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Abstract: Microarray is a high throughput discovery tool that has been broadly used
for genomic research. Probe-target hybridization is the central concept of this technology
to determine the relative abundance of nucleic acid sequences through fluorescence-based
detection. In microarray experiments, variations of expression measurements can be
attributed to many different sources that influence the stability and reproducibility of
microarray platforms. Normalization is an essential step to reduce non-biological errors
and to convert raw image data from multiple arrays (channels) to quality data for further
analysis. In general, for the traditional microarray analysis, most established normalization
methods are based on two assumptions: (1) the total number of target genes is large
enough (>10,000); and (2) the expression level of the majority of genes is kept constant.
However, microRNA (miRNA) arrays are usually spotted in low density, due to the fact
that the total number of miRNAs is less than 2,000 and the majority of miRNAs are
weakly or not expressed. As a result, normalization methods based on the above two
assumptions are not applicable to miRNA profiling studies. In this review, we discuss a
few representative microarray platforms on the market for miRNA profiling and compare the
traditional methods with a few novel strategies specific for miRNA microarrays.
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1. Introduction

miRNAs are a set of naturally-occurring small single-stranded non-coding RNA molecules.
They regulate more than 30% of all human genes and mediate gene expression at the post-transcriptional
and translational levels in both plants and animals. Many miRNAs are evolutionarily conserved and
are involved in many essential biological processes, such as development, cell growth, differentiation,
apoptosis and tumorigenesis [1–7]. The substantial value of miRNAs has been reported for diagnostic
and prognostic determination, as well as for eventual therapeutic intervention [8,9]. Although the first
miRNA, lin-4, was initially discovered over a decade ago, the significance of miRNA research has
not been appreciated until recently with the discoveries of thousands of miRNAs in worm, fly and
mammalian genomes [10–13].

Gene expression microarray technology is a very powerful high throughput tool capable of
monitoring the expression of thousands of genes in an organism simultaneously [14]. Probe-target
hybridization is the central concept to determine the relative abundance of nucleic acid sequences
through fluorescence-based detection [15]. In the past few decades, microarrays have been increasingly
utilized to investigate the complex molecular interactions in biological systems. Along with increasing
interest in miRNAs, most well-established molecular and biological technologies have been successfully
transferred into miRNA research, including the microarray and quantitative real-time polymerase chain
reaction (qRT-PCR). Currently, there are many commercial miRNA microarray platforms available,
including the products from Agilent Technologies, Ambion Inc., Exiqon, Invitrogen, etc.

Like most analytical platforms, errors are introduced to miRNA microarrays in almost every single
step in the process of acquiring and analyzing microarray data, including sample preparation, sample
storage, dying, hybridization, scanning, image processing and equipment errors, among many others.
In addition, due to miRNA’s unique signatures, such as small total number and low expression in the
majority, the transplantation of traditional normalization methods for mRNA/cDNA profiling analysis
is not able to provide a suitable solution for miRNA profiling analysis. The emphasis of this study
will be placed on the data analysis techniques applied to the final miRNA expression data profiled with
three different platforms: two versions of miRCURY LNA microRNA arrays and one Luminex FlexmiR
microRNA Human Panel. The results are validated with the qRT-PCR results by TaqMan Array Human
microRNA Panel.

2. Measurement Quality and Background Correction

2.1. MiRCURY LNA MicroRNA Array

Two versions of miRCURY LNA microRNA arrays are used for miRNA profiling (see the Materials
and Methods section for more details). All slides are scanned using an Axon Gene Pix Professional
4200A microarray scanner (Molecular Devices, Sunnyvale, CA, USA), and the images are gridded
and analyzed using ImaGene 7.0 software (BioDiscovery Inc., Hawthorne, CA, USA). MiRCURY
LNA microRNA Array v7.5.0 (LNAv7 hereafter) is used to profile 359 miRNAs for two HCT-116 cell
lines. MiRCURY LNA microRNA Array v9.2 (LNAv9 hereafter) is used to profile 577 miRNAs for 10
osterosarcoma xenograft specimens. On each slide of the LNA arrays, there are four technical replicates
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for each miRNA. The background signals are estimated by measuring the intensity of the surrounding
area (pixels in the local background region) of the corresponding spot masks, and the signal for an
miRNA from a specific spot is approximated by the intensity measure from the local signal region. The
expression of an miRNA is computed based on the (local) background subtracted signals from the four
replicates. All spots are automatically flagged by the image processing software to check the signal
quality.

Table 1 shows the five-number summaries of the automatic flags for the spots (probes) for the miRNAs
being tested based on thirteen (13) LNAv7 slides and forty-eight (48) LNAv9 slides, respectively.
From Table 1, we find the following:

• Among the 13 LNAv7 arrays, on average, approximately 58% of the probes have reasonably strong
signals (not flagged). In the worst case, about 42% of spots are not flagged, and approximately
57% of the spots are low-expressed or missing spots. One slide contains more than 77% of spots
with no flags.
• Among the 48 LNAv9 arrays, on average, less than 20% of the probes have reasonably strong

signals, while more than 50% of the probes are empty spots. The best slides have approximately
45% of non-flagged spots, while the non-flagged spots have less than 4% in the worst slide.
• For both LNAv7 and LNAv9, the proportions of poor spots (background/signal contaminated, high

ignored percentage and others) are relatively low.

Table 1. Quality flags with miRCURY LNA arrays (all hsa-miR probes).

Version Type Min 1st Qu. Median Mean 3rd Qu. Max.

LNAv7 no flag 42.17 50.46 55.68 57.71 62.66 77.42
empty spots 21.61 36.88 43.99 41.70 49.15 57.51
poor spots 0.26 0.33 0.46 0.59 0.85 1.17

LNAv9 no flag 3.89 11.18 16.76 18.77 26.80 45.33
empty spots 52.77 72.03 82.42 80.24 87.98 95.85
poor spots 0.00 0.61 0.80 1.00 1.38 2.77

In terms of the flagged spots, it looks like LNAv7 arrays have better signal quality than LNAv9 arrays.
One potential explanation for the observation is that more weakly or not expressed miRNAs are included
in the LNAv9 arrays. To have a closer comparison, we illustrate the summary information for the flags
of the 224 miRNAs tested by both LNAv7 and LNAv9 in Table 2. From Table 2, we find that even when
comparing the same set of miRNAs among both versions, there was reduced signal in LNAv9 arrays.
This difference could also be due to the use of different samples in the experiments: HCT-116 cell lines
for LNAv7 and human osterosarcoma xenograft specimens for LNAv9, respectively.
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Table 2. Quality flags with miRCURY LNA arrays (overlapped hsa-miR probes).

Version Type Min. 1st Quartile Median Mean 3rd Quartile Max.

LNAv7 no flag 71.88 96.88 100.00 95.43 100.00 100.00
empty spots 0.00 0.00 0.00 4.33 3.13 28.125
poor spots 0.00 0.00 0.00 0.24 0.00 3.13

LNAv9 no flag 9.38 43.75 48.44 48.76 53.13 90.63
empty spots 3.13 40.63 50.00 46.35 53.13 90.63
poor spots 0.00 0.00 3.13 4.88 6.25 34.38

2.2. FlexmiR MicroRNA Human Panel

A total of 319 human miRNAs are profiled using the bead-based Luminex FlexmiR MicroRNA
Human Panel (Luminex, Corp., Austin, TX, USA) for 40 treated and untreated osterosarcoma xenograft
specimens. Due to the capacity of the pool, all miRNAs are divided into five groups and are tested using
five different human pools separately. The intensities are captured with a Luminex-200 instrument.
In addition, for each microsphere type being tested, a background control (water treated in the same
manner as an RNA sample) is used to measure the background signal (median fluorescence intensity,
MFI). The system does not flag results based on the signal quality. For the 40 profiles based on
the treated and untreated samples, we manually flag the signals of different miRNAs as follows: we
compute the standard deviation, s, of the background signals for each pool. If the signal of an miRNA
after background subtraction is smaller than 2s. but not smaller than s, we flag the miRNA as weakly
expressed; if the signal of an miRNA after background subtraction is smaller than s, we flag it as empty;
otherwise, an miRNA is not flagged. Table 3 shows the percentages of miRNAs based on all 40 profiles.
From Table 3, we find that about ∼60% or more miRNAs have reasonably strong intensity measures
across all 40 arrays. In the worst case, the total percentage of weakly or not expressed miRNAs is about
40%. In summary, compared with the LNAv7 and LNAv9 arrays, the signal quality of the bead arrays
is much improved, as expected. But on the other hand, we see that the percentage of weakly or not
expressed miRNAs is high in arrays from all three platforms.

Table 3. Quality flags with FlexmiR bead arrays.

Version Type Min. 1st Quartile Median Mean 3rd Quartile Max.

FlexmiR no flag 59.89 73.70 77.88 77.69 83.65 89.29
[s, 2s) 3.30 5.77 6.73 7.24 8.65 13.46
<s 6.59 10.99 14.97 15.08 18.00 28.85

2.3. Signal-to-Noise Ratio

We also compute the signal-to-noise ratios (SNRs) based on the signals that are not flagged to
compare the signal quality of the three platforms. The ratio of the background-subtracted signal to
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the local estimated background signal is used to approximate the SNR. Figure 1 shows the boxplots of
the logarithms of the SNRs for the LNA arrays and the bead arrays. The two panels to the left in Figure 1
show the boxplots of the probe-level SNRs for human miRNAs from LNAv7 and LNAv9, respectively.
The right panel shows the miRNA-level SNRs for all miRNAs from the bead arrays. We find that in
terms of SNR, the signal quality of LNAv7 arrays and FlexmiR bead arrays are relatively better than
that of LNAv9 arrays. The signal quality of the bead arrays is expected to be better. But the difference
between LNAv7 and LNAv9 could mainly be contributed to the different specimens used and some other
experimental factors as well.

Figure 1. Signal-to-noise ratio comparisons.
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2.4. Background Correction

Let x = {x1, x2, . . . , xn} and y = {y1, y2, . . . , yn} be the true expressions of the entire miRNA
population being tested in two cell populations—a control sample, which is an untreated specimen or a
specimen treated with saline, and a test sample, which is a specimen treated with a drug. Sometimes, the
control sample can also be a specimen from a subject without disease, and the test sample is a specimen
from a subject with a certain disease. In practice, both x and y are not observable. Instead, x and y are
usually measured using microarrays or other analytical platforms, and the corresponding measurements.
X and Y . are usually coupled with errors. It is common in practice that x and y are approximated
by simply subtracting the local estimates of the background noises from the intensity measures from
the corresponding spots. Or, if replicates exist, the median or mean values will be used for different
miRNAs, respectively. For miRNA microarrays, background correction via local background subtraction
may cause difficulties in data analysis. First, the majority of miRNAs are weakly or not expressed, and as
a result, background-subtraction using local estimates may result in negative values in x and y, which is
not acceptable. Second, ignoring the probes that are flagged as weakly expressed may result in too many
missing values or over-estimate the true expression levels of some miRNAs—either way will introduce
significant bias to the detection of differentially expressed miRNAs.

It is commonly observed that the standard deviation of the measurements in microarray rises
proportionally to the expression level. However, for totally unexpressed genes, this proportionality
won’t continue down to zero, due to the fact that measurement errors always exist [16]. Motivated
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by these observations, two measurement error models are introduced [17–19]. Both models describe
the measurement error for a given transcript for gene expression arrays using two error components—
the multiplicative and additive errors. A generalized logarithm transformation (GLOG) is proposed
for gene-expression microarray data analyses [20]. The GLOG can stabilize the variance of the
measurements and take care of the measures of the weakly expressed miRNAs quite well and, hence,
are suitable for miRNA microarray data analysis (more details in the Materials and Methods section).

3. Intra- and Inter-Platform Reproducibility

The diversity of platforms and analytical methods have made cross-platform microarray data
comparison and integration challenging. Agreement in results obtained with different platforms
have been observed in some comparison studies [21–26], while others have not [27–30]. Various
studies tackled the issue of reproducibility of cDNA microarrays across platforms and between
laboratories [31–35]. Results showed that the correlation between the two datasets from the Affymetrix
platform and the spotted cDNA platform is poor when the ratios and the spot intensities are
compared [27,35,36]. The cross-platform reproducibility can be much improved by using standardized
protocols [34]. Further, across-laboratory comparisons showed that the reproducibility for a platform
within a single laboratory is good, and the data from the best-performing labs agree with each other rather
well [31,32]. Using probe sequences matched at the exon level, the consistency of measurements across
the different platforms can be improved compared with annotation-based matches [33]. This confirmed
the conjecture that the discrepancies might be due to the different array types measuring different variants
of the same gene.

Mature miRNAs are short, many of which are approximately 20 nuclides in length. As a result,
the inconsistency of measurements caused by annotation-based matches across different miRNA
microarray platforms won’t be as severe as those across different mRNA/cDNA microarray platforms.
However, the short lengths of the miRNAs will cause a wide Tm range within the entire miRNA
population, which results in binding efficacy or fluorescent distortion. This will ultimately influence
the sensitivity of different platforms and, hence, make the cross-platform data comparison and data
integration a challenge. Kuo et al. compared nearly all available commercial and “in-house” platforms
and found that the concordance of measurements was lower across platforms than between laboratories
on the same platform. In addition, the consistency of low expression miRNAs was lower than that of
high expression miRNAs [31–35].

We investigated the intra-platform reproducibility by comparing the Spearman’s correlation
coefficients among various miRNA profiles tested on different samples using the same platforms for
LNAv9, FlexmiR bead array and TLDA, respectively. Results showed that the bead array has the highest
intra-platform reproducibility with a median coefficient of 0.8544 and a standard deviation 0.0475.
TLDA and LNAv9 also have reasonable high intra-platform reproducibility, with median coefficients
of 0.8118 and 0.7367, respectively. The inter-platform reproducibility between TLDA and the bead
array is low, with a median of 0.1060 and a standard deviation of 0.0391. While LNAv9 has relatively
higher inter-platform reproducibility with the TLDA (with a median of 0.4872 and a standard deviation of
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0.0962) and with bead array (with a median of 0.4521 and a standard deviation of 0.0537) [37]. Overall,
the inter-platform reproducibility is much lower compared with the intra-platform reproducibility.

4. Normalization

Normalization is an essential step in microarray gene-expression data analysis. It helps to reduce
non-biological errors and to convert raw data to valid results. The fundamental assumption of most
established normalization methods for high density arrays is that relatively few genes will be dramatically
up- or down-regulated compared to the total number of genes, and the intensity measures for the
same miRNA population being tested have similar distributions across different slides. However,
this assumption is violated for miRNA microarray data, because of the small total number of miRNAs,
and the current miRNA microarray platforms possibly do not include enough miRNAs with stable
expressions [38].

4.1. Linear Normalization

The data obtained from two slides or differently-dyed samples from the same slide might not be
directly comparable. For gene expression arrays, the actual expression level in molecular units can hardly
be discerned, and hence, it is hard to calibrate data from different arrays. One common normalization
method is linear rescaling. That is, a constant is multiplied to all measures from the same array, so that the
expression levels of various arrays can be brought roughly to the same levels. The immediate challenge
for this approach is how to find the normalizing constants for different arrays. For high density arrays, if
the expression levels of the majority of genes are stable across samples (arrays), rescaling by assuming
various profiles have the same median (or trimmed mean) intensity measures works quite well. However,
when we have less than 2,000 miRNAs being tested and the majority of miRNAs are weakly or not
expressed, the performance of such a normalization method could be quite questionable.

Efforts have been devoted to finding specific controls for miRNA normalization. In ideal situations,
controls should be consistently stable and highly abundant despite tissue types or treatments for a specific
analytical platform. Also, they should have characteristics similar to miRNAs, including size, biogenesis
and stability. Non-coding RNAs (ncRNAs) have been utilized as normalization controls by some
arrays, including Exiqon miRCURY LNA miRNA Array, Luminex FlexMIR panel and TaqMan-based
qRT-PCR, as well. However, it is found that some ncRNA normalization controls can be influenced by
chemo drug treatments, such as 5-FU, Cisplatin or Doxorubicin [37,39,40]. As a result, we need to be
aware of the stability of normalization controls across a relatively wide variety of tissues, cell lines and
conditions. When a number of normalization controls are available to use, it is recommended to evaluate
their stability validation before they are adopted for data normalization. For the FlexmiR bead arrays,
we proposed a measurement error model-based algorithm to normalize the intensity measures from the
five different pools by using the four normalization beads [41].

Efforts have also been made to normalize miRNA microarray data using “invariants”—a set of
miRNAs that are not differentially expressed across arrays [38,42–46]. Because the actual expression
levels cannot be determined in different molecular units, it is also challenging to determine whether a set
of miRNAs are actually not changing or stably changed across arrays. In other words, if there are two
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groups of miRNAs having similar performances, it might be tricky to decide which group can be used
for normalization. Wang et al. proposed to borrow the strength of another platform and estimate the
overall expression pattern of the entire miRNA profile using a panel of representative miRNAs validated
with qRT-PCR results [47].

4.2. Nonlinear Normalization

It has been observed that the changes of gene expression levels are nonlinear, especially for those
highly expressed genes/miRNAs. Loess normalization is a popular normalization method for miRNA
microarrays, which is based on robust local regression of the log ratios of the intensity measures from two
arrays (or two differently-dyed samples from the same array) on the overall spot intensities. Variants of
the loess normalization method has also been introduced so as to refine the linear scaling part to enhance
its performances [48–50]. Quantile normalization is another commonly used nonlinear normalization
method, which has been successfully migrated to miRNA array data analysis. The quantile normalization
method is proposed under an assumption that there is an underlying common distribution of intensities of
all miRNAs across arrays [51–53]. For miRNA arrays, due to the small total number of miRNAs and the
overall low expression level, the ranks of the miRNAs could be greatly affected by the background noises,
and hence, the performances of the quantile normalization method could be affected. However, quantile
normalization is reported in the literature as one of the best performed normalization methods for miRNA
data [37,40,41,45–47]. For the FlexmiR bead arrays, due to the small number of miRNAs profiled in
the five pools (60, 64,64, 65 and 66), the quantile normalization is not suitable for intra-sample (among
pools) normalization. Though, after the sub-profiles have been appropriately assembled, the quantile
normalization method has relatively better performance than some other normalization methods [41].

5. Differentially-Expressed miRNA Detection

In miRNA microarray data analysis, the main interests are usually focused on whether a specific
miRNA or a set of miRNAs are differentially expressed in the two cell populations. The concept of
“differentially-expressed” is not well-defined, which makes it challenging to detect the differentially
expressed miRNAs. Without loss of generality, we assume an miRNA has expression, x, in the control
sample, and y, in the test sample. Usually, we will judge whether the miRNA is differentially expressed
by checking the fold-change (FC), which is the ratio of y/x. If FC = 1, the miRNA is not differentially
expressed. If FC is much larger than 1.0, we say the miRNA is upregulated; otherwise, if FC is
much smaller than 1.0, we say the miRNA is downregulated. An miRNA that is either downregulated
or upregulated is said to be differentially expressed. However, it is not clear how different that can
be treated as differentially expressed. We need to take both the fold-change and the basal level of the
miRNA into consideration. For example, if the miRNA is highly expressed, a two-fold change might
be practically meaningful, and the miRNA can be considered as differentially expressed. Meanwhile, if
the miRNA is weakly expressed, a large FC value might be practically meaningless to the researchers.
In practice, we do not know the actual value of FC; instead, we estimate it using F̂C = g1(X)/g2(Y ).
Here, g1(.) and g2(.) are two functions that are expected to be able to calibrate the measurement errors
and will approximate the true values of x and y, respectively. As shown in the measurement quality
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and background correction section, the majority of miRNAs have low SNRs, and thus, the measurement
errors could play very important roles in the intensity measures, Y and X and, hence, could severely
influence the estimate of the fold-change. In other words, measurement errors pose a higher degree of
uncertainty in identifying the differentially expressed miRNAs. We need to use the FC with caution in
differentially-expressed miRNA detection. The fold-change criteria should be used only to miRNAs that
are turned on (“expressed”) in both samples. In more detail, if an miRNA is expressed in one sample,
but not expressed in the other sample, the FC value could be zero or infinity, in theory. In practice, due
to the existence of background signal, the observed FC value could be very small or very large. In such
cases, it is relatively easy to detect the differentially-expressed miRNAs, though such miRNAs should be
dealt with separately, because they will make the distribution of FC values of all miRNAs very skewed.
While in another scenario, if an miRNA is not expressed in both samples, the FC value is dominated by
background noise, and such miRNAs should be excluded from the study.

In miRNA discovery studies, when a large number of replicates are available, statistical tests, such
as t-test, ANOVA or other omnibus tests can be used for differentially expressed miRNA detection.
It is worth noting that the non-linear normalization methods, including the loess method and quantile
normalization method, are preferred, due to their capability of dealing with the nonlinear changes of
miRNAs with different expression levels. Fan et al. proposed a model with a parametric component
and a non-parametric component to test the differentially expressed genes by taking the treatment effect,
block (position) effect and the nonlinear relationship into consideration [54].

In practice, many laboratories do not repeat array experiments. As a result, there is no biological
replicates for each miRNA. For some microarray platforms, there might be a few technical replicates
available on each array. The lack of sufficient replicates makes it a big challenge to identify the
differentially expressed miRNAs. For instance, in the 48 LNAv9 arrays, the ten osterosarcoma xenograft
specimens are treated with three chemo-drugs and saline, respectively. Most of the samples are tested
once, and some are repeated two times. If research interests are focused on the drug-resistance of
different patients to the three chemo drugs, respectively, there is only one or no biological replicate.
For the LNAv7 and LNAv9 arrays, there are four technical replicates on each array for every miRNA.
However, for the bead arrays, there is neither a biological replicate nor technical replicates. In [40],
the authors proposed to identify the differentially expressed miRNAs by regressing the expressions from
the test sample on the expressions from the control sample using an errors-in-variables non-parametric
regression model. This method can be applied to detect the differentially expressed miRNAs based
on two arrays without replicates. When replicated samples or probes are available, data from various
arrays can be integrated and, hence, improve the overall performance of the regression model to detect
differentially expressed miRNAs, which is also validated using the qRT-PCR results [40].

The measurement error model-based tests can make good use of the global information from
each of the expression profiles, and the required number of samples per gene/miRNA can be greatly
reduced [18,19]. However, when the overall signal quality of an array is fair or poor, the outcomes
could be quite questionable if no biological replicate is available to use. It is crucial to have multiple
biological replicates (at least two) to improve the sensitivity and specificity in differentially-expressed
miRNA detection.
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6. Materials and Methods

6.1. HCT-116 Cell Lines

Two cell lines of HCT-116 (wt-p53 and null-p53) were treated with three drugs: 5-fluorouracil
(5-FU), oxaliplatin (OX) and irinotecan (CPT-11). The total RNAs were isolated from the six treated
cell lines and two non-treated cell lines (serving as controls) and tested with miRCURY LNA MicroRNA
Array v7.5.0 (Exiqon Inc.). For HCT-116 (null-p53), the control sample was tested three times, and the
CPT-11 treated sample was tested twice. For HCT-116 (wt-p53), both the control sample and the 5-FU
treated sample were tested twice. A total of 359 miRNAs were profiled for each of the 13 cell lines.
A total of 37 miRNAs were randomly selected and further tested using TaqMan-based qRT-PCR on an
ABI 7500HT instrument (Applied Biosystems Inc., Foster City, CA, USA) [9,47,55–57].

6.2. Osterosarcoma Xenograft Specimens

Ten human osterosarcoma xenograft specimens were collected, and each was treated with saline
(as control) and three chemotherapeutic treatments: cisplatin (CIS), doxorubicin (DOX) and ifosfamide
(IFO). The total RNAs were isolated from each sample and analyzed with the following three platforms:
(a) miRCURY LNA MicroRNA Array (Exiqon Inc.; Vedbaek, Denmark, based on miRbase 9.2);
(b) Luminex FlexmiR MicroRNA Human Panel; and (c) TaqMan Array Human MicroRNA Panel
(Applied Biosystems,Foster City, CA, USA, v2.0). A total of 577 human miRNAs were profiled with
the LNA array, 391 with the Luminex bead array and 664 with the TaqMan array, where a total of 213
miRNAs were shared by all three platforms [37,40,41,58,59].

6.3. Generalized Logarithm Transformation

The following two-component measurement error model is proposed to model the measured
expression levels,

y = α + µeη + ε (1)

where y is the measured raw expression level, α is the mean background noise, µ is the true expression
level and η and ε are the multiplicative and additive measurement errors, which are assumed to be
normally-distributed with mean 0 and variances σ2

η and σ2
ε , respectively [17–19]. The variance of

y under this model is V ar(y) = µ2S2
η + σ2

ε , where S2
η = eσ

2
η(eσ

2
η − 1). To ease the analyses

of gene-expression microarrays using some standard statistical techniques, the following generalized
logarithm transformation that stabilizes the variance has been proposed:

fc(z) = ln

[
z +
√
z2 + c2

2

]
(2)

where c = σε/Sη. The performance of the GLOG is further studied, and simulation results show that
it is a better choice compared with the “started logarithm” transformation and the “log-linear hybrid”
transformation [20,60–66].
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7. Conclusions

As a well-established discovery tool in biological and biomedical research, microarray has been
successfully migrated to miRNA studies. Different microarray platforms have their own strengths and
weaknesses. In ideal situations, we can make good uses of various microarray platforms to borrow the
strengths from each other. However, the reality is that most researchers tried to stay with as few platforms
as possible, due to the low reproducibility among arrays across platforms and/or across laboratories.
The diversity of miRNA microarray platforms and lack of reliable analytical methods actually have
made cross-platform miRNA microarray data comparison and integration challenging.

Measurement errors exist in all microarray platforms. In miRNA microarrays, the expressions of
numerous miRNAs might be dominated by measurement errors, and the overall signal quality of the
miRNA microarrays is usually deficient. Thus, it is especially important that the miRNA microarray
experiments will be well designed and well conducted. In some literature, it was emphasized to
ensure the measurement quality via controlling the experimental factors, and it was suggested that the
background signal subtracted signals should be used directly without any normalization for miRNA
microarray data [1,67,68]. However, we need to be aware that measurement errors are inevitable in
microarray experiments. Conclusions based on microarray data without proper normalization might be
quite misleading.

Before we apply any statistical method to normalize microarray data for further analysis or to calibrate
measurement errors to detect differentially expressed miRNAs, it is always good to screen first the
bad microarrays off—if evidence shows that an array completely failed, it should be excluded from
further analyses. To our knowledge, there is no existing method to evaluate systematically the quality of
different slides. However, we can assess the quality of various arrays via the following different ways.
First, if the experiment is conducted well, a reasonably large portion of strong signals are expected
from each array. One of the LNAv9 array contains only 3.89% of spots that are not flagged. This is
a strong indication that the whole slide might not be usable. Automatic flagging can be applied to
check the signal quality. However, we should not simply discard the measures from those probes that
are flagged as weak. On the other hand, if a probe is found to be contaminated, the corresponding
measure should not be used. Second, we can compute the Spearman’s correlation coefficient between
any pair of arrays. The Spearman’s correlation coefficient is rank based, so it won’t be affected by the
distributions of the miRNA expressions in the same array. For example, arrays tested with the same
platform are supposed to have reasonably high reproducibility. A very small Spearman’s correlation
coefficient usually can be used as an indicator of something wrong in the array data. Third, we can
compare the density distributions of expressions of all miRNAs being tested in every array. For miRNA
microarrays, due to the small total number of miRNA and also the violation of the assumption that the
numbers of upregulated and downregulated miRNAs are approximately the same, it is hard to judge the
signal quality of an array when it has a different expression distribution.

Normalization is an essential matter for microarray data analysis. A well-developed normalization
method can efficiently calibrate the measurement errors and can offer a powerful tool for cross-platform
and cross-laboratory microarray data integration. Most existing normalization methods for miRNA
microarray data are adopted from mRNA/cDNA microarrays with or without modifications. However,
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the unique signature of miRNA has reduced the enthusiasm of such adoption. In our previous studies
and research by others, it has been found that the two-component measurement error model and the
generalized logarithm transformation work well for microarray data. Based on the measurement error
model, several normalization methods and differentially-expressed miRNA detection algorithms have
been developed and achieved good results. We should keep in mind that the measurement errors coupled
with data from different platforms have different characteristics, and hence, it is not realistic to develop
one or a few methods that can deal with data from all platforms. For example, expression data obtained
from bead arrays have stronger signals, but without technical replicates. As a result, we have to heavily
count on the global information from the profile for bead array when there is no replicated array for the
same specimen. In addition, most of the existing normalization methods based on the global information
are not applicable to normalize the sub-profiles, due to the extreme small number of miRNAs tested in
each pool. When dealing with the traditional glass-based arrays, which have weaker signals compared
with the bead arrays, but usually have several technical replicates, special attention needs to be paid to
the background correction and how to find robust estimates from several replicates on each array. It is
also worth noting that borrowing the strengths of some reliable analytical platforms, such as the TaqMan
Array Human MicroRNA Panel, might be a good approach for miRNA microarray data normalization.
Meanwhile, we also need to keep an eye on the quality of qRT-PCR results as well—measurement errors
also exist in qRT-PCR platforms. The qRT-PCR results should be used as “gold standards” with caution.

We recommend to keep the measurements from the weakly expressed miRNAs in the analysis.
However, in detecting the differentially expressed miRNAs, miRNAs expressed at different levels should
be tested (viewed) differently. According to their expressions in the control sample, the miRNAs can be
grouped into three groups: group 1, for those with expression significantly stronger than the background
noise; group 2, for those with expression close to the background noise; and group 3, for all others.
For miRNAs in group 3, it is meaningless to test whether any of them are downregulated, and attention
should be paid more to those in the other two groups, especially in group 1.

In summary, it is challenging, but necessary, to develop some novel adaptive statistical methods to
efficiently calibrate the measurement errors for normalization and for differentially-expressed miRNA
detection. In that way, we can reuse the miRNA microarray data saved in a variety of databases and to
integrate data from similar studies contributed by different laboratories using various platforms. Even in
an era in which the next-generation deep sequencing technologies have been widely used, microarray is
still very valuable as a reliable and affordable profiling tool. In addition, measurement errors and bias
exist in small RNA sequencing data, too. Some of the normalization methods for miRNA, including the
quantile normalization, smoothing-based normalization methods and measurement error model-based
normalization methods, can also be applied to small RNA sequencing data with or without modifications.

Acknowledgments

We are grateful to the reviewers and the editor for their valuable comments. We thank Cynthia
Schneider for proofreading. This study is supported by the NIH/NCI grant 1R21CA160280-01A1
(Yaguang XI).



Microarrays 2013, 2 46

References

1. Baskerville, S.; Bartel, D.P. Microarray profiling of microRNAs reveals frequent coexpression with
neighboring microRNAs and host genes. RNA 2005, 11, 241–247.

2. Carmell, M.A.; Xuan, Z.; Zhang, M.Q.; Hannon, G.J. The Argonaute family: Tentacles that reach
into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 2002,
16, 2733–2742.

3. Karube, Y.; Tanaka, H.; Osada, H.; Tomida, S.; Tatematsu, Y.; Yanagisawa, K.; Yatabe, Y.;
Takamizawa, J.; Miyoshi, S.; Mitsudomi, T.; Takahashi, T. Reduced expression of Dicer associated
with poor prognosis in lung cancer patients. Cancer Sci. 2005, 96, 111–115.

4. Lee, Y.S.; Kim, H.K.; Chung, S.; Kim, K.S.; Dutta, A. Depletion of human micro-RNA miR-125b
reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation
of putative targets during differentiation. J. Biol. Chem. 2005, 280, 16635–16641.

5. Sempere, L.F.; Sokol, N.S.; Dubrovsky, E.B.; Berger, E.M.; Ambros, V. Temporal regulation of
microRNA expression in Drosophila melanogaster mediated by hormonal signals and
broad-complex gene activity. Dev. Biol. 2003, 259 , 9–18.

6. Takamizawa, J.; Konishi, H.; Yanagisawa, K.; Tomida, S.; Osada, H.; Endoh, H.; Harano, T.;
Yatabe, Y.; Nagino, M.; Nimura, Y.; et al. Reduced expression of the let-7 microRNAs in
human lung cancers in association with shortened postoperative survival. Cancer Res. 2004, 64,
3753–3756.

7. Esquela-Kerscher, A.; Slack, F.J. Oncomirs-microRNAs with a role in cancer. Nat. Rev. 2006, 6,
259–269.

8. Nakajima, G.; Hayashi, K.; Xi, Y.; Kudo, K.; Uchida, K.; Takasaki, K.; Ju, J. Non-coding
microRNAs hsa-let-7g and hsa-miR-181b are associated with chemoresponse to S-1 in colon
cancer. Cancer Genom. Proteom. 2006, 3, 317–324.

9. Xi, Y.; Formentini, A.; Chien, M.; Weir, D.; Russo, J.; Ju, J.; Kornmann, M.; Ju, J. Prognostic
values of microRNAs in colorectal cancer. Biomark. Insights 2006, 2, 113–121.

10. Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small
RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854.

11. Feinbaum, R.; Ambros, V. The timing of lin-4 RNA accumulation controls the timing of
postembryonic developmental events in Caenorhabditis elegans. Dev. Biol. 1999, 210, 87–95.

12. Berezikov, E.; Guryev, V.; van de Belt, J.; Wienholds, E.; Plasterk, R.H.; Cuppen, E. Phylogenetic
shadowing and computational identification of human microRNA genes. Cell 2005, 120, 21–24.

13. Lagos-Quintana, M.; Rauhut, R.; Meyer, J.; Borkhardt, A.; Tuschl, T. New microRNAs from mouse
and human. RNA 2003, 9, 175–179.

14. Hernandez Bort, J.A.; Hackl, M.; Hoflmayer, H.; Jadhav, V.; Harreither, E.; Kumar, N.; Ernst, W.;
Grillari, J.; Borth, N. Dynamic mRNA and miRNA profiling of CHO-K1 suspension cell cultures.
Biotechnol. J. 2012, 7, 500–515.

15. D’Auria, S.; Rossi, M.; Malicka, J.; Gryczynski, Z.; Gryczynski, I. DNA arrays for genetic analyses
and medical diagnosis. In Topics in Fluorescence Spectroscopy; Lakowicz, J.R., Ed.; Kluwer
Academic/Plenum Publishers: New York, NY, USA, 2003; pp. 213–237.



Microarrays 2013, 2 47

16. Chen, Y.; Dougherty, E.R.; Bittner, M.L. Ratio-based decisions and quantitative analysis of cDNA
microarray images. J. Biomed. Opt. 1997, 2, 364–374.

17. Rocke, D.; Lorenzato, S. A two-component model for measurement error in analytical chemistry.
Technometrics 1995, 37, 176–184.

18. Ideker, T.; Thorsson, V.; Siegel, A.F.; Hood, L.E. Testing for differentially-expressed genes by
maximum-likelihood analysis of microarray data. J. Comput. Biol. 2000, 7, 805–817.

19. Rocke, D.M.; Durbin,B. A model for measurement error for gene expression arrays. J. Comput.
Biol. 2001, 8, 557–569.

20. Durbin, B.P.; Hardin, J.S.; Hawkins, D.M.; Rocke, D.M. A variance-stabilizing transformation for
gene-expression microarray data. Bioinformatics 2002, 18, S105–S110.

21. Kane, M.; Jatkoe, T.A.; Stumpf, C.R.; Lu, J.; Thomas, J.D.; Madore, S.J. Assessment of the
sensitivity and specificity of oligonucleotide (50-mer) microarrays. Nucl. Acids Res. 2000, 28,
4552–4557.

22. Hughes, T.; Mao, M.; Jones, A.R.; Burchard, J.; Marton, M.J.; Shannon, K.W.; Lefkowitz, S.M.;
Ziman, M.; Schelter, J.M.; Meyer, M.R.; et al. Expression profiling using microarrays fabricated
by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 2001, 19, 342–347.

23. Yuen, T.; Wurmbach, E.; Pfeffer, R.L.; Ebersole, B.J.; Sealfon, S.C. Accuracy and calibration of
commercial oligonucleotide and custom cDNA microarrays. Nucl. Acids Res. 2002, 30, e48.

24. Barczak, A. Rodriguez, M.W.; Hanspers, K.; Koth, L.L.; Tai, Y.C.; Bolstad, B.M.; Speed, T.P.;
Erle, D.J. Spotted long oligonucleotide arrays for human gene expression analysis. Genome Res.
2003, 13, 1775–1785.

25. Carter, M.G.; Hamatani, T.; Sharov, A.A.; Carmack, C.E.; Qian, Y.; Aiba, K.; Ko, N.T.;
Dudekula, D.B.; Brzoska, P.M.; Hwang, S.S.; Ko, M.S. In situ-synthesized novel microarray
optimized for mouse stem cell and early developmental expression profiling. Genome Res. 2003,
13, 1011–1021.

26. Wang, H.; Malek, R.L.; Kwitek, A.E.; Greene, A.S.; Luu, T.V.; Behbahani, B.; Frank,
B.; Quackenbush, J.; Lee, N.H. Assessing unmodified 70-mer oligonucleotide performance on
glass-slide microarrays. Genome Biol. 2003, 4, doi: 10.1186/gb-2003-4-1-r5.

27. Kuo, K.P.; Jenssen, T.K.; Butte, A.J.; Ohno-Machado, L.; Kohane, I.S. Analysis of matched mRNA
measurements from two different microarray technologies. Bioinformatics 2002, 18, 405–412.

28. Kothapalli, R.; Yoder, S.; Mane, S.; Loughran, T.P., Jr. Microarray results: How accurate are they?
BMC Bioinforma. 2002, 3, doi: 10.1186/1471-2105-3-22.

29. Li, J.; Pankratz, M.; Johnson, J. Differential gene expression patterns revealed by oligonucleotide
versus long cDNA arrays. Toxicol. Sci. 2003, 69, 383–390.

30. Tan, P.; Downey, T.J.; Spitznagel, E.L., Jr.; Xu, P.; Fu, D.; Dimitrov, D.S.; Lempicki, R.A.;
Raaka, B.M.; Cam, M.C. Evaluation of gene expression measurements from commercial platforms.
Nucl. Acids Res. 2003, 31, 5676–5684.

31. Bammler, T.; Beyer, R.P.; Bhattacharya, S.; Boorman, G.A.; Boyles, A.; Bradford, B.U.;
Bumgarner, R.E.; Bushel, P.R.; Chaturvedi, K.; Choi, D.; et al. Standardizing global gene
expression analysis between laboratories and across platforms. Nat. Methods 2005, 2, 351–356.



Microarrays 2013, 2 48

32. Irizarry, R.A.; Warren, D.; Spencer, F.; Kim, I.F.; Biswal, S.; Frank, B.C.; Gabrielson, E.;
Garcia, J.G.; Geoghegan, J.; Germino, G.; et al. Multiple-laboratory comparison of microarray
platforms. Nat. Methods 2005, 2, 345–350.

33. Kuo, W.P.; Liu, F.; Trimarchi, J.; Punzo, C.; Lombardi, M.; Sarang, J.; Whipple, M.E.;
Maysuria, M.; Serikawa, K.; Lee, S.Y.; et al. A sequence-oriented comparison of gene expression
measurements across different hybridization-based technologies. Nat. Biotechnol. 2006, 24,
832–840.

34. Larkin, E.; Frank, B.; Gavras, H.; Sultana, R.; Quackenbush, J. Independence and reproducibility
across microarray platforms. Nat. Methods 2005, 2, 337–344.

35. Sherlock, G. Of fish and chips. Nat. Methods 2005, 2, 329–330.
36. Ross, D.T.; Scherf, U.; Eisen, M.B.; Perou, C.M.; Rees, C.; Spellman, P.; Iyer, V.; Jeffrey, S.S.;

Van de Rijn, M.; Waltham, M.; et al. Systematic variation in gene expression patterns in human
cancer cell lines. Nat. Genet. 2000, 24, 227–235.

37. Wang, B.; Howell, P.; Bruheim, S.; Ju, J.; Owen, L.B.; Fodstad, O.; Xi, Y. Systematic evaluation
of three microRNA profiling platforms: Microarray, beads array, and quantitative real-time PCR
array. PLoS One 2011, 6, e17167, doi: 10.1371/journal.pone.0017167.

38. Davison, T.S.; Johnson, C.D.; Andruss, B.F. Analyzing micro-RNA expression using microarrays.
Meth. Enzymol. 2006, 411, 14–34.

39. Kiss, T. Small nucleolar RNAs: An abundant group of noncoding RNAs with diverse cellular
functions. Cell 2002, 109, 145–148.

40. Wang, B.; Zhang, S.-G.; Wang, X-F.; Tan, M.; Xi, Y. Testing for differentially-expressed
microRNAs with errors-in-variables nonparametric regression. PLoS One 2012, 7, e37537,
doi: 10.1371/journal.pone.0037537.

41. Wang, B.; Wang, X.-F.; Xi, Y. Normalizing bead-based microRNA expression data:
A measurement error model-based approach. Bioinformatics 2011, 27, 1506–1512.

42. Hua, Y.J.; Tu, K.; Tang, Z.Y.; Li, Y.X.; Xiao, H.S. Comparison of normalization methods with
microRNA microarray. Genomics 2008, 92, 122–128.

43. Pan, Q.; Luo, X.; Chegini, N. Differential expression of microRNAs in myometrium and
leiomyomas and regulation by ovarian steroids. J. Cell Mol. Med. 2008, 12, 227–240.

44. Perkins, D.O.; Jeffries, C.D.; Jarskog, L.F.; Thomson, J.M.; Woods, K.; Newman, M.A.;
Parker, J.S.; Jin, J.; Hammond, S.M. MicroRNA expression in the prefrontal cortex of
individuals with schizophrenia and schizoaffective disorder. Genome Biol. 2007, 8,
doi: 10.1186/gb-2007-8-2-r27.

45. Pradervand, S.; Weber, J.; Thomas, J.; Bueno, M.; Wirapati, P.; Lefort, K.; Dotto, G.; Harshma, K.
Impact of normalization on microRNA microarray expression profiling. RNA 2009, 15, 493–501.

46. Rao, Y.; Lee, Y.; Jarjoura, D.; Ruppert, A.; Liu, C.; Hsu, J. A comparison of normalization
techniques for microrna microarray data. Stat. Appl. Genetics Mol. Biol. 2008, 7, 122–128.

47. Wang, B.; Wang, X.; Howell, P.; Qian, X.; Huang, K.; Riker, A.I.; Ju, J.; Xi, Y. A personalized
microRNA microarray normalization method using a logistic regression model. Bioinformatics
2010, 26, 228–234.



Microarrays 2013, 2 49

48. Dudoit, S.; Yang, Y.H.; Callow, M.J.; Speed, T.P. Statistical methods for identifying genes with
differential expression in replicated cdna microarray experiments. Stat. Sin. 2002, 12, 111–139.

49. Yang, Y.H.; Dudoit, S.; Luu, P.; Lin, D.M.; Peng, V.; Ngai, J.; Speed, T.P. Normalization for
cDNA microarray data: A robust composite method addressing single and multiple slide systematic
variation. Nucl. Acids Res. 2002, 30, e15, doi: 10.1093/nar/30.4.e15.

50. Risso, D.; Massa, M.S.; Chiogna, M.; Romualdi, C. A modified LOESS normalization applied to
microRNA arrays: A comparative evaluation. Bioinformatics 2009, 25, 2685–2691.

51. Bolstad, B.M.; Irizarry, R.A.; Astrand, M.; Speed, T.P. A comparison of normalization methods
for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19,
185–193.

52. Garzon, R.; Garofalo, M.; Martelli, M.P.; Briesewitz, R.; Wang, L.; Fernandez-Cymering, C.;
Volinia, S.; Liu, C.G.; Schnittger, S.; Haferlach, T.; et al. Distinctive microRNA signature of acute
myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc. Natl. Acad. Sci. USA 2008,
105, 3945–3950.

53. Northcott, P.A.; Fernandez-L, A.; Hagan, J.P.; Ellison, D.W.; Grajkowska, W.; Gillespie, Y.;
Grundy, R.; van Meter, T.; Rutka, J.T.; Croce, C.M.; et al. The miR-17/92 polycistron
is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic
hedgehog-treated cerebellar neural precursors. Cancer Res. 2009, 69, 3249–3255.

54. Fan, J.; Peng, H.; Huang, T. Semilinear high-dimensional model for normalization of microarray
data: A theoretical analysis and partial consistency. J. Am. Stat. Assoc. 2005, 100, 781–813.

55. Bunz, F.; Dutriaux, A.; Lengauer, C.; Waldman, T.; Zhou, S.; Brown, J.P.; Sedivy, J.M.;
Kinzler, K.W.; Vogelstein, B. Requirement for p53 and p21 to sustain G2 arrest after DNA damage.
Science 1998, 282, 1497–1501.

56. Bunz, F.; Hwang, P.M.; Torrance, C.; Waldman, T.; Zhang, Y.; Dillehay, L.; Williams, J.;
Lengauer, C.; Kinzler, K.W.; Vogelstein, B. Disruption of p53 in human cancer cells alters the
responses to therapeutic agents. J. Clin. Investig. 1999, 104, 263–269.

57. Xi, Y.; Shalgi, R.; Fodstad, O.; Pilpel, Y.; Ju, J. Differentially regulated micro-RNAs and actively
translated mRNA transcripts by tumor suppressor p53 in colon cancer. Clin. Cancer Res. 2006, 12,
2014–2024.

58. Xi, Y.; Nakajima, G.; Gavin, E.; Morris, C.G.; Kudo, K.; Hayashi, K.; Ju, J. Systematic analysis of
microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded
samples. RNA 2006, 13, 1668–1674.

59. Bruheim, S.; Xi, Y.; Ju, J.; Fodstad, O. Gene expression profile classify human osteosarcoma
xenografts according to sensitivity to doxorubicin, cisplatin, and ifosfamide. Clin. Cancer Res.
2009, 15, 7161–7169.

60. Tukey, J.W. On the comparative anatomy of transformations. Ann. Math. Stat. 1964, 28, 602–632.
61. Tukey, J.W. Exploratory Data Analysis; Addison-Wesley: Reading, MA, USA, 1977.
62. Holder, D.; Raubertas, R.F.; Pikounis, V.B.; Svetnik, V.; Soper, K. Statistical Analysis of High

Density Oligonucleotide Arrays: A SAFER Approach. In Proceedings of the GeneLogic Workshop
on Low Level Analysis of Affymetrix GeneChip Data, West Point, PA, USA, 19 November 2001.



Microarrays 2013, 2 50

63. Munson, P. A ‘Consistency’ Test for Determining the Significance of Gene Expression Changes on
Replicate Samples and Two Convenient Variance-Stabilizing Transformations. In Proceedings of
the GeneLogic Workshop on Low Level Analysis of Affymetrix GeneChip Data, West Point, PA,
USA, 19 November 2001.

64. Huber, W.; von Heydebreck, A.; Sultmann, H.; Poustka, A.; Vingron, M. Variance stabilization
applied to microarray data calibration and to the quantification of differential expression.
Bioinformatics 2002, 18, 96–104.

65. Rocke, D.M.; Durbin, B. Approximate variance-stabilizing transformations for gene-expression
microarray data. Bioinformatics 2003, 19, 966–972.

66. Rocke, D.M.; Ideker, T.; Troyanskaya, O.; Quackenbush, J.; Dopazo J. Papers on normalization,
variable selection, classification or clustering of microarray data. Bioinformatics 2009, 26,
701–702.

67. Schmittgen, T.D.; Jiang, J.; Liu, Q.; Yang, L. A high-throughput method to monitor the expression
of microRNA precursors. Nucl. Acids Res. 2004, 32, doi: 10.1093/nar/gnh040.

68. Liang, R.Q.; Li, W.; Li, Y.; Tan, C.Y.; Li, J.X.; Jin, Y.X.; Ruan, K.C. An oligonucleotide microarray
for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe.
Nucl. Acids Res. 2005, 33, doi: 10.1093/nar/gni019.

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Measurement Quality and Background Correction
	MiRCURY LNA MicroRNA Array
	FlexmiR MicroRNA Human Panel
	Signal-to-Noise Ratio
	Background Correction

	Intra- and Inter-Platform Reproducibility
	Normalization
	Linear Normalization
	Nonlinear Normalization

	Differentially-Expressed miRNA Detection
	Materials and Methods
	HCT-116 Cell Lines
	Osterosarcoma Xenograft Specimens
	Generalized Logarithm Transformation

	Conclusions
	Acknowledgments

