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Abstract

Evoked striatal field potentials are seldom used to study corticostriatal communication in vivo because little is known about
their origin and significance. Here we show that striatal field responses evoked by stimulating the prelimbic cortex in mice
are reduced by more than 90% after infusing the AMPA receptor antagonist CNQX close to the recording electrode.
Moreover, the amplitude of local field responses and dPSPs recorded in striatal medium spiny neurons increase in parallel
with increasing stimulating current intensity. Finally, the evoked striatal fields show several of the basic known properties of
corticostriatal transmission, including paired pulse facilitation and topographical organization. As a case study, we
characterized the effect of local GABAA receptor blockade on striatal field and multiunitary action potential responses to
prelimbic cortex stimulation. Striatal activity was recorded through a 24 channel silicon probe at about 600 mm from a
microdialysis probe. Intrastriatal administration of the GABAA receptor antagonist bicuculline increased by 6567% the
duration of the evoked field responses. Moreover, the associated action potential responses were markedly enhanced
during bicuculline infusion. Bicuculline enhancement took place at all the striatal sites that showed a response to cortical
stimulation before drug infusion, but sites showing no field response before bicuculline remained unresponsive during
GABAA receptor blockade. Thus, the data demonstrate that fast inhibitory connections exert a marked temporal regulation
of input-output transformations within spatially delimited striatal networks responding to a cortical input. Overall, we
propose that evoked striatal fields may be a useful tool to study corticostriatal synaptic connectivity in relation to behavior.
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Introduction

Synaptic transmission and plasticity are customarily studied in

brain slices. Recent studies tried to fill the gap between findings in

brain slices and behavior by using evoked local field responses as

readout of synaptic transmission in vivo. For instance, in the

hippocampus it has been possible to study changes in evoked local

field responses in parallel with learning as well as interactions

between changes in synaptic efficacy and learning in vivo [1,2].

Using evoked local field potentials as a readout of corticostriatal

synaptic transmission proved to be more difficult, because of

concerns that they could be contaminated through volume

conduction from neighboring structures. Thus, issues like the

relationship between changes in the synaptic efficacy of corticos-

triatal connections and motor learning have been studied by

correlating behavior with slice physiology findings [3].

Knowing more about the origin of local field activity in the

striatum may allow tackling other currently relevant problems

related to corticostriatal physiology. For instance, the degree of

functional overlap between the projection fields from different

cortical areas [4,5,6], the dependence of corticostriatal plasticity

on spontaneous activity and neuromodulators [7], and the control

exerted by local inhibitory networks over cortical input [8,9] are

only a few still unsolved issues. Concerning local inhibition, slice

physiology studies have demonstrated that collateral inhibition and

GABAergic interneurons both have synaptic influences on the

medium spiny projection neurons (MSNs) of the striatum

[10,11,12,13]. Although in vivo studies have demonstrated an

influence of local GABAergic networks on single MSNs [14,15],

little is known about the temporal and spatial effects of GABAergic

regulation at the network level.

Here we asked whether striatal field potential responses evoked

by electrical cortical stimulation are of local origin and studied

their relationship with intracellularly recorded synaptic potentials

and the firing activity of striatal ensembles. Moreover, we analyzed

the role of fast GABAergic local connections on corticostriatal

communication in vivo by infusing the GABAA receptor antagonist

bicuculline into the striatum through a microdialysis probe.

Methods

Ethics statement
All animal procedures performed in the present study were

approved by institutional regulations of the Committee for the
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Care and Use of Laboratory Animals (CICUAL, Approval

number RS2079/2007, University of Buenos Aires) and in

accordance with government regulations of the National Food

Safety and Quality Service (SENASA, Resolution number

RS617/2002, Argentina). All efforts were made to minimize the

number of animals used and their suffering.

Subjects and surgery
Male CF-1 mice were housed in a colony maintained under a

12 h light: 12 h dark cycle, at constant temperature (21u–24uC)

with free access to food and water. A total of 28 mice (28 to 56

days old) were used for the present study. The day of the surgery

the animal was deeply anesthetized with urethane (1.2–1.5 g/kg

i.p.). Long-lasting local anesthetic (bupivacaine hydrochlorate

solution, 5% v/v, Durocaine, AstraZeneca S.A., Argentina) was

applied subcutaneously on the scalp (0.1 ml) and the animal was

affixed to a stereotaxic frame (Stoelting Co, Wood Dale, IL, USA).

Body temperature was maintained at 36–37uC with a servo-

controlled heating pad (Fine Science Tools, Vancouver, Canada).

During the experiment, the level of anesthesia was regularly

verified by testing the nociceptive hind limb withdrawal reflex and

by online visual examination of the frontal cortex electrocortico-

gram [16]. Supplemental doses of urethane were customarily given

throughout the experiment (0.3 g/kg s.c. every 2–3 h).

Striatal field potentials
Striatal field potentials were recorded from 24 channels of a

two-shank silicon probe (100 mm vertical site spacing and 500 mm

horizontal shank spacing; NeuroNexus Technologies, Ann Arbor,

MI). Each electrode of the silicon probe had a contact area of

413 mm2 and an impedance of about 0.8 MV. The multichannel

electrode was positioned within the rostral area of the dorsal

striatum with an angle of 20u in the coronal plane (0.6–1.1 mm

anterior to bregma, 1.0–3.0 mm lateral to midline, 1.5–4.0 ventral

to the cortical surface). Multichannel signal was referenced to a

screw in the occipital bone, amplified, band-pass filtered, digitized

(10 kHz) and stored in a computer for offline analysis. Signal was

band pass filtered into two bands: low pass-band (5–300 Hz) and

high-pass band (300–3000 Hz) to obtain, respectively, striatal local

field and multiunitary action potential activity stemming from the

same recording sites.

Intracellular recordings
Intracellular recordings were performed with glass micropi-

pettes filled with 2 M potassium acetate with impedance ranging

from 60–90 MV. The glass electrode was lowered into the rostral

portion of the dorsal striatum with an angle of 20u in the coronal

plane (0.8–1.0 mm anterior to bregma, 2.0–3.0 mm lateral to

midline). Microelectrodes were slowly advanced through the

striatum with a hydraulic micromanipulator until a neuron was

impaled (typically, 2.0–3.0 mm below cortical surface). After cell

penetration and complete removal of hyperpolarizing current, we

examined the stability of the recordings for 2–5 minutes before

studying responses to cortical stimulation (see below).

To study the local field correlates of MSNs postsynaptic

potentials a second glass electrode (2–4 MV) filled with 2 M NaCl

was lowered into the striatum approximately 400 mm posterior to

the intracellular recording site (0.6 mm anterior to bregma,

1.7 mm lateral to midline and 2.7 mm below cortical surface). The

signal from the extracellular microelectrode was amplified, band-

pass filtered (5–300 Hz, Lab1, Akonic) and digitized together with

the intracellular signal at 10 kHz.

Drug infusion: reverse microdialysis
To perform intrastriatal pharmacological manipulations we

performed local field potential recordings with simultaneous

drug infusion through reverse microdyalisis. A microdialysis

probe (2 mm of exposed membrane; Bioanalytical Systems, West

Lafayette) was vertically lowered (100 mm per minute) into the

striatum (0–0.4 mm anterior to bregma, 1.7 mm lateral to

midline, 4.0 mm below cortical surface) while being constantly

perfused with artificial cerebrospinal fluid (ACSF) at a 2 ml/min

rate. A precision switch with zero dead space allowed perfusing

the cannula with either ACSF or ACSF containing drugs. The

composition of ACSF was (in mM): 147 NaCl, 3 KCl, 0.8 MgCl,

1.2 CaCl2, 2.0 NaH2PO4, 2.0 Na2PO4; osmolarity: 290–

300 mOsm/l; pH: 7.4 [14]. After baseline (ACSF) recordings,

we studied the effect of the competitive glutamate AMPA

receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione

(CNQX, Sigma) at 100 or 200 mM or the competitive GABAA

receptor antagonist bicuculline at 100 mM (bicuculline methio-

dide, Fluka). Drug concentrations were chosen based on previous

experience [17] and reports by others [14]. Drug effect was

tested for 10 minutes and then the perfusion was switched back

to ACSF. Tubing dead space and the perfusion rate were taken

into account to determine the time of drug delivery to the

striatum.

Cortical electrical stimulation
In all experiments, a concentric bipolar electrode (SNE-100,

Better Hospital Equipment, New York, NY; outer contact

diameter 0.25 mm, central contact diameter 0.1 mm, contacts

separation 0.75 mm, contact exposure 0.25 mm) was placed into

the prelimbic area of the medial prefrontal cortex (1.7–2.1 mm

anterior to bregma, 0.4 lateral to midline, 2.0 mm ventral to the

cortical surface, ipsilateral to the striatal recording hemisphere)

according to Franklin and Paxinos [18]. Constant current pulses

(0.3 ms duration at 0.1 Hz, 100–700 mA; Iso-Flex and Master 8,

AMPI, Jerusalem, Israel) were applied to study corticostriatal

synaptic connectivity through evoked striatal field potentials and

postsynaptic potentials.

Histology
At the end of each experiment, animals received a lethal dose of

urethane and were transcardially perfused with 10 ml cold saline

solution and 20 ml of paraformaldehyde (4% w/v) in 0.1 M

phosphate-buffer (PB). Brains were removed, immersed for 30–

45 minutes in the same fixative at room temperature, and stored

in 0.1 M PB containing 15% sucrose at 4uC for 24–72 hours.

Coronal brain sections were cut with a freezing microtome

(50 mm) for histological reconstructions.

Location of the cortical stimulation electrode and the micro-

dialysis probe was assessed by visual examination of the

mechanical tissue damage in the coronal sections using a

transmitted light microscope at low magnification. In order to

determine the location of the striatal recording sites, before each

electrophysiological experiment the multi-electrode was immersed

in a red fluorescent dye 1,19-dioctadecyl-3,3,39,39-tetramethylin-

docarbocyanine perchlorate (100 mg/ml in acetone; DiI, Molec-

ular Probes) and air dried for 30 minutes before use. This allowed

detecting the fluorescent material deposited in the tissue with an

epifluorescence microscope. In all cases, sections of interest were

microphotographed for subsequent reconstruction of the final

recording, stimulation and dialysis sites.

Local Origin of Striatal Field Potentials
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Data Analysis
Striatal field potentials were off line analyzed with custom made

Matlab routines. Electrical stimulation of the mPFC evoked a

complex striatal field potential which typically consisted of a

positive-negative-positive (P1-N2-P2) waveform. An earlier nega-

tive component (N1) described by others [19,20,21,22] was not

readily detected in our experimental settings, probably masked by

the stimulation artifact.

The amplitude of the evoked local field potentials was deter-

mined as the voltage difference between the N2 peak and the

subsequent P2 peak (Figure 1B). To measure the amplitude of the

evoked potentials, the recorded signal was denoised using a zero-

phase digital filter (8 pole butterworth filter, low-pass cutoff

300 Hz). For every individual trial the voltage and latency of the

N2 and P2 peak were semiautomatically determined by respec-

tively detecting the local minimum and maximum of the evoked

field potential. For quantitative time-course population analysis,

the averaged responses of 5 minutes of recording were used. When

CNQX infusion abolished evoked field potential responses and the

N2 and P2 peaks were not readily detected, measurements were

taken at the timestamps determined during the immediately

previous baseline condition for the same recording site. Under

some experimental conditions, additional field responses (second-

ary, tertiary, etc) were detected after the main evoked field

response. The amplitude of the secondary field response was

measured in the same way as the main field response. Bicuculline

infusion typically enhanced or induced secondary waves. For

recording sites that did not display a secondary field response

during the baseline condition, the amplitude was measured at the

timestamps determined for the bicuculline condition. Therefore, in

the absence of a true secondary field response during baseline

recordings the measurement yielded, in occasions, negative values.

Due to the relatively low impedance of recording electrodes

used (,0.8 MV), action potential evoked responses were multi-

unitary. To quantitatively study multiunitary responses, high-pass

signal was rectified, smoothed with a 1 sample-sliding window (30-

samples centered-average), and averaged across 30 trials. The

standard deviation for the 30 trials was computed for 100 ms of

the high-pass signal preceding the stimulation onset. The rectified

and smoothed high-pass signal which surpassed 3 times the

standard deviation was considered as a significant response.

Intracellular recordings were analyzed with Clampfit 10 (Axon-

Labs). Statistical analysis was performed with Statistica 7.0. Repeated

measures ANOVA and Student’s paired t test was applied when the

data distributions fulfilled parametric assumptions. Otherwise the

non-parametric Wilcoxon paired test was applied for comparing

before and after drug effect.

Results

Prelimbic cortical stimulation induces a topographically
organized and stimulation intensity dependent striatal
field response

It is known that corticostriatal projections are topographically

organized with the medial prefrontal cortex (mPFC) projecting to

the medial part of the dorsal striatum and nucleus accumbens

Figure 1. Evoked field potential amplitude changes along the dorsal striatum and with stimulation intensity. A. Representative
histological sections showing the location of cortical (arrow, left) stimulation electrode and striatal (st, right) recording electrode. The striatal image
was composed by overlaying microphotographs of the same section under transmitted light (tissue) and epifluorescence (electrode, red).
Multichannel silicon probes were immersed in a DiI solution before electrophysiological experiments. Traces on the right are local field potentials
evoked by stimulating the cortex with different current intensities (individual trials in gray, average in black). Note the higher amplitude of evoked
responses at higher stimulation currents. B. Detail of a representative evoked field response. Field potential amplitude was measured between the N2
and P2 peak for each individual trial and then averaged. In these and all further traces positive is upward. Time 0 corresponds to cortical stimulation.
C. Topographical reconstruction of stimulation sites (left) and striatal evoked responses (right) in 12 experiments. Focal stimulation (300 mA) at the
prelimbic area produces a maximal response in a restricted region of the dorsal striatum conforming a ‘‘hot spot’’ (circle). D. Amplitude of the striatal
field response at the hot spot as a function of stimulation current intensity (n = 12 experiments, mean6SD). E. The number of striatal sites that
respond to prelimbic cortex stimulation (evoked field potential amplitude higher than 0.3 mV) increases with stimulation intensity. However, many
recording sites (38 out of 288 recorded sites) remained unresponsive even at 700 mA.
doi:10.1371/journal.pone.0028473.g001

Local Origin of Striatal Field Potentials
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[23]. To study the physiological correlate of such organization we

performed in vivo multi-site simultaneous recordings of striatal field

potentials evoked by electrical stimulation at the prelimbic region

of the mPFC (Figure 1A). Typical striatal responses consisted of a

positive-negative-positive wave with a negative peak (N2) occur-

ring 8.461 ms and a positive peak (P2) at 12.361.2 ms after

mPFC stimulation (n = 10, mean6SD, Figure 1B). An early N1

wave reported by others in striatal slice recordings [19,21,24] was

probably hidden by the stimulation artifact in our experimental

preparation. In some instances, an additional negative wave (N3)

smaller in amplitude was observed after the P2 peak of the main

field response (see below). Similar shapes of evoked field potentials

recorded in vivo have been reported for other unlayered structures,

such as the subthalamic nucleus and basolateral amygdala [25,26].

Overall, our findings are consistent with previous in vivo and in vitro

studies on evoked striatal field potentials [19,21,22,24,27].

The amplitude of the striatal evoked potentials varied with the

position of the recording site within the striatum. Field responses

evoked from stimulation sites located within the prelimbic area

were maximal in the centromedial region of the dorsal striatum

and decayed towards the dorsal and lateral striatum, conforming a

‘‘hot spot’’ (Figure 1C). This pattern of regional response is

consistent with the anatomy of the corticostriatal projection from

the mPFC [23] suggesting that evoked field potentials are a

physiological correlate of such connections.

As expected, the amplitude of the striatal field potentials

increased with mPFC stimulation intensity (Figure 1D). Although

most of the recorded sites were unresponsive to the lowest

stimulation intensity (100 mA), a small fraction of the recorded sites

located at the maximally responsive area of the striatum did show

a small but consistent field response (Figure 1A, lower traces).

Higher stimulation intensities (200–500 mA) recruited a larger

number of responsive sites with a corresponding increase in the

amplitude of the evoked potentials (Figure 1 D and E). The input-

output curve shows that striatal evoked responses tend to reach a

‘‘plateau’’ at intensities higher than 500 mA, suggesting a

saturation of the corticostriatal connections influenced by the

stimulating electrode and highlighting the physiological nature of

the recorded potentials (Figure 1D, p.0.31 for 500 vs 600 mA and

p.0.9 for 600 vs 700 mA, Tukey post-hoc test, repeated measures

ANOVA). Recording sites located far from the hot spot were

unresponsive even at 700 mA, indicating a restricted corticostriatal

connectivity map originated at the prelimbic region of the mPFC.

Striatal field responses increase in parallel with dPSP
amplitude in medium spiny neurons

To assess whether striatal local field potentials are related to

synaptic activity in MSNs we performed simultaneous intracellular

recordings of MSNs and striatal field potentials. As in rats, striatal

MSNs displayed a bistable membrane potential, which alternated

between a very hyperpolarized ‘‘down’’ state and a more

depolarized ‘‘up’’ state (28262 and 26563 mV, n = 7,

mean6SD; Figure 2A). Action potential discharge probability

was very low and restricted to the ‘‘up’’ states, as expected for

MSNs, and input resistance measured at the down state was also

similar to that previously reported in rats (38.764.5 MV, n = 4,

mean6SD, [28,29]).

Upon prelimbic cortex stimulation, MSNs showed a depolarizing

postsynaptic potential (dPSP) which peaked at 11.862.4 ms (n = 7,

mean6SD), with an amplitude that increased with stimulation

intensity (Figure 2B). Although in some instances dPSPs were strong

enough to elicit action potentials, this was seldom the case for

stimulation intensities below 500 mA. Simultaneously recorded field

potentials revealed a temporal correspondence of the N2 compo-

nent of the field potentials and the peak of the dPSPs (N2 latency

10.861.1, n = 7 mean6SD, p.0.3 compared to dPSP peak time,

Student’s paired t test). Furthermore, increasing stimulation

intensities led to a parallel increase of the dPSP and striatal field

potential amplitudes (Figure 2C).

Another observation that supports the relationship between

evoked field potentials and membrane potential changes in MSNs

is that striatal field responses show paired pulse facilitation.

Corticostriatal paired pulse facilitation is a well known form of

short-term synaptic plasticity that has been extensively studied in

vitro as a tool for interpreting presynaptic changes associated with

long term plasticity [30,31,32]. After paired pulse stimulation in

Figure 2. Striatal field responses are related to dPSPs in
medium spiny neurons. A. As in rats, the membrane potential of
mouse MSNs alternates between up and down states. The histogram
(1 mV bin) shows a biphasic distribution of Vm values corresponding to
20 seconds of the illustrated intracellular recording. B. Simultaneous
intracellular (above) and local field (below) recordings obtained with
separate glass microelectrodes after stimulating the prelimbic cortex
with different current intensities. Individual traces are displayed in gray,
averages in black. The through in the local field response coincides
temporally with the peak of the dPSP. C. The amplitudes of
simultaneously recorded striatal dPSPs and evoked local field potentials
(eLFP) increase in parallel with increasing stimulation intensities. Data
corresponds to one simultaneously recorded pair stimulated at 200, 400
and 600 mA. D. Correlation between eLFP and dPSP amplitude evoked
by prelimbic cortex stimulation at 400 mA in five different experiments
(n = 5, r2 = 0.94, p,0.01).
doi:10.1371/journal.pone.0028473.g002

Local Origin of Striatal Field Potentials

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e28473



vivo (50 ms interstimulus interval), the second striatal evoked

potential was consistently higher than the first one for cortical

stimulation intensities ranging from 200 to 700 mA (Figure 3A). As

expected, similar results were obtained for the amplitude of MSNs

dPSPs (2367% facilitation at 400 mA stimulation intensity,

mean6SD, Figure 3B–C). Simultaneously recorded striatal field

potentials showed an increase of 3269% (mean6SD, Figure 3D).

Altogether, the results obtained so far suggest that striatal field

responses are related to MSN synaptic activity.

The amplitude of evoked striatal fields is related to local
multiunit activity

Next, we investigated whether the local field responses were

correlated to the striatal firing. To this end, striatal signal was

band-pass filtered (see Methods) to obtain local field potentials and

multiunitary action potentials stemming from the same recording

sites. Due to the low impedance and relatively large contact area of

the recording electrodes, it was not possible to systematically

identify single unit action potentials evoked by cortical stimulation.

Nevertheless, multiunitary action potentials were readily observed

in those striatal recording sites that displayed field evoked

responses (Figure 4A–B). Note that, however, recorded spikes

are probably contributed by a minority of the neurones receiving

inputs from the prelimbic cortex, as intracellular recordings show

that most MSN show subthreshold responses without action

potential discharges even at a stimulation intensity of 400 mA

(Figure 2). As expected, higher stimulation intensities induced

stronger multiunitary responses, which were also strongly

correlated with evoked field potential amplitudes (Figure 4C).

As mentioned before, in some recording sites it was possible to

obtain a second smaller wave (N3) mounted on the main field

response (Figure 4A). Such secondary field response was more

likely to appear if the recording site was within the ‘‘hot spot’’ and

the stimulation intensity applied was high. Noticeable, this wave

was temporally associated to a second burst of multiunitary action

potential activity (Figure 4A, 700 mA), supporting the relation

between the evoked field potential and striatal action potentials.

However, when comparing the latencies of the local field and

action potential responses, it seemed that striatal field responses

took place prior to the action potentials. In fact, the N2

component of the evoked potentials preceded the peak of

multiunitary action potential activity (Dt: 1.3160.78 ms, n = 23,

mean6SD, paired t test: p,0.001, Figure 4D).

Therefore, the data suggest that cortically evoked field potentials

reflect subthreshold activity which, as expected, is correlated to

striatal spiking activity.

Local origin of evoked striatal field potentials
As there is no intrinsic source of excitation in the striatal circuit,

when AMPA receptors are blocked, synaptic activity disappears in

striatal neurons in corticostriatal organotypic cultures [33]. In

order to unequivocally determine whether striatal evoked field

potentials are synaptically originated, we studied the effect of

intrastriatal microinfusion of the AMPA receptor antagonist

CNQX by means of reverse microdialysis. Microdialysis probes

were positioned within the striatum between 400 and 800 mm

posterior to the multichannel recording electrode (Figure 5A). In

agreement with previous reports showing that the microdialysis

procedure does not alter basic physiological properties of MSNs per

se [14,17] we found that cortically evoked striatal field potentials

displayed waveforms, amplitudes and latencies comparable to

those obtained without a microdialysis cannula. Furthermore,

striatal evoked potentials remained unchanged after 2 hours of

ACSF infusion (Figure 5B).

A complete blockade of the evoked field potentials was typically

obtained within 10 minutes of CNQX infusion (Figure 5C–D).

Similar results were obtained for drug concentrations of 100 and

200 mM (n = 3 and 4 experiments, respectively), revealing the

glutamatergic synaptic nature of the evoked field potentials.

Importantly, after washing out with ACSF, evoked field potentials

completely recovered to basal amplitudes (Figure 5C–D).

The latency and magnitude of the CNQX effect depended on

the distance between the recording site and the dialysis probe.

Recording sites located closer to the dialysis probe displayed a

faster and more potent blockade than the farther ones. For

instance, in the experiment depicted in figure 5E, the evoked

response in the recording site a was almost abolished by the 4th

minute of CNQX infusion, whereas the response at the recording

Figure 3. Evoked striatal field potentials show paired pulse
facilitation. A. Amplitude of the striatal field response (mean6SEM,
n = 5) as a function of stimulation current intensity for cortical paired
pulse stimulation (interstimulus interval 50 ms). B. Simultaneous
recordings of striatal eLFP through a glass micropipette (above) and
MSN membrane potential (below) after cortical paired pulse stimulation.
C–D. Paired pulse stimulation at the prelimbic cortex (400 mA and 50 ms
interstimulus interval) induces a facilitation of the response to the second
stimulus in MSNs (C, *p,0.0001, Student’s paired t test, n = 7) and evoked
striatal field potentials (D, *p,0.005, Student’s paired t test, n = 7).
doi:10.1371/journal.pone.0028473.g003

Local Origin of Striatal Field Potentials
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site c was only diminished by a 20%. This evidence demonstrates

not only that striatal field responses are locally and synaptically

generated but also that field responses recorded from different

electrodes within the striatum are locally generated as well and do

not reflect volume conduction from an intrastriatal current source.

Local GABA networks modulate local field responses to
prelimbic cortex stimulation

Although the effect of local GABAergic connections on the

excitability of MSNs has been investigated in vivo [14,15,34], its

effects at the network level have only been investigated in vitro and

by means of computer simulations (see for example [8,35]). Here

we asked whether cortically evoked striatal field potentials are

influenced by local GABAergic neurotransmission by means of

intrastriatal infusion of 100 mM bicuculline through reverse

microdialysis.

We performed two sets of experiments using 300 (4 mice) or

400 mA (3 mice) cortical stimulation intensity. When stimulating

the prelimbic cortex at 300 mA, intrastriatal infusion of bicuculline

increased field potential responses by 3466% (p,0.0001 Wil-

coxon paired test, Figure 6A,C). Unexpectedly, when stimulating

at a higher current intensity (400 mA) we did not find a significant

increase of the evoked field potential amplitude (p.0.6 Wilcoxon

paired test, Figure 6B–C). In addition, bicuculline tipically induced

the appearance of a secondary field response following the main

striatal evoked potential (Figure 6B,D–E), suggesting a temporal

expansion of the overall response to cortical commands.

Interestingly, similar results have been reported in vitro by using

picrotoxin instead of bicuculline [36]).

Regardless of the stimulation intensity, the multiunitary action

potential response was increased after bicuculline infusion

(Figure 7A). The action potential area increased by 2 fold

(197611% compared to baseline, p,0.0001, Wilcoxon paired

test, Figure 7B). This change was due to an increase in its peak

amplitude (50611% compared to baseline, p,0.0001, Wilcoxon

paired test, Figure 7C) and duration (from 3.8460.56 ms during

baseline to 5.5960.69 ms after 10 minutes of bicuculline;

mean6SD, p,0.0001, Student’s paired t test, Figure 7D),

indicating that striatal output is strongly modulated by local

GABA.

The dissociated effect of bicuculline on the amplitude of striatal

field and action potential responses at 400 mA cortical stimulation

supports the notion of a mainly subthreshold origin of the evoked

field responses.

To determine whether the extension of corticostriatal synaptic

maps is limited by GABA neurotransmission, we computed the

number of responding sites (sites displaying a field potential

amplitude .0.3 mV) before and after bicuculline administration

(Figure 8C–D). Both, low and high cortical stimulation intensity

yielded similar results: at 300 mA only 4 out of 31 non-responding

sites became responsive after bicuculline infusion whereas the

proportion for 400 mA experiments was 2 out of 14 (Figure 8D).

These results indicate that the extent of the synaptic corticostriatal

map revealed by cortical stimulation does not appear to be shaped

by GABA neurotransmission.

Paired pulse facilitation is still expressed after local
GABAA receptor blockade

Studies in slices indicate that corticostriatal paired pulse

facilitation is mainly presynaptic in nature [30,31,37] (although

see [32]). However, in vivo, local GABA networks made up by fast

spiking interneurons and axon collaterals of MSNs may be

Figure 4. Evoked field response precedes the peak of multiunitary action potential response. A. Field (3–300 Hz) and action potential
(300–3000 Hz) responses at the hot spot to increasing stimulation current intensities. Note the secondary field response (N3 peak, black arrow) at
high stimulation intensities (20 trials at each intensity). B. To quantify the action potential response, trials were rectified, smoothed and averaged,
allowing the computation of the area and peak latency of the multiunitary action potential response. C. Correlation between the amplitude of the
evoked field potential and the area of the action potentials response at 300 mA; each point stems from one recording site at the hot spot from 23
different experiments. r2 = 0.84, p,0.0001. D. Field response N2 peak precedes the peak of multiunitary action potential response (n = 23, * p,0.005,
Student’s paired t test).
doi:10.1371/journal.pone.0028473.g004
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recruited preferentially by the first or second stimulation pulses,

and then have an influence on paired pulse facilitation of cortically

evoked fields [11,12,15].

Before bicuculline administration, prelimbic cortex stimulation

induced a strong paired pulse facilitation of the striatal field response

(4563%, mean6S.E.M.). After 10 minutes of GABAA receptor

blockade, paired pulse facilitation was still present (3661%,

mean6S.E.M., n = 3 experiments at 400 mA; Figure 9A), indicating

that paired pulse facilitation cannot be completely explained by a

differential recruitment of GABAergic circuits during the first and

second stimulation pulses.

Consistent with the effect of bicuculline on the striatal

multiunitary response, we found that the overall duration of the

striatal field response to the first cortical pulse was increased by

6567% after 10 minutes of bicuculline infusion (mean6S.E.M.,

p,0.0005, Tukey post-hoc test, repeated measures ANOVA,

Figure 9B), whereas the response to the second pulse increased

14669% (mean6S.E.M., p,0.0005, Tukey post-hoc test, repeat-

ed measures ANOVA, Figure 9B). Interestingly, the duration of

the field responses to the first and second pulses were comparable

during ACSF infusion (p.0.1, Tukey post-hoc test, repeated

measures ANOVA), but the response to the second pulse was

Figure 5. Local administration of CNQX blocks synaptic responses in the striatum. A. Histological sections showing the location of the
multichannel electrode (left) and microdialysis probe (right) in a representative experiment. B. Striatal field responses evoked by stimulating the
prelimbic cortex remained stable for hours under continuous infusion of ACSF through the microdyalisis probe (n = 3). C. Left: Time course of the
blocking effect of CNQX on striatal field responses evoked by cortical stimulation in a representative experiment. Each point is the amplitude of a
single evoked response, which was evaluated every ten seconds during the experiment. The superimposed line corresponds to the smoothed data
with a moving average window (20 samples). Right: Field potential responses corresponding to the individual trials depicted in gray, and multiunit
activity recorded from the same electrode contact, before, after 10 minutes of CNQX infusion, and after 40 minutes of washing out with ACSF. Data
are from the experiment shown at the left. D. CNQX administration (200 mM) almost completely blocked the striatal field response to cortical
stimulation (* p,0.001, Tukey post-hoc test, repeated measures ANOVA, N = 4). E. Left: Histological reconstruction showing the location of three
recording sites in the multichannel electrode (a, b, c) and the microdialysis probe in one of the CNQX experiments. Middle: Time course of CNQX
effect at sites a, b and c. Note that CNQX reached first the closest recording site a than the more distant sites b and c. Distance between illustrated
recording sites: 400 mm. Right: Striatal field response during the first 5 minutes and at the 10th minute of CNQX infusion in the same experiment,
showing that by the fourth minute, response in site a was abolished but remained almost unchanged 800 mm away in site c. Note that the time
course of CNQX effect depends on the location of the recording electrode and not on the basal amplitude of the response (compare site a with site
c).
doi:10.1371/journal.pone.0028473.g005
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significantly longer than that to the first pulse after 10 minutes of

bicuculline infusion (p,0.0005, Tukey post-hoc test, repeated

measures ANOVA). These results confirm the notion that local

Figure 6. Local administration of a GABAA receptor antagonist
increases striatal evoked field potential responses. A. Time
course of the evoked field potential amplitude of a representative
striatal site tested with 300 mA stimulation intensity. Note a ,50%
amplitude increase after 10 minutes of bicuculline infusion. B. Time
course of the evoked field potential amplitude of a representative
striatal site tested with 400 mA stimulation intensity. Note that the
amplitude of the main field response does not signifcantly change after
bicuculline infusion. However, a 1 mV secondary field response (open
squares) becomes apparent (see traces shown in E). C. Population data
of the main field response amplitude after 10 minutes of bicuculline for
300 and 400 mA stimulation intensity. Values are normalized to baseline.
* p,0.0001,Wilcoxon paired test. D. Bicuculline consistently increased
or induced the appearance of a secondary field response in all
recording sites stimulated at 400 mA that showed a field response
during baseline condition (3265%, * p,0.001 Wilcoxon paired test).

Values are normalized to the main field amplitude during baseline. E.
Representative traces showing the effect of intrastriatal bicuculline
infusion by reverse microdialysis on local field responses to prelimbic
cortex stimulation at 400 mA. Note the increased secondary field
response after bicuculline infusion.
doi:10.1371/journal.pone.0028473.g006

Figure 7. Intrastriatal bicuculline increases the amplitude and
duration of striatal output. A. Representative multiunitary response
to cortical stimulation before, during and after delivering bicuculline
into the striatum. The top trace corresponds to the rectified, smoothed
and averaged action potential activity of 20 individual trials. Dotted line
reflects 3 SD of multiunitary activity during 100 ms prior to stimulation
onset (400 mA). Note the increase in the amplitude and duration of the
response after bicuculline. Similar results were obtained for 300 mA
cortical stimulation. B–D. Effect of bicuculline on the area (B),
amplitude (C) and duration (D) of multiunitary action potential
responses of 20 recording sites at the hot spot from 3 different
experiments. * p,0.0001, Wilcoxon paired test. # p,0.0001 Student’s
paired t test.
doi:10.1371/journal.pone.0028473.g007
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GABAergic neurotransmission plays a crucial role in the temporal

processing of cortical commands and indicate that recent inputs

may influence the upcoming GABAergic regulation of the striatal

network.

Discussion

In the present study we show that cortically evoked striatal field

potentials are synaptically and locally generated. The physiological

significance of the evoked potentials was revealed by simultaneous

intracellular recordings and pharmacological manipulations which

indicate that striatal evoked potentials mainly reflect subthreshold

activity. Furthermore, we showed that multisite simultaneous

recordings of evoked field potentials are a valuable tool for the

construction of physiological maps of the corticostriatal connec-

tions. Finally, we revealed that in vivo local GABAergic

neurotransmission strongly modulates the temporal processing of

cortical inputs.

Evoked local field potential significance
Correlation studies between action potential discharges and

local fields sustain the notion of the local origin and physiological

significance of striatal field potentials [38,39]. Also, the fact that

striatal field activity is present in differential recording configura-

tions and when local references are used supports its striatal origin

[40]. Both approaches have limitations however. Striatal firing

shows coupling to local field activity in the cerebral cortex, which

is the main candidate for generating spurious local field activity in

the striatum [16,41]. Differential recordings favor the detection of

highly localized rhythms over more synchronous activities that

could however be local, like the striatal evoked potentials recorded

here. The abolition of striatal evoked potentials after the local

pharmacological blockade of glutamatergic AMPA receptors

reported in this study, unequivocally demonstrates their synaptic

nature and local origin. Although further studies are necessary to

extend this finding to other forms of striatal field activity, the

spatial progression of AMPA receptor blockade effects through the

multielectrode recording sites (Figure 5) suggests that the contacts

of the electrode used in the present study picked up activity from a

relatively small volume of tissue. This conclusion is in line with

recent findings in the visual cortex [42,43].

Disentangling whether evoked local field potentials reflect a

combination of subthreshold phenomena and spike discharges, or

they merely reflect membrane potential fluctuations causal to spike

discharges, proves to be more challenging. Previous in vitro studies

of striatal corticostriatal transmission have described similar

evoked field potentials to those reported here. The negative N2

wave of the in vitro striatal field response has been proposed as a

population spike [20,24] based on temporal correlations between

spike discharges and the local field potential negative peak. Here

we found a shorter latency of the negative N2 field potential

compared to the peak response of multiunitary evoked action

potentials. Moreover, MSNs respond with subthreshold dPSPs to

cortical stimulation at current intensities that produce nearly

maximal striatal local field responses. Thus, although spikes are

seen in a majority of the striatal sites from which a local field

response was recorded, it seems very likely that these spikes come

from a tiny fraction of the neurons that are responding to the

stimulus and hence having a small influence on the field response.

Finally, intrastriatal infusion of the GABAA receptor antagonist

bicuculline increased striatal action potential responses to strong

cortical stimulation (400 mA) which was not paralleled by an

increase in the amplitude of striatal field potentials. In all, our data

fit better with the view that striatal field recordings mainly reflect

corticostriatal synaptic potentials which would enable further

postsynaptic action potential discharges.

Local circuit regulation through GABAA receptors
In addition to the changes in the amplitude of striatal field

potentials, blocking GABAergic neurotransmission increased the

overall duration of the striatal field responses by more than 60%.

This result indicates that the temporal processing of incoming

information from the cortex is highly regulated by local

Figure 8. Acute blockade of striatal GABAA receptors does not expand functional corticostriatal maps. A. Histological reconstruction of
the recording electrode and the microdialysis probe in the striatum for a representative experiment. B. Signal recorded from six striatal sites (7, 8, 15,
16, 23 and 24) before and after bicuculline corresponding to the recording sites depicted in A after 300 mA prelimbic stimulation. Note that evoked
field potentials recorded from sites 7, 8 and 16 were increased after bicuculline infusion, whereas sites 15, 23 and 24, which were unresponsive under
ACSF, remained unresponsive to prelimbic stimulation after 10 minutes of bicuculline infusion. C. Evoked local field potentials of 24 recording sites
from the experiment shown in A and B. Dashed line corresponds to the threshold of significant field potential response (.0.3 mV). D. Proportion of
responding sites before (baseline) and after 10 minutes of bicuculline infusion for 300 or 400 mA cortical stimulation. Data are pooled from 4 and 3
experiments, respectively. Bicuculline administration did not significantly change the proportion of responding versus non-responding sites for either
300 mA (p.0.3 Fisher Exact Probability one-tailed test, 96 sites) or 400 mA (p.0.4 Fisher Exact Probability one-tailed test, 72 sites).
doi:10.1371/journal.pone.0028473.g008

Figure 9. Intrastriatal bicuculline infusion does not block
paired pulse facilitation and enhances field response duration.
A. Paired pulse ratio (interstimulus interval 50 ms) of the amplitude of
the evoked field potentials during baseline and after bicuculline. Top
traces: superimposed average traces of the first and second evoked
field potentials during baseline and bicuculline condition. Paired pulse
facilitation was not blocked by bicuculline indicating that paired pulse
facilitation is not due to differential effects of GABAergic neurotrans-
mission during the first and second stimulation pulse. N = 3 experi-
ments. * p,0.05 Student’s paired t test. B. The overall duration of the
striatal field potentials was determined as the time between the first
positive peak P1 of the field response and the positive peak of the last
supplementary response. During baseline condition, the duration of the
first and second evoked potential was comparable. After 10 minutes of
bicuculline infusion the overall duration of the first evoked potential
was increased 6567% whereas the second was increased 14669%.
doi:10.1371/journal.pone.0028473.g009
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GABAergic networks. Alterations in the temporal processing of

cortical commands might have implications for basal ganglia

syndromes such as dystonia or Tourette syndrome which have

been related to alterations in striatal GABAergic interneurons

[44,45]. Such temporal regulation might be the result of blocking

feedforward inhibition by fast spiking interneurons [15,46], lateral

inhibition by MSNs collaterals [47,48], or both.

In vivo, cortical paired pulse stimulation induces a facilitation of

the striatal response to the second stimulus, much like as it happens

in vitro. In vitro, such facilitation is typically interpreted as an

increased probability of glutamate release during the second

stimulus due to the presynaptic accumulation of residual Ca2+

[30,37]. In vivo, it has been argued that paired pulse stimulation

reduces the discharge probability of feedforward inhibitory

networks leading to a facilitation of MSNs response during the

second stimulus [15]. In our study, the pharmacological blockade of

GABAA receptors only produced a small reduction of paired pulse

facilitation, supporting the idea that it might be the consequence of a

short term increase of excitatory neurotransmission.

In contrast to this small effect on paired pulse facilitation,

bicuculline had a more marked effect on the duration of the paired

response than on the first one. Under bicuculline infusion, the

striatal field response evoked by the second stimulus was extended

to a greater extent than the first one, whereas under baseline

conditions, the duration of the first and second field potential

responses was indistinguishable. This suggests that, under normal

conditions, the amount of inhibition used to control the increased

excitatory drive during the second cortical stimulus is higher than

that used during the first stimulus. If fast spiking interneuron

circuits are depressed at the arrival of the second stimulation pulse

[15], it is likely that lateral inhibition by MSN collaterals is

responsible for balancing excitation and inhibition during

repetitive cortical stimulation.

Bicuculline has been shown to inhibit potassium channels of the

SK family in hippocampal neurons [49]. Although we cannot

completely rule out a contribution of changes in the SK current on

the results reported here, our findings with bicuculline reproduce

those of Pennartz and collaborators [36], who have studied the

effect of picrotoxin on striatal field responses in slices.

Corticostriatal synaptic connectivity maps
Behavioral specializations of different regions of the striatum have

been well documented [4,5]. For instance, the corticostriatal

cognitive circuit involving the dorsomedial region of the striatum

is thought to be related to goal directed behaviors, whereas the

motor circuit involving the dorsolateral region would be concerned

with habit formation and compulsive drug taking [50,51,52].

Moreover, individual differences in personality traits involving

‘‘reward dependence’’ may be accounted for by differences in the

strength of anatomical connections between the prefrontal cortex

and striatum [53]. In the present study we have been able to build a

functional corticostriatal synaptic map originated at the prelimbic

region of the mPFC which could allow measuring the strength and

spatial extent of prefronto-striatal connections under different

physiological and pathological conditions.

Striatal responses to prelimbic cortex stimulation were wide-

spread but clearly regionalized displaying a maximum in the

centromedial region of the dorsal striatum. The fact that a

complete pharmacological blockade of field responses in some

striatal sites does not change the evoked field response in spots a

few hundred micrometers apart shows that field responses do not

reflect volume conduction from neighboring striatal sites but

biological activity of the surrounding tissue at each recording site.

Furthermore, the maximal spatial extension of the evoked field

response is reached with relatively low stimulation intensities and

does not change during the blockade of GABAA receptors,

suggesting that the physiological maps truly represent the striatal

area under the influence of the cortical stimulation electrode.

Finally, the anatomical distribution of the corticostriatal terminals

originated at the mPFC [23] is consistent with the physiological

map obtained in the present study suggesting that evoked fields

could be used to build high resolution physiological corticostriatal

maps. Preliminary results indicate that cortical stimulation at other

cortical sites map differently in the striatum in consonance with

their anatomical connections.

In conclusion, the present study indicates that evoked field

potentials are an adequate tool for studying corticostriatal

communication in vivo. Taking into account the highly local

nature of evoked field potentials, stimulating cortical projections

belonging to different corticostriatal channels may allow studying

the interface of the parallel corticostriatal circuits and striatal

integration of cortical information. The relevance of this possibility

is heightened when considering that basal ganglia dependent

learning requires interaction among functionally distinct corticos-

triatal circuits and the issue of how information is transferred

among the circuits still remains unanswered [4]. Furthermore,

local circuit modulation by dopamine and other neuromodulators

and corticostriatal synaptic plasticity might be studied in vivo

together with basal ganglia dependent learning narrowing the gap

between behavior and physiology.
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