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Whole genome and exome sequencing (WGS/WES) are the most popular

next-generation sequencing (NGS) methodologies and are at present often

used to detect rare and common genetic variants of clinical significance.

We emphasize that automated sequence data processing, management, and

visualization should be an indispensable component of modern WGS and

WES data analysis for sequence assembly, variant detection (SNPs, SVs),

imputation, and resolution of haplotypes. In this manuscript, we present a

newly developed findable, accessible, interoperable, and reusable (FAIR)

bioinformatics-genomics pipeline Java based Whole Genome/Exome

Sequence Data Processing Pipeline (JWES) for efficient variant discovery

and interpretation, and big data modeling and visualization. JWES is a

cross-platform, user-friendly, product line application, that entails three

modules: (a) data processing, (b) storage, and (c) visualization. The data

processing module performs a series of different tasks for variant calling,

the data storage module efficiently manages high-volume gene-variant data,

and the data visualization module supports variant data interpretation with

Circos graphs. The performance of JWES was tested and validated in-

house with different experiments, using Microsoft Windows, macOS Big

Sur, and UNIX operating systems. JWES is an open-source and freely

available pipeline, allowing scientists to take full advantage of all the com-

puting resources available, without requiring much computer science

knowledge. We have successfully applied JWES for processing, manage-

ment, and gene-variant discovery, annotation, prediction, and genotyping

of WGS and WES data to analyze variable complex disorders. In sum-

mary, we report the performance of JWES with some reproducible case

studies, using open access and in-house generated, high-quality datasets.

Abbreviations

API, application programming interface; BQSR, base quality score recalibration; BWA, Burrows–Wheeler Aligner; DNSNVs, de novo single-

nucleotide variants; FAIR, findable, accessible, interoperable, and reusable; ERD, entity relationship diagram; ETL, extraction, transfer, and

loading; GEO, gene expression omnibus; GATK, genome analysis toolkit; hg38, human genome; HPC, high-performance computing; I/O,

input/output; JWES, Java based Whole Genome/Exome Sequence Data Processing Pipeline; ML, machine learning; NGS, next-generation

sequencing; OARC, Office of Advanced Research Computing; QC, quality check; SRA, sequence read architecture; SARS-CoV-2, severe

acute respiratory syndrome coronavirus 2; SNPs, single nucleotide polymorphisms; VCF, variant call format; WES, whole-exome

sequencing; WGS, whole genome sequencing.

2441FEBS Open Bio 11 (2021) 2441–2452 ª 2021 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0002-7065-1699
https://orcid.org/0000-0002-7065-1699
https://orcid.org/0000-0002-7065-1699
mailto:


Sequencing complex genomes has been a very challeng-

ing task [1]. Though, the sequenced genome analyses

have revealed immense information about protein-en-

coding transcripts, and single nucleotide polymor-

phisms (SNPs) [2]. There have been number of projects

that set the firm foundation for the future biomedical

research, including but not limited to Human Genome

Project [3]. Data generated through the Human

Genome Project not only revolutionized the research in

field of human physiology, medicine, and development

[4,5], but fueled the future studies, including the ‘1000

Genomes Project’ specifically designed for the advance-

ment in the understanding of genome variation among

individual and populations [6]. Later, the 1000 Gen-

omes Project was focused on the deeper characteriza-

tion of genome variation for exploring the association

between genotype and phenotype. The initial findings

of this project described the precise location, allele fre-

quency, and haplotype structure of around 15 million

SNPs, 1 million short indels (insertions and deletions),

and 20 000 structural variants [6]. These data further

reinforced the next phase of study that provided a fur-

ther extended list of 38 million SNPs, 1.4 million indels,

and higher than 14 000 larger deletions. By using a mix

of low-coverage whole genome and exome sequencing

approach, the 1000 Genomes Project established that

individuals from different populations differ in their

rare and common variants profile [7]. It provided a

comprehensive knowledge of common genetic variation

in the diverse set of individuals from different popula-

tions. Added approaches such as deep exome sequenc-

ing, microarray genotyping further helped in the

completion of the project and led to a broader charac-

terization of genetic variation, total exceeding 88 mil-

lion variants, 3.6 million indels, and 60 000 structural

variants [8]. The genome projects fulfilled the promise

of genomics for medicine [9] by establishing implica-

tions of variant data analysis for the greater under-

standing of disease, by further community access to the

data and multiple tools to help in diagnostics [10–12].
Technological advancements in genome sequencing in

the recent past have revolutionized the field and made it

more accessible and affordable [13]. The whole genome

sequencing (WGS) [14] and the whole-exome sequencing

(WES) [15] are the most popular and widely adopted

DNA sequencing technologies today. The WGS is

applied to sequence the entirety of the genome and have

broader coverage, while the WES is mainly used to only

sequence the protein-coding structures. These both

sequencing techniques are extensively used to identify

rare and common genetic variants in humans [16].

Along with the production of in-depth and high-quality

DNA next-generation sequencing (NGS) data [17],

another challenge is to efficiently process raw WGS/

WES data to support downstream analysis, interpreta-

tion, and visualization. Various bioinformatics tools

have been developed worldwide to perform standalone

and networked operations, which includes but not lim-

ited to, for example, cleansing of raw sequence data,

converting raw signals into base calling, alignment with

respect to the reference genome, identifying regions of

interest in genome, assembly of contigs and scaffolds,

and variant detection [18]. Despite immense technologi-

cal progress, it is still a challenge among diagnostic lab-

oratories and clinicians to timely find and interpret

variants to unravel the genetic causes underlying dis-

eases [15]. Genome Analysis Toolkit (GATK), main-

tained by the Broad Institute, has proven to be one of

the widely adopted tool that offers different tools for

variant discovery and genotyping [19]. Several bioinfor-

matics-genomics pipelines are freely available to process

the WGS and WES data [20], which includes but not

limited to the SeqMule [21], QIAGEN CLC Genomics

[22], Galaxy [23], DNAp [24], STORMseq [25], ExScal-

iburn [26], Atlas2 [27], MC-GenomeKey [28], Simplex

[29], WEP [30], SeqBench [31], VDAP-GUI [32], and

fastq2vcf [33]. Most of the pipelines follow the similar

workflow and are based on the nexus of different com-

mand-line applications. Their execution not only

requires good programming skills but deeper under-

standing of the computer science fundamentals, for

example, UNIX commands, scripting and programming

languages, high-performance and/or cloud computing,

database management, file structures, and formatting,

etc. Furthermore, these pipelines do not support in effi-

ciently managing high-volume variant database model-

ing and visualization.

The WGS/WES approaches combined with RNA-

Seq can offer great sensitivity and serve as the gold stan-

dard for the precision medicine [34]. These techniques

could hold the answers to the mysteries associated with

varied drug response and disease infection rate in

patients. However, one of the limiting factors associated

is the incorporation of WGS/WES techniques in clinical

practices [35]. There is a consistent increase in the num-

bers of individuals opting for elective genome sequenc-

ing, however not yet widely accessible [36]. Meanwhile,

the need is to develop computing facilities with

advanced technical infrastructure, and bioinformatics

pipelines that can collect, process, analyze, and interpret

the genomics data. We are focused on addressing these

limitations [37]. In this manuscript, we present a newly

developed findable, accessible, interoperable, and reusa-

ble (FAIR) bioinformatics-genomics pipeline Java based

Whole Genome/Exome Sequence Data Processing Pipe-

line (JWES) for variants discovery and interpretation,
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and big data modeling and visualization. The JWES is

an open-source and freely available pipeline, allowing

scientists to take full advantage of all the computing

resources available, without requiring much computer

science knowledge.

Methods

The JWES is a cross-platform, hybrid, user-friendly, and

product line application that integrates multiple of the shelf

open-source command-line tools. It is programmed in Java,

designed to be deployed in a high-performance computing

(HPC) environment, and developed following software

engineering principles for implementing efficient and user-

friendly bioinformatics applications [38]. In this manu-

script, we are supporting the WGS and WES-driven data

processing, management, and gene-variant discovery, anno-

tation, prediction, and genotyping with the JWES. The

overall workflow of the JWES consists of three different

modules: data processing, storage, and visualization.

JWES variant data-processing

The JWES data processing module is based on the concept

of input/output (I/O) redirection (Fig. 1). It performs series

of different tasks, which includes data quality check (QC);

pruning barcodes and low-quality sequences; indexing and

alignment of sequences to the human reference genome; sort-

ing and removal of duplicate sequences; and variant calling,

extraction, annotation, and variant perdition. The JWES

pipeline starts with the FastQC, a command-line-based tool

that takes FASTQ/FASTA files as input and performs QC

[39]. The data (FASTQ) are then forwarded to the Trimmo-

matic tool [40,41] for the trimming of low-quality sequences,

filtering adapters, and base cutting. The output of the Trim-

momatic is processed FASTQ. The Burrows–Wheeler

Aligner (BWA) tool is then used for mapping sequence data

against the reference human genome (hg38) [42–44]. BWA

produces a SAM file, which is then passed to the SortSam

[45] tool for sorting by the reference sequence name and left-

most mapping position. The sorted SAM file is then inputted

to the MarkDuplicates [46] to locate, tag, and remove dupli-

cate reads, and enhance the quality of the alignment and

reduce the number of variant false positives. The outcome of

the MarkDuplicates is again sorted and indexed file. Next,

the index tool from SAMtools is used to create and index file,

allowing to access faster.

The JWES implements the GATK [19,47,48] to find SNPs

and INDELs. The GATK locally realign reads to reduce the

number of false positives. This has been performed in two

separate steps: (a) determine intervals with RealignerTar-

getCreator and (b) realign intervals with IndelRealigner.

Next, BaseRecalibrator is used to adjust the quality scores

by using an empirical machine learning (ML) model. The

output of both BaseRecalibrator steps is two separate recali-

bration tables. AnalyzeCovariates inputs these two recalibra-

tions tables and produces multiple lines and bar plots that

show the quality of the recalibration. Next, HaplotypeCaller

is used to call SNPs and INDELs, which produces a file that

contains all the variants found. The rest of the operations in

this pipeline are performed twice and parallel, once for the

SNPs and once for the INDELs. SelectVariants is used to

separate the SNPs from the INDELs, which results two vari-

ant files variant call format (VCF). The JWES applies Vari-

antRecalibrator to create a Gaussian mixture model and

produce high-quality cluster of SNPs. It is done by looking

at the distribution of values over the input call set, and then,

the scoring is reassigned to each of the variants. ApplyRecal-

ibration is followed, which applies a score cutoff, and filters

out variants that fall below the specified sensitivity threshold.

SelectVariants is then used to select the variants that have

successfully passed the ApplyRecalibration step. The follow-

ing step in the pipeline is to calculate the QC metrics of the

variants with VariantEval. These metrics include the total

number of SNPs and the ratio of transition variants to

transversions. The output is a table that details all the met-

rics described above for each of the variants. Vari-

antsToTable is then used to extract the fields from the

variants and transforms it into a table. The JWES computes

histograms, per-base reports, and coverage for a given gen-

ome using the genomecov, and uses the snpEff to annotate

and predict the effects of the variants by using an interval

forest approach. The outcome of the JWES is an annotated

variant file.

To customize the JWES, it is required to modify the con-

figuration file, which contains all the paths to the bioinfor-

matics applications used within pipeline (Fig. 2). Once the

configuration file will be modified, the users only need to

call the JWES and provide the login information of the

HPC cluster (only if applicable, optional), project name,

path, or paths to all the sample files (FASTQ), and number

of nodes that will be used to deploy the computation. At

successful execution, the JWES will automatically generate,

load, and execute the script into the HPC cluster. Once

completed, the variants file produced in the snpEff step will

be parsed and automatically uploaded into the connected

MySQL database management server for later downstream

analysis and visualization. We have programmed the JWES

in Java-8 using Eclipse IDE 2020-09 and have successfully

tested using Microsoft Windows 10, macOS Big Sur (ver-

sion 11.2.2), and UNIX operating systems. Its functionality

has been validated and reproduced multiple times within

the HPC environment (deployed with Slurm Workload

Manager) provided by the Rutgers University.

JWES variant data storage

The JWES implements data storage module to overcome

the limitation of efficiently managing high-volume
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gene-variant data management and timely support down-

stream analysis, interpretation, and presentation. The

JWES data storage module consists of two parts: (a) mod-

eled relational database, and (b) java-based application for

efficient data extraction, transfer, and loading (ETL) from

source variant (CSV) files to connected database server,

that is, JWES-ETL. Designed entity relationship diagram

(ERD) of implemented database is organized into three

separate tables/relations: (a) Variant, (b) Info, and (c) Sam-

ple (Fig. 3). Variant table contains the most important

information (e.g., chromosome, reference position, refer-

ence base, alternate base, filters, filters passed, data quality,

mapping quality, genotype, genotype quality, allele count,

combined depth, record if somatic mutation, allelic depths,

and phred) extracted from the variant files (CSV), produced

by the snpEff. Info table contains additional information

that has been reported with discovered variants, and sam-

ple stores genotype information.

We have developed the JWES-ETL module as a separate

cross-platform application. However, the JWES embeds it

in pipeline, as one of the final steps. The JWES-ETL mod-

ule extract variants from the VCF file. Extracted data are

then cleansed, classified, reformatted, and uploaded into the

database server. The input instructions of the JWES-ETL

module are simple and consist of username, password, and

connection details of available database server, where

variant data will be stored. Database server can be deployed

locally and an independent network-based server. In any

case, it should be able to access and get data streamed

through HPC environment, where the JWES will deploy

and execute pipelines. The reason to develop the JWES-

ETL as an independent module is to support bioinformati-

cians who have already developed their variant calling

pipelines but cannot efficiently perform automated variant

data management using database management system.

JWES variant data visualization

Data visualization is considered essential for the variant

data interpretation, as it bridges the gap between algorith-

mic approaches and the cognitive skills of users and investi-

gators. Over the past decade, different visualization tools

have been emerged to display data in different categories

including but not limited to dot plot, scatter plot, circos,

two-way view, linear coordinate plot, multiway view, graph

view, linear genome browser, SV table, and population

view [49]. Each of these visualization kinds is important

and significant. However, in this study we are interested in

implementing the one that is appropriate for showing vari-

able genome features including distribution of variant data,

variation in genome structure, inter-chromosomal variants,

positional relationships between genomic intervals, genomic

Fig. 1. JWES pipeline for the whole genome and exome data processing, modeling, and downstream analysis. The figure explains all the

data processing and analysis steps, which include input, QC, trimming, alignment, sort, mark duplicates, insert size, sort and index, create

realignment targets, realign indels, Base Quality Score Recalibration (BQSR), analyze covariates, apply BQSR, recalibrate, extract filtered,

compute coverage, annotate and predict.
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rearrangements, and producing ideograms in any order and

orientation. Based on the requirements and best open-

source application programming interface (API) availabili-

ties, we choose to implement circos graphs [50].

We developed the JWES data visualization module for

plotting the circos graphs [50] based on the variants stored in

the database, using the JWES-ETL module. The JWES data

visualization module is another cross-platform application

Fig. 2. JWES pipeline data and workflow. The figure explains overall roadmap of JWES, which includes input preparation, automatics script

generation, output files management, and variants data storage in database

Fig. 3. JWES database design. The figure explains ERD of JWES database, which includes three tables: WES Info, WES Samples, and

WES Variant
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programmed in Python programming language. It queries

(SQL) variants from the database and plots circos graphs by

iterating through each of the variants. Data visualization

process starts by creating a list of unique genes, then count-

ing total number of variants for each, and using the Ensembl

API to find chromosome number, start and end positions of

genes and variants. The output of the JWES visualization

module is a text formatted file that can be directly passed to

circos tool to plot the graphs. Likewise, the JWES-ETL mod-

ule, it can be embedded as part of the JWES pipeline and

executed as a standalone application (without using HPC

environment) as well. JWES users’ guidelines are provided in

the attached Supplementary Material.

Results

The performance of the JWES has been tested and vali-

dated in-house at different experiments. We have success-

fully applied the JWES for the processing, management,

and gene-variant discovery, annotation, prediction, and

genotyping of the WGS and WES data sequenced for

analyzing variable complex disorders (e.g., Alzheimer,

Arthritis, Asthma, Diabetes mellitus, Heart failure,

Hypertension, Obesity, Osteoporosis, and multiple Can-

cer disorders). Overall, we have produced an in-house

database of over 1000million SNPs using the JWES.

Variant calling with JWES

In this manuscript, we report performance of the JWES

with some reproducible case studies, using open access

(Table 1) [51–55] and in-house generated, high-quality

datasets (Table 2). We created a cohort of publicly avail-

able data, which included total 14 whole genome

sequenced samples (Table 1). The JWES pipeline deliv-

ered promising results by offering a wider range of vari-

ants (4 803 792). First, we applied the JWES to theWGS

sample (SRR12474733) of project PRJNA657985, which

resulted in 43 685 variants [52]. This sample was col-

lected in Sweden and from the patient of severe acute res-

piratory syndrome coronavirus 2 (SARS-CoV-2). Next,

we applied the JWES to some other WGS samples

(SARS-CoV-2) from projects including, PRJNA657985

(SRR12486921), PRJNA657938 (SRR12486921), PRJ

NA624223 (SRR12328890), PRJEB39632 (ERR43

87385, ERR4387386, ERR4387388), PRJNA649101 (SR

R12336742, SRR12336753, SRR12336755, SRR12

336756, SRR12336761, SRR12336765, SRR12336766),

and PRJNA207663 (SRR891275) [53–55]. The JWES

reported total 2 736 453 variants for PRJNA657938,

1 793 959 variants for PRJNA624223, 154 016 variants

for PRJEB39632, 54 930 variants for PRJNA649101,

and 20 749 variants for PRJNA207663. Results are

reported in Table 1, including data type, project ids,

sample numbers and ids, total variant count, sources

URL, and date last accessed.

To further test the JWES pipeline, we downloaded

SRR891275 from NCBI Sequence Read Architecture

(SRA) database. The SRR891275 was submitted by the

Gene Expression Omnibus (GEO). The sequencing

dataset was derived from purified CD4+ T cells from

human samples (Homo sapiens) using Illumina HiSeq

2000 [51]. We applied the JWES pipeline at the

SRR891275 within HPC environment, provided by the

Rutgers Office of Advanced Research Computing

(OARC). We were able to successfully complete the exe-

cution of deployed pipeline and using the JWES-ETL

module, all the variants were successfully extracted from

the CSV file and stored in the relational database man-

agement server, provided by the Rutgers Institute for

Health (IFH). We identified a total of 20 749 variants

across all chromosomes. Then, mapped each variant to

the gene that it has affected and divided the variants

into two groups: variants that affect protein-coding

genes and noncoding genes. We were able to discover a

total of 12 979 variants (~ 63%) that affected noncod-

ing genes, and a total of 7770 variants (~ 37%) that

affected protein-coding genes. We found 12 979 non-

coding genes and the 7770 protein-coding genes. We

observed that ~ 0.8% of the noncoding genes have > 10

variants, and the remaining ~ 99.2% have ≤ 9 variants.

Similarly, for the protein-coding region only ~ 2% of

those genes have ≥ 10 variants and remaining ~ 98%

have ≤ 9 variants. Next, we reported chromosome-

based variant distribution in a simplified circos plot,

divided in two histograms, (a) color-coded and black

(Fig. 4). Color-coded histogram presents all the variants

that appeared in protein-coding genes, and the black in

noncoding genes. We observed protein-coding region of

chromosome-2 including ~ 7.4% of the total variants,

being the chromosome with the highest number of vari-

ants in the protein-coding region. Similarly, chromo-

some-2 reported ~ 11.8% of the total variants for the

noncoding region, the highest among all chromosomes

in noncoding regions. Variant spectrum of chromo-

some-Y contains only ~ 0.5% of the variants for the

noncoding region, being the chromosome with the

smallest number of noncoding variants. Similarly, chro-

mosome-Y only had ~ 0.03% of variants in the protein-

coding section, being the chromosome with the lowest

number of variants in the protein-coding region.

Performance evaluation of JWES

In this manuscript, we report evaluated performance

of the JWES by testing it at our in-house generated
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and processed HQ WGS samples. We submitted 10

parallel jobs within HPC environment, supported by

the Rutgers OARC. These jobs were scripted and

deployed by the JWES with Slurm, and for 10 differ-

ent WGS samples, sized (raw, FASTQ) between 1.2

and 1.9 TB (Table 2). Individual job configurations

include requesting 1 dedicated node with 8 CPUs-per-

task and 46G Memory. Overall data processing took

time in between 61 and 95 h, and the final VCF files

produced—ranged between 2.6 GB and 3.1 GB of size

including over 4 million variants resulted for each

pipeline. We would like to emphasize the fact that data

processing speed varies based upon the computing

infrastructure.

Discussion

We emphasize that automated data processing, man-

agement, and visualization should be an indispensable

component of the modern WGS and WES data analy-

sis, which is currently not the case. The processed high-

quality WGS and WES data (e.g., generated by Illu-

mina HiSeq) concludes with, if not millions then over

hundred thousand variants. Downstream analysis of

Table 1. List of publicly available NGS datasets and extracted total number of variants using JWES. Table 1 provides an overview of

different whole genome/exome sequencing projects selected for variant discovery using JWES. Table 1 includes data type, project ids,

sample numbers and ids, total variant count, sources URL, and date last accessed.

Data

Type Project IDs

Sample

numbers Sample IDs

Total

variants Source URL

Date

accessed

WGS PRJNA657985 1 SRR12474733 43 685 https://www.ebi.ac.uk/

ena/browser/view/

PRJEB39632

06-28-

2021

WGS PRJNA657938 1 SRR12486921 2 736 453 https://www.ebi.ac.uk/

ena/browser/view/

PRJNA657985

06-28-

2021

WGS PRJNA624223 1 SRR12328890 1 793 959 https://www.ebi.ac.uk/

ena/browser/view/

PRJNA657938

06-28-

2021

WGS PRJEB39632 3 ERR4387385, ERR4387386, ERR4387388 154 016 https://www.ebi.ac.uk/

ena/browser/view/

PRJNA649101

06-28-

2021

WGS PRJNA649101 7 SRR12336742, SRR12336753, SRR12336755,

SRR12336756, SRR12336761, SRR12336765,

SRR12336766

54 930 https://www.ebi.ac.uk/

ena/browser/view/

PRJNA624223

06-28-

2021

WGS/

ATAC-

seq

PRJNA207663 1 SRR891275 20 749 https://trace.ncbi.nlm.nih.

gov/Traces/sra/?run=

SRR891275

02-28-

2021

Table 2. JWES performance evaluation details based on processed high-quality—in-house generated WGS datasets. Table 2 provides an

overview of processing time (hours) taken by the JWES pipeline to complete the task of variant calling. The performance of the JWES is

based upon number of features including, the size of sample (RAW Data), VCF file size, Memory, Nodes, and designated CPUs-per-task.

Sample

IDs

Total

variants

RAW data – sample

sizes

VCF file size (SNP and

Indel)

Time

(h)

Number of

nodes

CPUs – per –

tasks Memory

1 4 867 674 1.2 TB 2.6 GB 654 MB 65 1 8 46G

2 4 928 789 1.5 TB 2.6 GB 678 MB 74 1 8 46G

3 5 808 057 1.7 TB 3.1 GB 812 MB 77 1 8 46G

4 4 897 749 1.3 TB 2.6 GB 657 MB 61 1 8 46G

5 4 883 410 1.4 TB 2.6 GB 671 MB 70 1 8 46G

6 4 983 681 1.6 TB 2.6 GB 698 MB 83 1 8 46G

7 5 000 735 1.5 TB 2.6 GB 698 MB 88 1 8 46G

8 5 902 241 1.9 TB 3.1 GB 837 MB 95 1 8 46G

9 4 870 099 1.1 TB 2.6 GB 654 MB 57 1 8 46G

10 4 925 968 1.3 TB 2.6 GB 675 MB 67 1 8 46G
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dataset including few samples can be well managed by

the small team of bioinformaticians. However, investi-

gating susceptibility of multiple samples (e.g., hundred/

thousands) is cumbersome, tedious, and time-consum-

ing. It is still a challenging task today to perform auto-

matic downstream analysis, which includes gene-

variant discovery, annotation, prediction, and genotyp-

ing. Furthermore, it is difficult to timely detect De

Novo Single-Nucleotide Variants (DNSNVs) [56] and

minimize the number of false negatives [57]. Imple-

menting platforms dealing big data analytic challenges

require manpower (e.g., bioinformaticians, biostatisti-

cians), computational resources (e.g., HPC and cloud

computing environments), and bioinformatics applica-

tions (e.g., data inspection, mapping to reference gen-

omes, expression analysis, and variant calling).

The exome sequencing has enabled us to specifically

target and sequence the protein-coding region of the

hg38. In the last several years, it has served as a pow-

erful and cost-effective tool for minutely dissect the

genetic basis of diseases including the Mendelian disor-

ders [58]. It has catapulted the speed of novel disease-

associated genes identification in intellectual disability

[59], Parkinson’s disease [60], and cancers [61]. Data

generated from NGS technologies have led to a para-

digm shift in the field of medical research and how

clinical investigators practice the treatment of rare and

more frequent human disorders [62]. It has always

been one of the fundamental pursuit of genetics to

determine genotype–phenotype association. The state

of art sequencing technologies not only provide enor-

mous genome-wide data but are also inexpensive com-

pared to previous times [63]. However, one of the

biggest challenges is to develop constantly evolving,

analytical bioinformatic pipelines that can process and

analyze data to identify the variants [64]. The wealth

of existing bioinformatics tools, databases, and appli-

cations have helped in accelerating the data processing

and analysis, and however, there is a lacunae of sim-

pler clinician/patient friendly tools/pipelines for a

broader utility in clinical personalized medicine setting

[65,66].

With the development of the JWES, the expectation

is to aid the identification process of disease associ-

ated, clinically relevant variants in a patient/individ-

ual’s genome. To summarize, in this manuscript, we

Fig. 4. JWES visualization. The figure presents Circos graph plotting all the variants for all chromosomes. The internal histogram represents

the total number of variants found in the protein-coding genes, and the external histogram represents variants found in the noncoding

genes
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have presented the JWES; a new bioinformatics pipe-

line for gene-variant discovery, annotation, prediction,

and genotyping. While the JWES development, we

were focused on testing the performance of most used

bioinformatics applications for the WGS/WES data

processing and analysis, addressing big data analytics

and application usability issues. The JWES is a user-

friendly application, which can be easily configured

and used by the noncomputational and bench scientist.

It implements an efficient data ETL process to store

identified variants in a database. The JWES database

features include but are not limited to the management

of variant information about genomic position, refer-

ence and alternate base of variants, chromosome, alle-

les, filters, and genotype quality. Furthermore, it offers

data visualization module with several features to

automatically generate circos plots, which facilitate

interactive graphing of gene-variant data. Circos fea-

tures plotting of complex data in multiple tracks of

different types (histograms, scatterplot, highlights,

tiles, text), configurations (ticks, rules), color schemes,

customized ideogram, and networked connections

dependent on their values [67,68]. The JWES visualiza-

tion module enables designing of readable outlines and

reducing variant analysis pipeline outputs to produce a

summarized image with digestible fashion.

The growing focus toward the personalized medicine

approach is ushered by a fundamental shift in one size

fits all, to a precisely more specific treatment plan for

patients keeping predisposing factors/ conditions in

mind. The precision medicine approach requires state

of art development in the healthcare technologies that

can foster the successful incorporation of heteroge-

neous genomic data into clinical settings. Currently,

there is a lack of genomics pipelines that can efficiently

process and analyze genomic data (WGS/WES). With

the development of the JWES, we hope to help the

clinical and scientific communities in moving a step

closer toward the precision medicine approach with a

more standardized and consistent way. In the clinical

settings, the outcome of the JWES pipeline can be

used for the predictive analysis, and deep phenotyping

by integrating the processed variant data in an AI/ML

ready formats.

Conclusions

The scope of this study is to support the process of

genetic testing with the classification of susceptibility

genes to detect changes of clinical significance. We

have presented and validated the JWES to deal with

handling high-volume variant data management, anal-

ysis, and visualization challenges. The current version

of the JWES offers command line but an easy-to-use

interface. However, in future we are looking forward

to implementing interactive interface, which will fur-

ther ease the job for its users to process and analyze

the WGS and WES data. Furthermore, we will be

advancing data visualization module to produce

dynamic heat maps, gene pathways and networks,

and cluster maps for gene expression and variant

analysis.
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