2009). Subsequently, Bull and Doig investigated 
a similar set of characteristics using a much larger set of 1324 
drug targets (Bull and Doig, 2015). They considered a similar 
set of sequence properties, native secondary structure and signal 
peptides, selected PTMs, and a few new properties: the number 
of germline variants, expression levels, and the number of PPIs 
(Bull and Doig, 2015). The most recent study by Park, Lee, and 
colleagues expanded the above list of characteristics by inclusion 
of gene essentiality and tissue specificity (Kim et al., 2017). 
Moreover, several articles narrowly focused on characteristics 
that quantify topological features of the underlying PPI networks 
(Zhu et al., 2009b; Zhu et al., 2009c; Mitsopoulos et al., 2015; 
Feng et al., 2017). While these studies have considered a broad 
range of functional and structural features of drug targets, they 
identified the drug target-specific characteristics by comparing 
the drug targets against the other human proteins (non-drug 
targets). However, many of these non-drug targets could be 
in fact druggable, i.e., as many as 22% according to (Finan 
et  al., 2017). Using the non-drug targets to represent the non-
druggable proteins in order to define characteristic features of 
the druggable targets ultimately creates a bias toward describing 
the currently known drug targets. Consequently, this reduces our 
ability to use these characteristics to identify a complete set of 
druggable proteins.

We address the abovementioned shortcoming of the prior 
works by comparing sequence-derived characteristics of the drug 
targets, possibly druggable proteins, and non-druggable proteins 
using a large and well-curated dataset of human proteins. Our 
study is novel in four ways. First, we contrast the drug targets 
(D dataset) not only against all non-drug targets (N dataset), 
which was also done in prior studies, but also against non-
druggable non-drug targets (Nn dataset; the non-drug targets 
that exclude disease associated proteins) and against possibly 
druggable non-drug targets (Nd dataset; the non-drug targets 
that are associated with multiple diseases). The association of 
the non-drug targets with diseases is necessary for the druggable 
proteins to exert therapeutic effects. Second, we further compare 
the D, N, Nd, and Nd proteins against highly promiscuous drug 
targets that interact with many drugs (Dh dataset) and drug 
targets that interact with low number of drugs (Dl dataset). This 
full-spectrum analysis allows us to pinpoint characteristics that 
differentiate between drug targets, possibly druggable proteins 
and non-druggable proteins, as well as features that are specific to 
promiscuous vs. non-promiscuous drug targets. Third, we focus 
on the characteristics that can be quantified directly from the 
protein sequence or protein name/identifier. This facilitates their 
use as potential markers for druggability across the entire human 
proteome. This is in contrast to several related studies that are 
limited to a relatively small subset of human proteins with solved 
structures (Hambly et al., 2006; Bull and Doig, 2015; Hu et al., 
2016; Wang et al., 2016a; Wang et al., 2019). Fourth, we include 
several important sequence/protein-derived characteristic that 
were missed in the past studies including putative intrinsic 
disorder, residue-level conservation, presence and number of 
alternative splicing isoforms, inclusion of domains, and solvent 
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accessibility (surface area). Moreover, we cover some of the key 
characteristics from the prior works, such as the topological 
features of PPIs, cellular functions, and subcellular locations.

MaTeRIalS aND MeTHODS

Datasets
Datasets of Drug Targets (D Dataset), Highly 
Promiscuous Drug Targets (Dh Dataset), and Low-
Interaction Drug Targets (Dl Dataset)
We collect a comprehensive set of drug targets by combining 
interaction information extracted from several large bioactive 
compounds-protein interaction databases. We filter these 
bioactive compounds to include only approved and experimental 
drugs. Furthermore, we focus on human proteins by excluding 
protein fragments and proteins from other organisms. We 
maximize the coverage by first collecting an inclusive set of 
interactions (including all bioactive compounds and protein 
chains) and then applying the two filters to obtain a high quality 
and large set of drugs and proteins.

The data collection protocol follows the work in (Wang 
and Kurgan, 2019; Wang and Kurgan, 2018). We extract the 
source data from three large repositories: Drug2gene (Roider 
et al., 2014), TTD (Zhu et al., 2009a), and GtP (Harding et al., 
2017). Drug2gene is one of the most inclusive repositories that 
aggregates 19 source databases including TTD and GtP and 
several other major databases like ChEMBL (Gaulton et al., 
2016) and DrugBank (Wishart et al., 2017). However, Drug2gene 
includes older and substantially smaller version of the TTD and 
GtP resources. Therefore, we integrated the latest versions of 
these two databases into our dataset. These databases provide a 
list of drug-protein pairs that use different identifiers and which 
include other information that could be useful to identify these 
molecules (like drug structure). The arguably most popular 
way to identify drugs and proteins are the PubChem CIDs and 
UniProt accession numbers, respectively. We use these identifiers 
to map data between the resources. We also merged the drugs 
with different PubChem CID but identical simplified molecular-
input line-entry system (SMILES) structures. First, we remove the 
data collected from TTD and GTP that lacks PubChem CID or 
UniProt identifiers. Next, we map the proteins in Drug2gene that 
are represented by Entrez Gene ID into the corresponding UniProt 
accession numbers. After mapping and combining these datasets 
and removing duplicates, we obtain 2,490,057 interactions for 
591,684 bioactive compounds and 4,128 proteins. Next, we filter 
this list of compounds using the list of drugs obtained from the 
DrugBank and ChEMBL. We remove the compounds that do 
not have the same CID or SMILES structure when compared 
to the list of DrugBank and ChEMBL drugs. Finally, we remove 
non-human proteins using a reference human proteome from 
UniProt. At the end, the set of drug targets (D dataset) includes 
33,104 interactions between 4,405 drugs (PubChem CID) and 
1,638 protein (UniProt identifiers). We provide the complete D 
dataset in the Supplementary Material. Moreover, we generate 
an expanded set of human and human-like drug targets that 

includes proteins in the D dataset plus proteins from other 
organisms that share high sequence similarity to the human 
proteins (D+ dataset). More specifically, following recent works 
(Hu et al., 2014; Wang et al., 2016a; Wang et al., 2019), human 
proteins that share at least 90% sequence identity quantified using 
BLAST with default parameters (Altschul et al., 1997) to any of 
the drug targets were added into the D+ dataset. Consequently, 
the D+ dataset has 1,762 proteins including 124 proteins that 
were included based on the high similarity; we list these proteins 
in the Supplementary Material. The number of drug targets in 
our dataset is slightly higher than the sizes of the datasets used in 
related studies (in the inverse chronological order): 1604 in (Feng 
et al., 2017), 1578 in (Kim et al., 2017), 1324 in (Bull and Doig, 
2015), and 1,030 in (Rask-Andersen et al., 2014). Compared to 
popular databases, such as KEGG DRUG and DrugBank, our 
dataset features a more complete set of interactions (33,104 vs. 
14,222 and 23,380, respectively (Wang and Kurgan, 2019) while 
focusing on a smaller and relevant set drugs that specifically 
target human proteins [4,405 vs. 5,045 and 10,562, respectively 
(Wang and Kurgan, 2019).

Drug targets in our dataset interact with as few as 1 drug and 
as many as 443 drugs. We investigate whether sequence-derived 
and functional characteristics of highly promiscuous drug 
targets are different from the drug targets that interact with a few 
proteins. To do that we extracted two subsets of the drug targets, 
the highly promiscuous targets (Dh dataset) that correspond 
to the top quartile of the targets with the highest interaction 
counts, and the low-interaction drug targets (Dl dataset) that 
include the bottom quartile of the drug targets with the lowest 
numbers of interactions.

Dataset of Non-Drug Targets (N Dataset)
We contrast the sequence-derived and functional characteristics 
of the proteins in the D, D+, Dh, and Dl datasets against the 
proteins that are not current drug targets. We collect these 
non-drug targets (N dataset) by selecting proteins from the 
UniProt’s human proteome that are not in the D dataset. The 
selection process follows two rules. First, we match the size 
of the N dataset to the size of the D dataset to ensure robust 
statistical comparisons between different datasets. Second, 
when down-sampling the human proteins we ensure that 
the selected proteins have similar size as the proteins in 
the D dataset. More specifically, for each protein in the D 
dataset we pick a human non-drug target at random (without 
replacement) that has a matching sequence length (with 10% 
tolerance). We introduce the latter rule since the amount of 
intrinsic disorder in proteins is dependent on proteins length 
(HOWELL et al., 2012). The same selection process was used 
in several related studies (Meng et al., 2015b; Na et al., 2016; 
Meng et al., 2018) to eliminate protein size bias when studying 
intrinsic disorder. We provide the list of the 1,638 size-matched 
proteins that constitute the N dataset in the Supplementary 
Material. Moreover, Section “Non-druggable and possibly 
druggable proteins” describes how the N dataset is used to 
derive the dataset of Non-druggable non-drug targets (Nn 
dataset; the non-drug targets that exclude disease associated 
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proteins) and the dataset of possibly druggable non-drug 
targets (Nd dataset; the non-drug targets that are associated 
with multiple diseases).

Characterization of Protein Properties
We characterize a broad collection of characteristics of human 
proteins that include their disease associations, structural 
properties derived from the sequence (putative intrinsic 
disorder and surface), sequence properties (domain annotations, 
alternative splicing, and residue-level conservation), topological 
properties of the corresponding PPI network (centrality 
measures and hubs), and functional properties (GO annotations 
and predicted protein-binding regions). We extract these 
characteristics directly from the protein sequence or protein 
names/identifiers. This means that they could be used as potential 
markers for druggability that cover the entire human proteome.

Disease Associations
The protein-disease association data were collected from 
DisGeNET (Gutiérrez-Sacristán et al., 2016). DisGeNET integrates 
several curated databases and offers arguably one of the most 
complete levels of coverage for human diseases. This database 
provides association between disease MeSH IDs and Entrez Gene 
IDs and also provides a mapping between Entrez Gene IDs and 
UniProt identifiers. We mapped these annotations to our dataset 
using the UniProt identifiers.

Sequence-Derived Structural Properties
We annotate two relevant structural properties that we can 
accurately derive from the protein sequences: intrinsic disorder 
and solvent accessibility. We are unable to directly collect 
structural data since significant majority of the proteins in the D, 
D+, and N datasets do not have solved structures.

Intrinsically disordered proteins and protein regions lack a 
stable tertiary structure in isolation (Dunker et al., 2013; Habchi 
et al., 2014; Uversky, 2014a). Proteins with disordered regions 
are crucial for many key cellular functions including molecular 
recognition and assembly, cell cycle and cell death regulation, 
signal transduction, transcription, translation, and viral cycle 
(Dyson and Wright, 2005; Uversky et al., 2005; Liu et al., 2006; 
Xie et al., 2007; Peng et al., 2012; Xue et al., 2012; Peng et al., 2013; 
Uversky et al., 2013; Fan et al., 2014; Fuxreiter et al., 2014; Peng 
et al., 2014b; Xue and Uversky, 2014; Dolan et al., 2015; Meng 
et al., 2015a; Meng et al., 2015b; Varadi et al., 2015; Babu, 2016; 
Na et al., 2016; Yan et al., 2016; Wang et al., 2016b; Kjaergaard 
and Kragelund, 2017). They are also the main contributors 
to the dark proteome (Hu et al., 2018; Kulkarni and Uversky, 
2018). Intrinsic disorder is abundant in the human proteins. 
Computational studies estimate that about 19% amino acids in 
eukaryotic proteins are intrinsically disordered (Peng et al., 2015) 
and over 40% human proteins have at least one long disordered 
region with 30 or more consecutive residues (Oates et al., 2013). 
These proteins are particularly relevant to this study since they 
are associated with several human diseases (Uversky et al., 2008; 
Babu, 2016; Uversky et al., 2014; Uversky, 2014b) and since they 
attract recent interest as potent drug targets (Cheng et al., 2006; 

Uversky, 2012; Dunker and Uversky, 2010; Ambadipudi and 
Zweckstetter, 2016; Tantos et al., 2015). Intrinsic disorder can be 
predicted accurately from protein sequence using computational 
methods (Peng and Kurgan, 2012; Walsh et al., 2015; Lieutaud 
et al., 2016; Meng et al., 2017a; Meng et al., 2017b). We use one 
of the leading disorder predictors, IUPred (Dosztányi et al., 2005; 
Dosztanyi, 2018). This selection is motivated by the fact that 
IUPred is computationally efficient (i.e., it can be used to process 
large datasets of proteins, such as the D and N datasets) and since 
it provides accurate predictions (Peng and Kurgan, 2012; Walsh 
et al., 2015). We use the IUPred’s results to compute the disorder 
content (fraction of disordered residues in a given protein) and 
the length of the putative disordered regions.

Solvent accessibility provides a crucial context for the analysis 
of the residue-level conservation since it allows us to separate 
conserved residues that are localized on the surface (which 
include residues that are instrumental for the drug-protein 
interaction) from those located in the protein core (which are 
likely responsible for structural stability of the protein). We 
predict the relative accessible surface area using the ASAquick 
method (Faraggi et al., 2014). This method predicts relative 
solvent accessibility from a single sequence (without alignment), 
and thus it much faster than the other predictors that require 
calculation of multiple sequence alignment. It also provides 
accurate prediction, which is why it was recently used in related 
studies (Zhang et al., 2017; Amirkhani et al., 2018; Meng 
and Kurgan, 2018). We convert the numeric relative solvent 
accessibility of residues into a binary annotation (solvent exposed 
vs. buried) using a threshold of 0.15. This value adequately splits 
the bimodal distribution of solvent accessibility values for the 
residues in the combined D and N datasets (Figure S2 in the 
Supplementary Material). We use these results to quantify the 
fraction of the putative surface residues in a given protein.

We assess quality of these predictions by comparing values of 
the fraction of the native surface residues that are computed using 
a limited set of proteins that have structures against the fraction 
of the predicted surface residues for the same set of proteins. We 
utilize mapping generated with the SIFTS resource (Velankar 
et al., 2013) that is available in UniProt to identify structures 
of the human proteins from the D and N datasets in the PDB 
database (Berman et al., 2000). We consider structures that cover 
at least 90% of the corresponding full protein sequences collected 
from UniProt to ensure that they correspond to a similar set of 
residues that are covered by the predictions which rely on the full 
protein chains. We compute the native solvent accessibility from 
these structures in three steps. First, we remove other molecules 
(including other protein chains) from the PDB structures. 
Second, we use DSSP (Kabsch and Sander, 1983; Joosten et al., 
2010) to compute solvent accessibility values. Third, we convert 
the solvent accessibility into the relative solvent accessibility 
values using the normalization procedure that is described in the 
ASAquick article (Faraggi et al., 2014). We were able to collect the 
native solvent accessibility values for 373 drug targets (including 
343 proteins from the D dataset, 55 from the Dh dataset, and 
103 from the Dl dataset) and 73 proteins non-drug targets 
(including 39 from the Nd dataset and 12 from the Nn dataset). 
This corresponds to (373 + 73)/(1762 + 1,638) = 13% structural 
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coverage of the human proteins in our datasets. Figure S3 
compares the distributions of the fractions of the surface residues 
computed from the protein structures against the fractions that 
are based on the predicted solvent accessibility for the seven 
considered datasets. The distributions that rely on the native vs. 
putative solvent accessibility for each of the seven dataset are very 
similar. The differences are not statistically significant (p-values 
range between 0.17 for the N dataset and 0.88 for the Nd dataset). 
This results suggests that the solvent accessibility predicted with 
ASAquick provides an accurate approximation of the native 
fraction of the surface residues.

Protein Sequence Properties
We use the proteins sequences to annotate the domains, 
alternative splicing isoforms, and sequence conservation. We 
collect the domain annotations from Pfam (Calderone et al., 
2013) using UniProt identifiers, and we use these annotations 
to compute the domain boundaries (fraction of the domain-
assigned residues) and the number of domains per protein. We 
obtain the number of alternative splicing isoforms from the 
UniProt database (UniProt: the universal protein knowledgebase, 
2016). We calculate residue-level conservation scores using the 
relative entropy measure (Wang and Samudrala, 2006) from the 
PSSMs generated with PSI-BLAST (Altschul et al., 1997). We 
use a threshold to convert the numeric conservation scores to 
binary, i.e., a given residue is either conserved (if its conservation 
score > threshold) or non-conserved (otherwise). We selected 
the threshold that corresponds to the 80th percentile of the 
distribution of the conservation scores for the residues in the 
combined D and N datasets (Figure S1 in the Supplementary 
Material). The corresponding threshold value of 0.63 corresponds 
to an inflection point in the distribution tail where the conserved 
residues should be located. Using these annotations, we quantify 
the rate of the conserved residues in the protein sequence and 
among the residues located on the putative protein surface, given 
that this is where the drug-protein interaction occurs.

Topological Properties of the Protein-Protein 
Interaction Network
Motivated by work in (Zhu et al., 2009b; Zhu et al., 2009c; 
Mitsopoulos et al., 2015; Feng et al., 2017), we quantify the 
topological characteristics of drug targets and non-drug targets 
in the human PPI network. We collected the interaction network 
from the MENTHA resource (Calderone et al., 2013) and 
directly mapped it to our datasets using UniProt identifiers. 
MENTHA integrates data coming from several popular 
databases of PPIs, such as IntAct (Orchard et al., 2014), MINT 
(Licata et al., 2012), DIP (Salwinski et al., 2004), BioGRID 
(Oughtred et al., 2019), and MatrixDB (Launay et al., 2015), 
providing arguably one of the most comprehensive coverage 
levels. Several different centrality measures can be used to define 
topological characteristics of proteins in PPI networks (Wang 
et al., 2013a). We considered a comprehensive set of measures 
including betweenness centrality (Freeman, 1977), eigenvector 
centrality (Bonacich, 1987), closeness centrality (Bavelas, 1950), 
information centrality (Stephenson and Zelen, 1989), degree 
centrality (Jeong et al., 2001), subgraph centrality (Estrada 

and Rodriguez-Velazquez, 2005), network centrality (Wang 
et al., 2012a), and local average connectivity (Li et al., 2011). 
We reduced this set by removing measures that are redundant 
(highly correlated). The corresponding subset of four measures 
(eigenvector, closeness, betweenness and information centrality) 
has relatively low mutual correlations (< 0.6) while being highly 
correlated (> 0.8) with at least one of the removed measures. 
We give the corresponding correlations between these measures 
on our datasets in Table S1 in the Supplementary Material. 
The eigenvector centrality is an extension of the node degree in 
which connections to more important nodes have more impact 
on the score. The nodes that are connected to many highly 
connected nodes end up having higher score than nodes which 
are connected to the same number of less-connected nodes 
(Bonacich, 1987). The closeness centrality measures the average 
length of the shortest path from the node to other nodes. The 
nodes with higher closeness centrality on average have smaller 
distance to the other nodes (Bavelas, 1950). The betweenness 
centrality quantifies the frequency with which a given node 
appears in the shortest paths between nodes in the network. 
Thus, removal of nodes with high betweenness centrality has big 
impact on the shortest paths between nodes (Freeman, 1977). 
Finally, information centrality is based on information along 
the paths from a given node to the other nodes (Stephenson and 
Zelen, 1989).

Besides quantifying several different topological features, 
we also annotate hub proteins, defined as proteins that interact 
with many proteins (Jeong et al., 2001). While early works on 
hub proteins defined them using a fixed minimal number of 
(Jeong et al., 2001), more recent studies use a floating threshold 
defined as a certain percentage of the most connected nodes 
in a given interactome (Han et al., 2004; Batada et al., 2006; 
Dosztányi et  al., 2006). This results in different cut-offs that 
define hubs for different interactomes (different organisms) 
and emphasizes the fact that hubs are a property of the whole 
interactome system rather than a property of individual 
proteins. We used the latter definition using the cut-off that 
corresponds to the 90th percentile of the interaction counts in 
the complete human PPI network, which is consistent with 
several recent studies (Han et al., 2004; Batada et al., 2006; 
Dosztányi et al., 2006). Therefore, we annotate hub proteins as 
those that have the number of PPIs in the complete interactome 
collected from MENTHA that is higher than this threshold 
(i.e., ≥ 77 interactions).

Hub proteins have increased levels of intrinsic disorder (Meng 
et al., 2015b; Patil et al., 2010) and the disordered regions are 
often employed to carry out PPIs (Mohan et al., 2006; Vacic et al., 
2007; Yan et al., 2016). The disordered protein-binding regions 
are also linked to certain human diseases (Uversky, 2018). Thus, 
we also annotate putative disordered protein binding regions. We 
use ANCHOR (Dosztányi et al., 2009) to predict the disordered 
protein-binding residues and we aggregate this information to 
compute the content of disordered protein binding residues 
for the proteins in our datasets. The selection of this method is 
motivated by the fact that it is accurate and popular, and provides 
fast predictions (i.e., is capable of processing our large datasets) 
(Meng et al., 2017; Katuwawala et al., 2019).
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Functional Properties
We annotate cellular functions and subcellular locations of the 
drug targets and the non-drug targets using the Gene Ontology 
(GO) terms (Consortium, 2004), which we collect using the 
PANTHER system (Muruganujan et al., 2018). We annotate 
and separately analyze the molecular functions, biological 
processes, and cellular components, where the latter define the 
subcellular locations.

Statistical and Similarity analyses
We compare the sequence-derived and functional 
characteristics between the drug targets, non-drug targets, 
and possibly druggable proteins using statistical tests of 
significance of differences. We quantify the significance of 
the differences using the t-test if the underlying measure 
of the sequence-derived/functional property has normal 
distribution, and Wilcoxon rank-sum test otherwise. We used 
the Anderson-Darling test with the p-value cutoff of 0.05 to 
test normality. We use the Fisher’s exact test when comparing 
binary characteristics, including disease associations and 
presence of hubs.

We annotate the cellular functions and subcellular locations 
associated with a particular set of proteins using enrichment 
analysis offered by the PANTHER system (Muruganujan 
et al., 2018). This system generates a list of annotations that are 
statistically over-represented when compared with the annotations 
present in the whole human proteome. PANTHER quantifies the 
ratios of enrichment and the corresponding p-values for each GO 
term when compared with the reference human proteome. We 

focus on the GO terms that occur at least 10 times in our datasets 
(to ensure robustness of statistical analysis), and we annotate a 
given term as associated with a particular set of proteins if its 
ratio > 2 (at least two fold increase) and the associated p-value 
(quantified using the False Discovery Rate correction) is < 0.05.

We measure similarity between two sets of proteins by 
comparing the cellular function and subcellular location GO 
terms associated with these two protein sets. We calculate this 
similarity using the GOSemSim package (Li et al., 2010) with 
default parameters [Wang et al. measure (Wang et al., 2007)] and 
the reference set to human.

ReSUlTS aND DISCUSSION

Non-Druggable and Possibly Druggable 
Proteins
The set of the non-drug targets likely includes a relatively 
large number of druggable proteins. The ability to characterize 
properties that differentiate the drug targets and druggable 
proteins from the non-drug targets hinges on the annotation of 
the non-druggable and possibly druggable proteins in the set of 
these non-drug targets. Druggability of proteins requires that 
they interact with a drug-like compound and that this interaction 
provides a desired therapeutic effects (Hopkins and Groom, 
2002; Russ and Lampel, 2005; Keller et al., 2006). Thus, one way 
to annotate possibly druggable and non-druggable proteins is to 
analyze protein-disease associations. Figure 1 shows the fractions 
of the proteins associated with different classes of diseases among 
the drug targets and the non-drug targets. As expected, the 

FIgURe 1 | Fraction of drug targets and non-drug targets associated with different classes of diseases. The green and red bars show the fraction of disease 
associated proteins among the drug targets and non-drug targets for each disease class. The p-values quantify the significance of the differences between the two 
fractions using the Fisher’s exact test. The disease classes are sorted by the value of the fraction of the drug targets.
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number of the disease associated proteins is significantly higher 
among the drug targets compared to the non-drug targets. This 
difference is statistically significant for each of the 23 diseases 
classes (p-values < 0.0001). About 94% of the drug targets are 
associated with at least one disease, attesting to the relatively 
high coverage of these annotations and supporting the fact that 
the drug targets exert therapeutic effects. The largest fraction of 
the drug targets (82%) is associated with cancers. To compare, 
only about 64% of the non-drug targets are disease-associated. 
The latter suggests that the non-drug targets include both non-
druggable proteins (those that lack association with any of 
the diseases) and possibly druggable proteins (those that are 
associated with diseases). We note that the use of the diseases 
associations provides a partial support for their druggability 
since it does not address the ability of the possibly druggable 
proteins to interact with drug-like molecules.

Figure 2 analyzes relation between the drug targets, non-
drug targets, and disease associations. Figure 2A reveals that the 
disease-associated proteins are likely to be drug targets. About 
60% of proteins that are associated with at least one disease 
are drug targets. The fraction of drug targets increases for the 
proteins that are associated with more disease. This increase 
is sharper for a lower number of diseases and plateaus for 
proteins with about 10 or more disease associations. Therefore, 
we hypothesize that the non-drug targets with a relatively 
large number of disease associations can be used as a proxy 
for possibly druggable proteins. We use the inflection point 
in Figure 2A, which corresponds to proteins with ≥13 disease 
associations among which 75% are drug targets, to define the 
set of possibly druggable proteins. Figure 2B is a Venn diagram 
that visualizes overlap between the disease associated proteins 
(black borders), the drug targets (dataset D; green border), and 
the non-drug targets (dataset N; red border). We define the 
set of the non-drug targets that are associated with 13 or more 
diseases as possibly druggable proteins (Nd dataset; orange 
area in Figure 2B). Figure 2B also shows that virtually all drug 
targets are associated with at least one disease (black border with 
number of diseases K ≥ 1), while a large portion of the non-drug 
targets lacks any disease associations (brown area in Figure 2B). 

The latter set of proteins constitutes the set of the non-druggable 
proteins (Nn dataset).

We test reliability of annotations of the possibly druggable and 
non-druggable proteins using the 124 human-like drug targets 
from the D+ dataset that were annotated based on their high 
sequence similarity to drug targets in other organisms. We found 
only 4% (5 of the 124) of the human-like drug targets among 
the 4,869 non-drug targets that are not associated with diseases 
compared to 67% (83 human-like drug targets) that are among 
the 4,287 non-drug targets that are associated with 13 or more 
diseases. The high degree of the latter overlap suggests that the 
Nd dataset should include a substantial number of druggable 
proteins. We note that the 4% overlap with the non-drug targets 

FIgURe 2 | Relation between drug targets, non-drug targets and diseases associations. Panel a shows the fraction of the drug targets among proteins associated 
with a given minimal number of diseases K. Panel B is a Venn diagram that visualizes overlap between the disease associated proteins (with K = 1 and K = 13), the 
drug targets (dataset D; green border), and the non-drug targets (dataset N; red border). Among the non-drug targets we define the Nn dataset of non-druggable 
proteins (brown area), i.e., the non-drug targets that are not associated with any disease, and the Nd dataset of possibly druggable proteins (orange area), i.e., the 
non-drug targets that are associated with 13 or more diseases.

FIgURe 3 | Similarity in cellular processes and subcellular locations between 
the drug targets (D dataset), possibly druggable proteins (Nd dataset), 
non-druggable proteins (Nn dataset), and non-drug targets (N dataset). We 
measure similarity for four pairs of these datasets (D vs. Nd, D vs. Nn, D vs. 
N, and Nn vs. Nd) based on the comparison of the corresponding sets of GO 
terms associated with these datasets, i.e., GO terms over-represented in a 
given dataset when compared to the entire human proteome. The GO terms 
are divided into three categories: MF (molecular functions), BP (biological 
processes), and CC (cellular components). Similarity was measured with 
the GOSemSim package (Li et al., 2010). We describe details of these 
calculations in section “Statistical and similarity analyses”. The gray markers 
show the similarity for each GO-term category while the blue markers are the 
average across the three categories.
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that lack diseases associations likely stems from incompleteness 
of the diseases association data.

Figure 3 further tests the validity of the hypothesis that the 
Nd and Nn datasets include the possibly druggable and the non-
druggable proteins, respectively. It quantifies similarity in the 
context of cellular functions and subcellular location between 
the drug targets, possibly druggable proteins, non-druggable 
proteins, and the non-drug targets. First, we generate a set of 
GO terms that are associated with each of these datasets, i.e., 
GO terms over-represented in a given dataset when compared 
to the human proteome. We perform this analysis separately 
for each of the three GO terms categories: molecular functions, 
biological processes, and cellular components; the latter is a 
proxy for the subcellular location. Next, we calculate similarity 
between the corresponding sets of dataset-specific GO terms; 
we describe the details in section “Statistical and similarity 
analyses”. The gray lines in Figure 3 shows the similarity values 
for each GO term category while the blue lines show the average 
across the three categories. The left-most set of results reveals 
that the cellular functions and subcellular location of the 
drug targets (D dataset) are similar to the possibly druggable 
proteins (Nd dataset), which aligns with our hypothesis 
that the Nd dataset in fact includes druggable proteins. The 
second set of results, which compares the drug targets against 
the non-druggable proteins (Nn dataset), shows lack of 
similarity in the biological processes and subcellular locations 
and modestly reduced levels of similarity in the molecular 
functions. The corresponding average similarity = 0.145 is 
lower by a factor of two when compared with the similarity 
= 0.303 between the drug targets and possibly druggable 
proteins. The other two sets of results, which compare the 
possibly druggable against the non-druggable proteins and the 
drug targets against the non-drug targets, similarly reveal the 
lack of similarity in the biological processes and subcellular 

locations, while showing similarity in the molecular functions. 
The average similarities for these two dataset pairs are low 
and equal 0.177 and 0.115, respectively, suggesting that the 
corresponding two pairs of datasets include proteins involved 
in distinct cellular processes and subcellular locations. To 
sum up, the above analysis demonstrates that drug targets and 
the possibly druggable proteins share much higher levels of 
functional and subcellular location similarity compared to the 
similarity between possibly druggable proteins, non-druggable 
proteins, and non-drug targets. This finding, which uses an 
independent source of information compared to the approach 
we used to annotate the possibly druggable proteins, supports 
validity of our annotations of the possibly druggable and the 
non-druggable proteins.

Comparative analysis of the Sequence-
Derived Structural and Functional 
Characteristics of the Drug Targets, 
Possibly Druggable, and Non-Druggable 
Proteins
Our ability to identify novel druggable proteins relies on 
the understanding of functional and sequence-derived 
characteristics that differentiate drug targets from the non-drug 
targets. We focus specifically on the characteristics that can be 
quantified from the protein sequence and/or identifier, which 
allows for a proteome-wide deployment. We compare a broad 
range of these characteristics between the drug targets, non-drug 
targets, possibly druggable proteins, and non-druggable proteins. 
We also investigate differences between the above protein sets 
and the expanded set of drug targets that includes human and 
human-like targets (D+ dataset), highly promiscuous drug 
targets that interact with many drugs (Dh datasets), and drug 
targets that interact with a low number of drugs (Dl dataset).

FIgURe 4 | Distributions of the values of the sequence-derived characteristics for the highly promiscuous drug targets (Dh), drug targets that interact with a low 
number of drugs (Dl), all drug targets (D), all human and human-like targets (D+), non-drug targets (N), possibly druggable proteins (Nd), and non-druggable proteins 
(Nn). (Panels a) shows the amount of conserved residues. Panels B and C focus on the protein domains while Panel D quantifies the number of splicing isoforms. The 
whiskers show the 5 and 95 percentiles, the top and bottom of the box correspond to the first and third quartiles, the middle bar is the median, and the cross marker is 
the average. The annotation above the whiskers show the significance of differences with the other protein sets; only significant differences are listed where N* means 
p-value 0.05 and N** means p-value 0.0001 when compared with the N dataset. We explain calculation of statistical tests in section “Statistical and similarity analyses”.
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Characteristics Derived From the Protein Sequence
Figure 4 focuses on the characteristics derived directly from 
the protein sequence, including the residue-level conservation 
(content of conserved residues in protein chains), number of 
domains and the content of domain-annotated residues, and the 
number of the alternative splicing isoforms. Figure 4A shows 
that the drug targets (both D and D+ datasets) have significantly 
fewer conserved residues than the non-drug targets, possibly 
druggable proteins and the non-druggable proteins (p-value  < 
0.05). The possibly druggable proteins (orange bars) have 
significantly lower numbers of conserved residues compared 
to the non-druggable proteins (brown bars) (p-value < 0.05). 

Moreover, the highly promiscuous drug targets have significantly 
lower numbers of the conserved amino acids than the non-drug 
targets and the non-druggable proteins (p-value < 0.05), while 
maintaining similar levels compared to the possibly druggable 
proteins. Altogether, relatively low numbers of the conserved 
residues are characteristics for the drug targets and these numbers 
are also relatively low among the possibly druggable proteins. 
Interestingly, the residue-level conservation of the residues on 
the protein surface, where the protein-drug interaction occurs, 
follows the same pattern (Figure 5E). This finding complements 
prior results that show that drug targets have lower evolutionary 
rates and higher similarity to orthologous genes (Lv et al., 2016).

FIgURe 5 | Distributions of the values of the sequence-derived structural characteristics predicted from the protein sequence for the highly promiscuous drug 
targets (Dh), drug targets that interact with a low number of drugs (Dl), all drug targets (D), all human and human-like targets (D+), non-drug targets (N), possibly 
druggable proteins (Nd), and non-druggable proteins (Nn). Panels a, B, and C quantify the abundance of intrinsic disorder while Panels D and e quantify the 
amount of surface and the amount of conserved residues on the surface, respectively. The whiskers show the 5 and 95 percentiles, the top and bottom of the 
box correspond to the first and third quartiles, the middle bar is the median, and the cross marker is the average. The annotation above the whiskers show the 
significance of differences with the other protein sets; only significant differences are listed where N* means p-value 0.05 and N** means p-value 0.0001 when 
compared with the N dataset. We explain calculation of statistical tests in section “Statistical and similarity analyses”.
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Figures 4B, C reveal that the drug targets (both D and D+ 
datasets) have substantially more domains and have larger 
amounts of domain-annotated residues when compared to 
the non-druggable proteins (p-value < 0.0001). At the same 
time, they a similar number domains when contrasted with 
the possibly druggable proteins. Furthermore, the possibly 
druggable proteins have significantly higher levels of domain 
annotations when contrasted against the non-druggable proteins 
(p-value < 0.0001). The underlying reasons for this enrichment 
could be two-fold. First, there could be proportionally more 
multi-domain proteins among the drug targets and the possibly 
druggable proteins. Consequently, inclusion of a larger number 
of domains could increase the likelihood that these proteins host 
at least one druggable domain. However, our result could also 
mean that these proteins are more studied and understood, and 
thus their domain annotations are more complete. Moreover, 
the fact that at least close to half of proteins in all considered 
datasets have domain annotations, which suggests that they are 
functionally annotated, suggests that our functional similarity 
analysis in Figure 3 should be robust.

The drug targets (both D and D+ datasets) and the possibly 
druggable proteins have significantly more splicing isoforms 
compared to the non-druggable proteins (p-value < 0.05) and 
this increase is even higher for the promiscuous drug targets 
(p-value < 0.001). This suggests that enrichment in the number 
of alternative splicing variants could serve as a marker for 
druggability. The alternative splicing was found to contribute 
to drug resistance (Siegfried and Karni, 2018; Zhao, 2019), 
which supports veracity of our result. Interestingly, recent 
studies suggest that targeting alternative splicing events could 
lead to therapeutic opportunities (Le et al., 2015; Siegfried 
and Karni, 2018). Our analysis also reveals that majority of 
the drug targets and the possibly druggable proteins have 
multiple isoforms. Thus, gene level analysis of drug targets may 
not be adequate, considering that these genes would encode 
multiple proteins.

Overall, we identified three potential sequence-derived 
markers of druggability. The drug targets and possibly druggable 
proteins share lower numbers of conserved residues and are more 
likely to have multiple domains and isoforms when compared to 
the non-druggable proteins. We also note that the results for the 
original set of human drug targets (D dataset) are consistent with 
the results for the expanded set of drug targets (D+ dataset).

Sequence-Derived Structural Properties
This study is the first to analyze two relevant sequence-derived 
structural characteristics that can be accurately predicted from 
the protein sequence: intrinsic disorder and solvent accessibility. 
Proteins with disordered regions are associated with a wide 
range of human diseases (Uversky et al., 2008; Uversky et al., 
2014; Uversky, 2014b; Babu, 2016) while solvent accessibility 
determines protein surface where the drug-protein interaction 
happens. We note that while authors in (Kim et al., 2017) 
computed putative solvent accessibility, they only used it to 
analyze results concerning enrichment in the PTMs.

Figures 5A–C quantify two key aspects of the disorder: the overall 
content of disordered residues and the length of disordered regions. 

Proteins with higher disorder content are functionally distinct from 
structured proteins while long disordered regions are thought to 
correspond to disordered protein domains (Tompa et al., 2009; 
Pentony and Jones, 2010; Peng et al., 2014a). We observe that drug 
targets (both D and D+ datasets) are significantly less disordered 
(by a factor of two) and include much shorter disordered regions 
when compared with the non-drug targets, including both possibly 
druggable and non-druggable proteins (p-value < 0.001). This is in 
agreement with a recent study that demonstrates that the current 
drug targets are biased to exclude disordered proteins (Hu et al., 
2016). There are several reasons for this bias. The protein structures 
are used during the rational drug design process (Gane and Dean, 
2000; Lundstrom, 2006; Mavromoustakos et  al., 2011; Lounnas 
et al., 2013) and to gain mechanistic insights into the protein-drug 
interactions (Pielak et al., 2009; Tan et al., 2013; Christopoulos, 
2014) (Altschul et al., 1997; Wang and Samudrala, 2006; Calderone 
et al., 2013; Orchard et  al., 2014; UniProt: the universal protein 
knowledgebase, 2016). The structures are also indispensable for 
modeling associated with drug repurposing and repositioning 
(Moriaud et al., 2011; Ma et al., 2013). This is while proteins with 
disordered regions are much less likely to have structures (Hu 
et al., 2018), partly because since they are explicitly avoided in the 
structural genomics pipeline (Linding et al., 2003; Oldfield et al., 
2005; Mizianty et al., 2014). Interestingly, the highly promiscuous 
drug targets are enriched in disorder when contrasted with the 
overall set of drug targets and the low promiscuity drug targets 
(p-value < 0.0001), while their disorder levels are comparable to the 
possibly druggable proteins. This coincides with the observation that 
disordered regions are capable of interactions with multiple partners 
(Oldfield et al., 2008; Hu et al., 2017). Our results suggests that 
although low disorder amounts are a strong marker for the current 
drug targets, the set of possibly druggable proteins includes large 
amounts of disorder. In fact, the disordered proteins may become 
the key to unlocking a substantial portion of yet to be discovered 
druggable targets (Uversky, 2012; Hu et al., 2016), especially given 
their association with numerous human diseases (Uversky et al., 
2008; Uversky et al., 2014; Uversky, 2014b; Babu, 2016).

The amount of the putative surface residues for the drug 
targets (both D and D+ datasets) is significantly smaller that for 
the non-drug targets, including the possibly druggable and non-
druggable proteins (p-value < 0.0001), see Figure 5D. This could 
be driven by the fact that drug targets are often membrane proteins 
(Yildirim et al., 2007; Rajendran et al., 2010), which means that 
they have relatively low surface area compared to other proteins. 
They are also mostly structured proteins (Hu et al., 2016) that 
are more likely to have globular shape with more buried residues 
compared to more irregularly shaped/elongated disordered 
proteins (Peng et al., 2014b; Uversky, 2017). Moreover, presence of 
disordered regions on the protein surface also leads to an increase 
of the surface area compared to structured conformations (Wu 
et  al., 2015). Interestingly, the possibly druggable proteins have 
comparable content of the putative surface residues with the low 
promiscuity drug targets, which is also significantly smaller when 
contrasted with the non-druggable proteins (p-value < 0.0001). 
This again, like in the case of the results in Figure 4, shows that 
the possibly druggable proteins are more similar to drug targets 
than to the non-druggable proteins. Finally, we observe that the 
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number of conserved residues on the putative surface (Figure 5E) 
maintains the same relation between the different protein sets as 
the overall number of conserved residues shown in Figure 4A, 
i.e., significantly lower for drug targets (both D and D+ datasets), 
and lower for the possibly druggable proteins compared to the 
non-druggable proteins (p-value < 0.05).

Topological Features of the Protein-Protein 
Interaction Networks
Topological features of the PPI networks are among the most 
studied characteristics of the drug targets (Zhu et al., 2009b; Zhu 
et al., 2009c; Bull and Doig, 2015; Mitsopoulos et al., 2015; Feng 
et al., 2017; Kim et al., 2017). A unique aspect of our analysis is 
that we focus on a set of orthogonal measures, i.e., measures that 
have low mutual correlations. This offers a more focused and 
balanced analysis given the high degree of similarity between 
many of these measures. Figure 6 reveals that the entire set of four 
measures of centrality has significantly higher values for the drug 
targets (both D and D+ datasets) compared to the non-druggable 
proteins (p-value < 0.0001). Our results are in line with several 

prior studies that correspondingly show that drug targets have 
more connected and denser local network neighborhoods (Zhu 
et al., 2009b; Zhu et al., 2009c; Mitsopoulos et al., 2015; Lv et al., 
2016). This finding suggests that drug targets are possibly more 
relevant biologically or are at a higher point of control and thus can 
better modify physiology, making them better therapeutic targets. 
The novel element in our study is that we find that all considered 
network centrality measures for the possibly druggable are even 
higher than for the drug targets (orange vs. green bars in Figure 
6; p-value < 0.05). Consequently, they are also significantly higher 
than for the non-druggable proteins (orange vs. brown bars in 
Figure 6; p-value < 0.0001). Thus, our study suggests that these 
measures can be used as markers of druggability.

Figure 7 analyzes the abundance of the PPI network hubs 
among the drug targets, possibly druggable and non-druggable 
proteins. Approximately 17% of the drug targets (for both D and D+ 
datasets) are hubs and this rate is significantly higher than the 12% 
rate for the non-drug targets (green vs. red bars; p-value < 0.0001). 
Similarly large difference was observed in (Mitsopoulos et al., 
2015). Our study reveals additional important details. We observe 

FIgURe 6 | Distributions of the values of the selected orthogonal PPI network properties for the highly promiscuous drug targets (Dh), drug targets that interact with a 
low number of drugs (Dl), all drug targets (D), all human and human-like targets (D+), non-drug targets (N), possibly druggable proteins (Nd), and non-druggable proteins 
(Nn). Panels a, B, C, and D concern the betweenness centrality, eigenvector centrality, closeness centrality, and information centrality measures, respectively. The 
whiskers show the 5 and 95 percentiles, the top and bottom of the box correspond to the first and third quartiles, the middle bar is the median, and the cross marker is 
the average. The annotation above the whiskers show the significance of differences with the other protein sets; only significant differences are listed where N* means 
p-value 0.05 and N** means p-value 0.0001 when compared with the N dataset. We explain calculation of statistical tests in section “Statistical and similarity analyses”.

FIgURe 7 | Fraction of hub proteins among the highly promiscuous drug targets (Dh), drug targets that interact with a low number of drugs (Dl), all drug targets (D), 
all human and human-like targets (D+), non-drug targets (N), possibly druggable proteins (Nd), and non-druggable proteins (Nn). The annotation next to the bars 
show the significance of differences with the other protein sets; only significant differences are listed where N* means p-value 0.05 and N** means p-value 0.0001 
when compared with the N dataset. We explain calculation of statistical tests in section “Statistical and similarity analyses”.
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that the rate of hubs is very high among the highly promiscuous 
drug targets (25%) and the possibly druggable proteins (24%), 
and these rates are significantly higher than the 12% rate for the 
non-drug targets (p-value < 0.0001) and the 5% rate for the non-
druggable proteins (p-value < 0.0001). This suggests that high 
connectivity in the PPI network is a strong marker for druggability.

Functions and Subcellular locations of 
Drug Targets and Possibly Druggable 
Proteins
Several studies analyzed cellular functions and subcellular 
locations of the drug targets (Lauss et al., 2007; Bakheet and 
Doig, 2009; Wang et al., 2013b). The green bars in Figure 8 

provide a list of significantly enriched functions and locations for 
our set of drug targets. Our results indicate that most of the drug 
targets are enzymes, including kinases and oxidoreductases, 
followed by substatial numbers of channels, and in particular 
ion channels. They are often involved in binding, signalling, 
regulation, and transport. These finding are in close agreement 
with the results in (Bakheet and Doig, 2009). Figure 8 also shows 
that drug targets are primarily found in membranes, with a large 
numbers also found in the cytoplasm and the intracellular space. 
Consistent results are found in (Bakheet and Doig, 2009; Wang 
et al., 2013b), and these subcellular locations also agree with the 
observation that membrane proteins are the prime targets for the 
development of therapeutics (Yildirim et  al., 2007; Rajendran 
et al., 2010).

FIgURe 8 | Molecular functions, processes, and subcellular locations that are enriched among the drug targets (D dataset) and the possibly druggable proteins 
(Nd dataset). We show the top 10 (with the highest counts) over-represented/significantly enriched GO terms for the drug targets (green bars) and the possibly 
druggable proteins (orange bars). The bars quantify the ratios of enrichment relative to the human proteome and the corresponding p-values are shown on the right. 
GO terms are identified on the left, including their names and the number of the correspnding proteins in the given dataset. We explain calculation of statistical tests 
in section “Statistical and similarity analyses”.
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This study is the first to perform this type of analysis for the 
possibly druggable proteins (orange bars in Figure 8). Our analysis 
suggests that the possibly druggable proteins share functional 
similarities with the drug targets. They are similarly involved in the 
catalysis, signaling, and binding. However, the possibly druggable 
proteins tend to bind proteins and nucleic acids, instead of anions 
and ions which are the main partners for the drug targets. Moreover, 
the possibly druggable proteins are often involved in the metabolic 
and biosynthesis processes, and in the cell death cycle. The preference 
for the protein-protein and protein-nucleic acids binding and the 
cell death cycle involvement are supported by their significant 
enrichment in the intrinsic disorder (compared to the drug targets, 

see Figures 5A, B), and the fact that disordered regions are known to 
facilitate these types of functions (Vuzman and Levy, 2012; Uversky 
et al., 2013; Fuxreiter et al., 2014; Peng et al., 2015; Basu and Bahadur, 
2016; Wang et al., 2016b; Hu et al., 2017; Srivastava et al., 2018). We 
further investigate this in Figure 9 that analyzes the differences 
in the content of the putative disordered protein-protein binding 
regions. These results confirm the enrichment in the corresponding 
functional annotations for the possibly druggable proteins. The 
possibly druggable proteins include a substantial amount of the 
disordered protein-binding regions, on average about 14% of 
residues. Moreover, the drug targets (both D and D+ datasets) are 
significantly depleted in these protein-binding regions (on average 
only 7% of residues) when compared with the possibly druggable 
proteins (p-value < 0.0001). Interestingly, Figure 8 also reveals that 
the possibly druggable proteins are localized across the cell and they 
do not have a specifically associated subcellular location, unlike the 
drug targets that are found mostly in the membranes and cytoplasm. 
Overall, our empirical analysis provides new insights into the cellular 
functions and subcellular locations of the druggable proteins.

SUMMaRY aND CONClUSIONS
Recent research approximates that the druggable human proteome 
has about 4,500 proteins (Finan et al., 2017), while there are about 
1,600 current drug targets (1,750 drug targets if we include proteins 
that share high sequence similarity to drug targets that were annotated 
in other organisms). Annotation of the remaining druggable human 
proteins would facilitate development and screening of drugs, drug 
repurposing and repositioning, understanding and mitigation of 
drug side-effects, and prediction of drug–protein interactions. 
We contrast the drug targets against the possibly druggable and 
non-druggable proteins to identify markers that could be used to 
identify novel druggable proteins. This is in contrast to the prior 
studies that compare drug targets against non-drug targets (Zheng 
et al., 2006; Lauss et al., 2007; Bakheet and Doig, 2009; Zhu et al., 
2009b; Zhu et al., 2009c; Bull and Doig, 2015; Mitsopoulos et al., 
2015; Feng et al., 2017; Kim et al., 2017), thus producing markers 
that describe current drug target and which implicitly exclude the 
druggable proteins that are included in the non-drug target set. We 
annotate the possibly druggable and non-druggable proteins based 
on the presence and promiscuity of disease associations, and we 
validate these annotations via functional similarity analysis.

We cover a wide range of sequence-derived characteristics 
to define these markers. These characteristics can be computed 
across the entire human proteome, allowing for a complete sweep 
of all potential candidate proteins. We investigate several important 
characteristic that were missed in the past studies including putative 
intrinsic disorder, residue-level conservation, presence and number 
of alternative splicing isoforms, inclusion of domains, and putative 
solvent accessibility (surface area), as well as the key features from 
the prior works, such as the topological features of PPIs, cellular 
functions and subcellular locations. Figure 10 summarizes the 
results. It shows the difference in the values of the key markers when 
comparing the possibly druggable proteins (in orange), the non-
druggable proteins (in brown), all non-drug targets (in red), and 
the expanded set of human and human-like drug targets (in light 

FIgURe 9 | Content of putative protein binding regions in the highly 
promiscuous drug targets (Dh), drug targets that interact with a low number 
of drugs (Dl), all drug targets (D), all human and human-like targets (D+), 
non-drug targets (N), possibly druggable proteins (Nd), and non-druggable 
proteins (Nn). The annotation next to the bars show the significance of 
differences with the other protein sets; only significant differences are 
listed where N* means p-value 0.05 and N** means p-value 0.0001 when 
compared with the N dataset. We explain calculation of statistical tests in 
section “Statistical and similarity analyses”.
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green) against the human drug targets (in dark green). We observe 
that the possibly druggable proteins are significantly more similar 
to the drug targets than the non-druggable proteins for majority of 
the markers. These markers include high abundance of alternative 
splicing isoforms, relatively large number of domains, higher degree 
of centrality in the corresponding PPI network (and correspondingly 
much higher rate of hubs), lower number of conserved residues, 
and lower number of residues on the putative (sequence-derived) 
surface. Thus, these factors could serve as high-quality markers 
for druggability. “Results and discussion” section discusses these 
findings in the context of the current literature. Moreover, Figure 10 
shows that drug targets (both D and D+ datasets) have significantly 
depleted levels of intrinsic disorder and intrinsically disordered 
protein-binding regions when compared with the much higher and 
comparable levels among the possibly druggable and non-druggable 
proteins. This suggests that the high levels of disorder combined 
with the presence of the abovementioned markers should be used 
together to effectively enlarge the current collection of drug targets. 
This is in accord with several recent studies that postulate inclusion 
of the disorder-enriched proteins into the set of druggable proteins 
(Cuchillo and Michel, 2012; Uversky, 2012; Chen and Tou, 2013; 
Joshi and Vendruscolo, 2015; Ambadipudi and Zweckstetter, 2016; 
Hu et al., 2016; Yu et al., 2016).

Our analysis also shows that the possibly druggable proteins 
are functionally similar to the drug targets, being involved in the 
catalysis, signaling, and binding. The main difference is that the 
possibly druggable proteins target interactions with proteins and 
nucleic acids, unlike the current drug targets that favor interactions 
with anions and ions. Figure 10 points to the high amount of the 
disordered protein-binding regions for the possibly druggable 
proteins compared to the drug targets, which is in concert with the 
disordered nature of the druggable proteins. This is in agreement 
with the literature that shows that disordered regions often facilitate 
PPIs (Mohan et al., 2006; Vacic et al., 2007; Fuxreiter et al., 2014; 
Yan et al., 2016; Hu et al., 2017). Finally, we show that the possibly 
druggable proteins are involved in the metabolic and biosynthesis 
processes and that they are localized across the cell, without a 

preference for specific subcellular locations. This is unlike the 
current drug targets that are located primarily in the membranes.

To sum up, our empirical analysis has led us to formulate several 
markers that may help with identifying novel druggable human 
proteins and has produced interesting insights into the cellular 
functions and subcellular locations of potentially druggable proteins.
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