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Abstract

A safe and effective adjuvant is necessary to induce reliable protective efficacy of the pro-

tein-based vaccines against tuberculosis (TB). Mycobacterial components, such as syn-

thetic cord factor and arabinogalactan, have been used as one of the adjuvant components.

Mycobacterium bovis bacillus Calmette- Guérin cell-wall skeleton (BCG-CWS) has been

used as an effective immune-stimulator. However, it is not proven whether BCG-CWS can

be an effective adjuvant for the subunit protein vaccine of TB. In this study, we demonstrated

that the BCG-CWS effectively coupled with Ag85B and enhanced the conjugated Ag85B

activity on the maturation of dendritic cells (DCs). Ag85B-BCG-CWS-matured DCs induced

significant Th1 and Th17 responses when compared to BCG-CWS or Ag85B alone. In addi-

tion, significant Ag85B-specific Th1 and Th17 responses were induced in Ag85B-BCG-

CWS-immunized mice before infection with M. tuberculosis and maintained after infection.

Moreover, Ag85B-BCG-CWS showed significant protective effect comparable to live BCG

at 6 weeks after infection and maintained its protective efficacy at 32 weeks post-challenge,

whereas live BCG did not. These results suggest that the BCG-CWS may be an effective

adjuvant candidate for a protein-based vaccine against TB.

Introduction

Tuberculosis (TB) is a major infectious disease that causes 1.3 million deaths per year world-

wide [1]. The reactivation risk of the latent TB in an immunosuppressed individual and the

advent of multidrug-resistant TB have made the control of TB difficult [2–4]. Vaccination is

one of the best methods to control infectious diseases. The only TB vaccine, Mycobacterium
bovis bacillus Calmette-Guérin (BCG), is unable to significantly prevent adult pulmonary TB

and the reactivation of dormant TB [5]. Research on the protein-based vaccines have been

focusing on a reliable candidate for BCG-prime boosting. Because a protein alone induces a

weak immune response, the adjuvants or viral vectors have been used as an antigen delivery

PLOS ONE | https://doi.org/10.1371/journal.pone.0213536 March 8, 2019 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Back YW, Choi S, Choi H-G, Shin K-W,

Son Y-J, Paik T-H, et al. (2019) Cell wall skeleton of

Mycobacterium bovis BCG enhances the vaccine

potential of antigen 85B against tuberculosis by

inducing Th1 and Th17 responses. PLoS ONE 14

(3): e0213536. https://doi.org/10.1371/journal.

pone.0213536

Editor: Yung-Fu Chang, Cornell University, UNITED

STATES

Received: October 15, 2018

Accepted: February 22, 2019

Published: March 8, 2019

Copyright: © 2019 Back et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This study was supported by the Basic

Science Research Program through the National

Research Foundation of Korea (NRF) funded by the

Ministry of Science, ICT and future Planning

(2016R1E1A1A02921580), and was supported by

a grant of the Korea Health Technology R&D

Project through the Korea Health Industry

https://doi.org/10.1371/journal.pone.0213536
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213536&domain=pdf&date_stamp=2019-03-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213536&domain=pdf&date_stamp=2019-03-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213536&domain=pdf&date_stamp=2019-03-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213536&domain=pdf&date_stamp=2019-03-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213536&domain=pdf&date_stamp=2019-03-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213536&domain=pdf&date_stamp=2019-03-08
https://doi.org/10.1371/journal.pone.0213536
https://doi.org/10.1371/journal.pone.0213536
http://creativecommons.org/licenses/by/4.0/


system. Therefore, an adjuvant with a strong immunostimulatory effect is essential to develop

these subunit vaccines. In recent years, the multistage TB subunit vaccines using new adjuvant

systems, such as IC31, AS01, and GLA-SE, are currently under clinical development [6]. How-

ever, better adjuvants that are safe and effective in humans must be developed.

Most adjuvants are Toll-like receptor (TLR) agonists and are in a liposomal or emulsion

form mixed with the antigens. Among the TB vaccines, AS01 used in the M72 vaccine is a

monophosphoryl lipid A (MPL, TLR-4 agonist)-based adjuvant and liposomal formulation

combined with a saponin [6]. IC31 is an adjuvant containing the TLR-9 agonist and is used

in vaccines H56 and H4. It is also reported that ID93 combined with a synthetic TLR-4 ago-

nist (glucopyranosyl lipid adjuvant) formulated in a stable oil-in-water emulsion (GLA-SE)

elicits significant protection against TB [7]. Mycobacterial components such as synthetic

cord factor (TDB) [8], arabinogalactan (AG) [9], and arabinomannan [10] have been

included as one of the adjuvant components. We have previously demonstrated that the

BCG-cell wall skeleton (BCG-CWS) is a potent immune-adjuvant that promotes antibody

production and Th1-skewed immune responses against a conjugated antigen [11]. The clini-

cal efficacy of the BCG-CWS as a tumor immunotherapeutic agent has been demonstrated

[12, 13]. It is known that BCG-CWS induces DC maturation via the TLR-2 and TLR-4 path-

ways [14].

Appropriate DC activation is essential to induce the Th1 immune responses which play a

major role in anti-mycobacterial immunity. We hypothesized that the BCG-CWS could be

an adjuvant or delivery vehicle for the subunit protein vaccines against TB. It is also possible

that the direct conjugation of the proteins with BCG-CWS specifically activates the antigen

presenting cells that uptake the target protein, compared to the mixing of the protein with an

adjuvant [11]. In the present study, we investigated the DC maturation activity and the vac-

cine efficacy of BCG-CWS conjugated with Ag85B, which is one of the antigens frequently

used in clinical trials of TB vaccines. Ag85B-BCG-CWS induced the Th1 and Th17 responses

via DC maturation and provided significant long-term TB protection in a mouse challenge

model.

Materials and methods

Animals

Six to eight-week-old female C57BL/6 mice were purchased from Nara biotech (Seoul, Korea).

All animals were maintained under specific pathogen-free (SPF) barrier conditions at the Pre-

clinical Research Center (PCRC) of Chungnam National University Hospital, Daejeon, Korea.

Mice were maintained as per the guide for care and use of the Korean Food and Drug Admin-

istration (KFDA). All animal studies conducted were approved by the Ethics Committee and

Institutional Animal Care and Use Committee (Permit number 2014-0197-3) of the Labora-

tory Animal research Center at IACUC (CNU-00284) of Chungnam National University

(Daejeon Korea).

Bacteria

Mycobacterium tuberculosis (Mtb) H37Ra (ATCC 25177) was purchased from American Type

Culture Collection (ATCC, Manassas, VA). Mycobacterium bovis BCG (Tokyo strain) was

kindly provided by the Korean Institute of Tuberculosis (KIT). All mycobacteria were grown

in 7H9 medium supplemented with 0.5% glycerol, 10% oleic acid, albumin, dextrose, and cata-

lase (OADC; BD Biosciences, San Jose, CA, USA).
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Purification of recombinant Ag85B protein from Escherichia coli
To produce recombinant Ag85B protein, the corresponding gene was amplified by PCR using

Mtb H37Rv ATCC 27294 genomic DNA as a template and the primer sequences 50-CATATG
ACAGACGTGAGCCGAAAG-30 (forward) and 50- AAGCTTGCCGGCGCCTAACGAACT
CTG-30 (reverse). The Ag85B gene was inserted into a pET23b (+) plasmid (Novagen,

Madison, WI, USA), and the resultant products were sequenced. The recombinant protein

was expressed in E. coli BL21 cells and purified as described previously [15, 16]. Finally, the

purified endotoxin-removed recombinant protein was filter-sterilized and frozen at -70 ˚C.

The protein concentration was estimated using a bicinchoninic acid protein assay kit (Pierce,

Rockford, IL, USA) with bovine serum albumin as a standard.

Coupling of Ag85B to BCG-CWS

BCG-CWS was prepared as described previously [11]. The prepared BCG-CWS was sus-

pended in 100% 2- propanol (50 mg/mL, dry weight) and stored at −20 ˚C until use. The

Ag85B protein was covalently coupled to carboxyl groups in BCG-CWS by a two-step N-

hydroxysulfosuccinimide (NHS)-enhanced 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide

hydrochloride (EDC)-mediated coupling procedure as previously described with slight modi-

fication [11]. Briefly, 500 μg of BCG-CWS resuspended in coupling buffer (20 mM EDC and

50 mM NHS dissolved in 100% 2-propanol) was conjugated with Ag85B at different concen-

trations (pH 7.4) by mixing end-to-end overnight at 4 ˚C. The unbound protein was removed

by washing three times with suspension buffer (0.02% Tween 80 and 1% ethanol in PBS). The

resulting Ag85B-conjugated BCG-CWS pellet was resuspended in suspension buffer for pro-

tein assays and immunizations experiments.

The amount of protein antigen conjugated to the BCG-CWS was determined by a BCA

assay and calculated after subtracting the protein content of unconjugated BCG-CWS. The

coupling efficiency was calculated by dividing the total amount of antigen bound to the

BCG-CWS by the amount of antigen used in the coupling reaction. The conjugation of the

protein with the BCG-CWS was confirmed by SDS PAGE gel and western blot analysis using

mouse anti-Ag85B Ab.

Generation of mouse bone marrow-derived dendritic cells

Bone marrow-derived dendritic cells (BMDCs) were differentiated in vitro from isolated bone

marrow cells of uninfected 5-6-week old C57BL/6 mice. The cells were generated and cultured

as described previously [17]. Briefly, using the BMDC differentiation method, bone marrow

cells collected from mouse femurs and tibias were incubated for 7 days in RPMI media supple-

mented with 10% fetal bovine serum (Lonza), 100 unit/mL penicillin/streptomycin (Lonza),

0.1 mM nonessential amino acids (Lonza), 50 μM β-mercaptoethanol (Lonza), 1 mM sodium

pyruvate (Sigma), 20 ng/mL GM-CSF (CreaGene, Gyeonggi, Republic of Korea), and 10 ng/

mL IL-4 (CreaGene, Gyeonggi, Republic of Korea).

Cytokine assays

A sandwich enzyme-linked immunosorbent assay (ELISA) was used to detect IL-6, IL-1β,

TNF-α, IL12p70, IL-10, IL-17A, IL-4, IL-23 (eBioscience, San Diego, CA, USA) and IFN-γ
(BD Biosciences) levels in culture supernatants as previously described [18].
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Flow cytometry analysis of cell surface molecule expression

BMDCs (2.5 × 105 cells) were isolated by positive selection using CD11c and CD11b microbe-

ads and stimulated for 24 h with Ag85B, MPL (Sigma), MPL+Ag85B, BCG-CWS, or Ag85B-

BCG-CWS or medium only. Cells were then stained for cell surface markers using the follow-

ing antibodies: PE-conjugated anti-CD80, anti-CD86, anti-H-2Kb (MHC class I), and anti-

I-Ab (MHC class II) with FITC-conjugated anti-CD11c and Percp Cyanine 5.5-conjugated

anti-CD11b antibodies from eBioscience for 30 min at 4 ˚C. The fluorescence was measured

by flow cytometry (FACS).

In vitro T-cell response assay

BMDCs prepared from C57BL/6 mice were stimulated with Ag85B (2.5 μg), MPL (5 μg),

MPL+Ag85B (2.5 μg Ag85B with 5 μg MPL), BCG-CWS (5 μg), or Ag85B-BCG-CWS (2.5 μg

Ag85B conjugated with 5 μg BCG-CWS) for 24 h. After washing with fresh medium, the cells

were seeded into 24-well cell culture plates. CD4+ T cells were isolated using a MACS column

(Miltenyi Biotec, Bergisch Gladbach, Germany) from splenocytes of naive mice. Stimulated

BMDCs were added to the wells that contained CD4+ T cells (5 × 106 cells) at a ratio of 1:10

(BMDCs: CD4+ T cells) and were cultured for 1 day or 5 days. The supernatants or cells were

harvested, and cytokine production was analyzed by ELISA or FACS.

Acute toxicity test

Six week-old mice (n = 3 animals/group) were given a subcutaneous injection with Ag85B

(2.5 μg), BCG-CWS (5 μg), or Ag85B-BCG-CWS (2.5 μg Ag85B conjugated with 5 μg BCG-

CWS), and the control was injected with PBS. Each mouse was monitored for changes in body

weight for 14 days.

Flow cytometric analysis and intracellular cytokine staining

The single-cell suspensions from lung cells, the spleen cells, and the cervical lymph were pre-

pared as previously described [15] and then were stimulated with Ag85B (10 μg/mL) for 12 h

at 37 ˚C in the presence of GolgiStop (BD Biosciences). The cells were stained with fluoro-

chrome-conjugated antibodies against anti-CD4-percp (eBioscience), fixed and permeabilized

using a Cytofix/Cytoperm kit (BD Biosciences), and stained with anti-IL-17-alexa488

(eBioscience), anti-IFN-γ-PE (BD bioscience) and anti-IL-10-BV510 (BD Biosciences) as pre-

viously described [15]. Intracellular cytokine levels were detected on the FACSCanto II with

FACSDiva and analyzed using the FlowJo software (Tree star, Ashland, OR, USA).

In vivo experiments, vaccination, Mtb infection in mice, and cell

preparation

The 6-week-old female C57BL/6 mice were immunized subcutaneously 3 times at 2 week

intervals with 0.2 mL of Ag85B (2.5 μg), BCG-CWS (5 μg), or Ag85B-BCG-CWS (2.5 μg

Ag85B conjugated with 5 μg BCG-CWS). In the next experiments, at the time of the first sub-

unit vaccination, one group of mice received a single dose of BCG (1 × 104 CFU) or heat-killed

BCG (1 × 104 CFU) injected subcutaneously at the base of the tail.

The mice were challenged with Mtb H37Ra 4 weeks after the last immunization. Briefly, fol-

lowing anesthetization using a xylazine:zoletil (9:1) mixture, 6 mice per group were intratra-

cheally infected with 50 μL suspensions to achieve initial infectious doses of 1 × 106 CFU of

H37Ra per mouse lung. Each 3 mice per group were euthanized by CO2 chamber method 4

weeks after the final vaccination or 6 weeks after infection to analyze the immune response.
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Single-cell suspensions from the lung, spleen, and cervical lymph node of each group of mice

were stimulated with Ag85B (10 μg/mL) for 24 h or 12 h. Cells were harvested from each

group, and the T cell subtype populations were assessed using flow cytometry. The superna-

tants were harvested, and cytokine production was analyzed by ELISA. These each 3 mice per

group were sacrificed by CO2 chamber 6 or 32 weeks after infection. Number of bacteria in the

spleen or lung was determined by serial 3-fold dilutions of individual whole-organ homoge-

nates in duplicate on 7H10 medium. Organs from the BCG-vaccinated animals were grown in

a medium supplemented with 2 μg of 2-thiphenecarboxylic acid hydrazide/mL to selectively

inhibit the growth of the residual BCG bacteria in the test organs. Colonies were counted after

2–3 weeks of incubation at 37 ˚C. Protective efficacies are expressed as log10 bacterial counts in

immunized mice compared to the bacterial count in the infection controls.

Histopathology

To analyze the histologic changes, the lung tissues were fixed in 10% formalin, and embedded

in paraffin blocks. The lung sections were prepared and stained with hematoxylin and eosin

(H&E) and acid-fast bacilli (AFB) staining. All tissue analyses were performed through blind

assessment. To quantify the granuloma area and bacterial count, histological images were ana-

lyzed using the ImageJ software (National Institutes of Health, Bethesda, MD), as described

previously [19].

Statistical analyses

All results were analyzed using GraphPad Prism 5 software (GraphPad Software, San Diego,

CA, USA). The significance of the differences between three or more groups were evaluated

using one-way ANOVA followed by Tukey’s multiple comparison analysis. The data in the

graphs are expressed as the mean values ± SD; �p< 0.05, ��p< 0.01, and ���p< 0.001 were

considered statistically significant.

Results

Conjugation of Ag85B to BCG-CWS

The BCG-CWS, a covalently linked mycolic acid, arabinogalactan, and peptidoglycan com-

plex, has free carboxyl groups from its tetrapeptide amino acids, which can be coupled with

the free amino group of a protein [20]. Previously, we demonstrated that bovine serum albu-

min or ovalbumin are efficiently covalently coupled to a carboxyl group of BCG-CWS, which

strongly enhanced the humoral responses against the conjugated proteins [11]. In this study,

Ag85B was coupled with the CWS using EDC/NHS to improve the conjugating efficiency (Fig

1A). The protein concentration of the BCG-CWS itself was 0.020 μg/mL. When 500 μg of

BCG-CWS was conjugated with Ag85B (500 μg) and then resuspended in 1 mL of suspension

buffer, the protein concentration conjugated to the CWS was 0.281 μg/mL, suggesting that

BCG-CWS and Ag85B coupled at a ratio of approximately 2:1. The SDS-PAGE analysis con-

firmed that the Ag85B protein band was detected in the Ag85B-BCG-CWS as a band identical

in size to that of the recombinant Ag85B (Fig 1B), but such a band was not observed in the

uncoupled BCG-CWS. Conjugation of Ag85B to BCG-CWS was further confirmed by an

immunoblot assay using the anti-Ag85B antibody (Fig 1C).

Ag85B-BCG-CWS induces maturation of DCs

It has been demonstrated that the BCG-CWS induces the activation of human DCs [14, 21].

We first tested whether BCG-CWS could activate the mouse BMDCs and compared its
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activities with MPL, which is well known as a TLR-4 agonist. As shown in Fig 2A, DCs treated

with MPL induced the higher production of the pro-inflammatory cytokines, than BCG-CWS

at the low concentrations (0.01 to 1 μg/mL). However, BCG-CWS induced similar or signifi-

cantly higher production of the cytokines in BMDCs compared to MPL at a concentration of

5 μg/mL. IL-1β production was similar between the DCs stimulated with MPL and BCG-CWS

at all concentration tested. Unexpectedly, the BCG-CWS stimulated DCs to produce signifi-

cant higher IL-10 production at the concentration of 5 μg/mL.

Next, we tested the activities of the BCG-CWS conjugated with Ag85B on BMDCs

(Fig 2B). Production of IL-12p70, IL-1β, IL-10, and IL-23 were significantly higher in

BMDCs stimulated with Ag85B-BCG-CWS than with BCG-CWS, Ag85B, MPL alone, or

MPL+Ag85B (Fig 2B). The BCG-CWS-induced TNF-α production was not significantly

enhanced by the Ag85B conjugation. There was no difference in IL-6 production among the

stimulants.

Fig 1. SDS-PAGE and western blot analysis of the conjugation of Ag85B to BCG-CWS. (A) The predicted structure

of the conjugation of Ag85B to BCG-CWS. (B) Lane M, molecular weight standard; lane 1, Ag85B (5 μg); lane 2,

BCG-CWS (10 μg); lane 3, Ag85B-BCG-CWS (5 μg/10 μg). Protein bands were visualized by Coomassie blue staining.

(C) Western blot analysis using mouse anti-Ag85B Ab.

https://doi.org/10.1371/journal.pone.0213536.g001
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We further analyzed the surface makers related to DC maturation by flow cytometry.

Ag85B-BCG-CWS-treated DCs had significantly enhanced expression of CD86, MHC

class I, and MHC class II molecules as compared to Ag85B, BCG-CWS, MPL, or MPL+Ag85B

treated cells (Fig 2C). In particular, Ag85B or BCG-CWS activity was enhanced by Ag85B

conjugation to BCG-CWS, but MPL-mediated activity was not enhanced by mixing with

Ag85B.

Fig 2. Ag85B-BCG-CWS induces DC maturation. (A) DCs were dose-dependently treated with the indicated concentrations of MPL or

BCG-CWS for 24 h. TNF-α, IL-6, IL-1β, IL12p70, and IL-10 levels in the culture medium were measured by an ELISA. (B) DCs were treated

with the indicated concentrations of Ag85B, MPL, MPL+Ag85B, BCG-CWS, or Ag85B-BCG-CWS for 24 h. TNF-α, IL-6, IL-1β, IL-12p70, IL-

23, and IL-10 levels in the culture medium were measured by an ELISA. (C) DCs were stained with anti-CD80, anti-CD86, anti-MHC class I, or

anti-MHC class II mAbs and analyzed for the expression of surface markers. The frequency of positive cells is shown for each panel. All bar

graphs show the means ± SD of 3 samples. One representative plot out of three independent experiments is shown; ��p< 0.01 or ���p< 0.001

compared to control group.

https://doi.org/10.1371/journal.pone.0213536.g002
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Ag85B-BCG-CWS-matured DCs induce Th1 and Th17 responses

It is well known that IL-12p70, IL-1β, and IL-23 are involved in the induction of Th1 or Th17

responses [22]. Therefore, we investigated whether Ag85B-BCG-CWS-matured BMDCs could

induce polarization to Th1 or Th17 responses. DCs matured with each antigen were co-cul-

tured with syngeneic CD4+ T cells for 5 days and then the cytokines were quantified from the

culture supernatants. BCG-CWS-treated DCs induced significantly higher IFN-γ production

when compared to MPL-treated DCs (Fig 3). The production of IFN-γ and IL-17 was signifi-

cantly enhanced in DCs treated with Ag85B-BCG-CWS as compared to DCs treated with

MPL, MPL+Ag85B, BCG-CWS, or Ag85B alone. Ag85B-BCG-CWS induced IL-4 production,

but their levels were not significant (Fig 3). Significantly higher IL-10 production was induced

in Ag85B-BCG-CWS-treated DCs when compared to other antigen-stimulated DCs. Because

IL-10 was produced from both the DCs and T cells, we performed FACS analysis to detect

intracellular IL-10 in the co-cultured cells. As shown in S1 Fig, Ag85B-BCG-CWS-mediated

IL-10 production occurred predominantly in DCs rather than T cells.

Ag85B-BCG-CWS induces antigen-specific Th1 and Th17 responses in

mice

First, we simply compared the protective efficacy of Ag85B+MPL-DDA and Ag85B-BCG-

CWS in a short-term mouse challenge model. Mice were immunized, as indicated in S2A Fig,

Fig 3. Ag85B-BCG-CWS-treated DCs stimulate T cells to produce Th1 and Th17 cytokines. T cells were purified

from splenocytes of naive mice via MACS column. The T cells were co-cultured with unstimulated DCs, Ag85B

(2.5 μg/ml)-stimulated DCs, MPL (5 μg/ml)-stimulated DC, MPL (5 μg/ml)+Ag85B (2.5 μg/ml)-stimulated,

BCG-CWS (5 μg/ml)-stimulated DCs, or Ag85B (2.5 μg/ml)-BCG-CWS(5 μg/ml)-stimulated DCs for 5 days at a DC to

T cell ratio of 1:10. The cytokine levels in the culture supernatants were measured by an ELISA. The data shown are the

mean values ± SD (n = 3); �p< 0.05, ��p< 0.01, and ���p< 0.001, compared to control group.

https://doi.org/10.1371/journal.pone.0213536.g003
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and then challenged with Mtb 4 weeks after the last immunization. Bacterial load was evalu-

ated 6 weeks after infection. As shown in S2B Fig, the bacterial burden in the lungs and the

spleen was significantly reduced in the Ag85B+MPL-DDA- and Ag85B-BCG-CWS-immu-

nized groups, but not in the MPL-DDA- or BCG-CWS-immunized groups, when compared

to the infection control. There was no significant difference in protective efficacy between

Ag85B+MPL-DDA- and Ag85B-BCG-CWS-immunized mice, although the bacterial burden

in Ag85B+MPL-DDA-immunized mice was slightly lower than in Ag85B-BCG-CWS-immu-

nized mice. Therefore, in subsequent mouse experiments, we focused on Ag85B-BCG-CWS-

mediated immune responses.

Next, we investigated whether the Ag85B-BCG-CWS could induce the Th1 or Th17

response in vivo. The C57BL/6 mice were immunized three times with Ag85B, BCG-CWS, or

Ag85B-BCG-CWS (Fig 4A). Because one of the most important aspects of adjuvant develop-

ment is safety, the mice were monitored for 2 weeks after the first immunization. There was no

abnormal change or behavior in any of mice injected when compared to the non-injected con-

trol mice. Ag85B-BCG-CWS-injected mice showed no significant weight change during the

2-week observation, when compared to the mice injected with BCG-CWS or Ag85B alone and

non-treated mice (Fig 4B). Next, we investigated the immune response against Ag85B in cells

from lung, spleen, and lymph node at 4 weeks after the last immunization before the challenge.

Production of IFN-γ, IL-17, IL-2, and IL-10 from the culture supernatants of the cells stimu-

lated with Ag85B was determined. The production of IFN-γ and IL-17 in both the lung and

lymph node, and IL-2 in the lungs were significantly increased in only the Ag85B-BCG-CWS-

immunized mice (Fig 4C and 4E). The cytokine production in the spleens had no significant

difference among the immunized groups (Fig 4D). Although the Ag85B-BCG-CWS-stimu-

lated DCs produced significantly higher levels of IL-10 than other antigen-stimulated DCs (Fig

2), Ag85B-specific IL-10 production in the spleen and lung was not observed in all immunized

groups, except in the lymph node of Ag85B-BCG-CWS-immunized mice (Fig 4C, 4D and 4E).

FACS analysis also showed that the IFN-γ- or IL-17-positive CD4+ T cells significantly

expanded in the lung and lymph node of the Ag85B-BCG-CWS-immunized mice, when com-

pared to other immunized mice (Fig 4F). These data suggest that Ag85B-BCG-CWS can

induce the Th1 and Th17 responses in vivo before challenge.

Protective effect of Ag85B-BCG-CWS

The mice were challenged with Mtb H37Ra 4 weeks after the last immunization, and the bacte-

rial loads and histopathologic changes were evaluated 6 weeks after infection (Fig 4A). The

bacterial burden in the lungs and the spleen was significantly reduced in the Ag85B-BCG-

CWS-immunized group, but not in Ag85B or BCG-CWS-immunized group when compared

to the infection control (Fig 5A and 5B), suggesting that Ag85B-BCG-CWS has significantly

higher protective efficacy than Ag85B or BCG-CWS alone.

Hematoxylin and eosin (H&E) staining of the lung sections indicated improved lung

inflammation in the Ag85B-BCG-CWS-immunized group compared to the infection control

(Fig 5C). Ag85B-BCG-CWS showed significantly reduced bacterial count in tissue section

stained for AFB, compared to the BCG-CWS or infection control (Fig 5D). In addition,

BCG-CWS alone had a considerable protective efficacy on H&E and AFB stains of the lung tis-

sue section.

At 6 weeks post-challenge, we re-examined the Ag85B-specific immune response in the

cells from the lungs, spleens, and cervical lymph nodes. Only the Ag85B-BCG-CWS-immu-

nized group induced the Ag85B-specific IFN-γ and IL-17 immune responses in ELISA analysis

(Fig 6A, 6B and 6C) and intracellular cytokine stain of CD4+ T cells (Fig 6B). Although a
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significant IFN-γ production was not observed only in the lymph nodes of Ag85B-BCG-CWS-

immunized mice (Fig 6C), but IFN-γ+ CD4+ T cells were expanded in the lymph node as well

as the lung and spleen (Fig 6D, 6E and 6F). Interestingly, the Ag85B-specific IL-2 production

was observed in only the lungs before challenge (Fig 4C), but in all the tissues after challenge

(6A, 6B, and 6C), in the Ag85B-BCG-CWS-immunized mice. There was no significant Ag85B-

specific IL-10 production in any of the immunized groups after the infection.

Fig 4. Ag-specific responses in lung cells and cervical lymph node 4 weeks after the final immunization with Ag85B alone, BCG-CWS

alone, or Ag85B-BCG-CWS. (A) Schematic diagram of the experimental design. (B) Group of three female C57BL/6 mice were given a single

subcutaneous injection with Ag85B alone, BCG-CWS alone, or Ag85B-BCG-CWS at day 0. Change in body weight and mortality were

monitored for 2 weeks. (C-E) IFN-γ, IL-17, IL-2, and IL-10 production by lung cells, spleen, and cervical lymph node in response to untreated

or Ag85B stimulation was measured by an ELISA. The data are shown as the means ± SD of 3 samples. One representative plot out of three

independent experiments is shown. ��p< 0.01 or ���p< 0.001 compared between the untreated and Ag85B-stimulated cells in each group. (F)

Subsequently, IFN-γ-producing T Cells (IFN+CD4+) and IL-17-producing T cells (IL-17+CD4+) were counted by FACS. The gating strategy to

assess intracellular cytokine are shown in S3A Fig. �p< 0.05 or ���p< 0.001 compared to group 1. All graphs show the results from one of the

two experiments producing similar results (n = 3 animals/group). Group G1: naive control, G2: Ag85B alone, G3: BCG-CWS alone, and G4:

Ag85B-BCG-CWS.

https://doi.org/10.1371/journal.pone.0213536.g004
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Long-term protective efficacy of Ag85B-BCG-CWS

Finally, we determined the long-term protective efficacy of Ag85B-BCG-CWS and its efficacy

was compared with live BCG or killed BCG. The mice were infected with Mtb H37Ra 4 weeks

after the last immunization, and then CFUs in the lungs and the spleens were measured at 6

and 32 weeks after the infection (Fig 7A). When compared to the infection control or

BCG-CWS immunization, the bacterial burden in the lungs 6 weeks post-infection was

Fig 5. Histology of representative lung lobes and CFU values for each group. (A—B) Differences in the bacterial

burden between mice immunized with Ag85B alone, BCG-CWS alone, or Ag85B-BCG-CWS at 6 weeks after challenge

with Mtb are shown. Lung sections from each immunized mouse (immunization with Ag85B alone, BCG-CWS alone,

or Ag85B-BCG-CWS) were stained with (C) H&E and (D) AFB at 6 weeks after the challenge with Mtb. The

granuloma area (%) and the bacterial count from a lung section have been plotted. The results from one of the two

experiments producing similar results are shown (n = 3 animals/group). �p< 0.05, ��p< 0.01, and ���p< 0.001,

compared to group 1. Group G1: Infection control, G2: Ag85B alone, G3: BCG-CWS alone, and G4:

Ag85B-BCG-CWS. (H&E magnification 40X, AFB magnification 200X).

https://doi.org/10.1371/journal.pone.0213536.g005
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significantly reduced in the live BCG-injected group and in the Ag85B-BCG-CWS-immunized

group; however, there was no significant difference between the two groups (Fig 7B). However,

at 32 weeks after infection, only the Ag85B-BCG-CWS-immunized group showed a significant

bacterial reduction in the lungs and spleens, and its protective efficacy was significantly higher

than live BCG or BCG-CWS (Fig 7C). We tested the efficacy of the killed BCG because

BCG-CWS was derived from the BCG cells. As expected, the killed BCG showed no protective

effect.

Discussion

It is a critical goal to develop an effective antigen delivery system in TB vaccine research field

[7]. In general, adjuvants are mixed with the antigen as a form of emulsions or liposomes.

However, these mixtures enable activation of surrounding APCs that do not present the deliv-

ered antigen and are probable cause of induction of autoimmune responses [23, 24]. In addi-

tion, a high adjuvant dosage is required to induce a satisfactory immune response to the

antigen and leads to unnecessary side effects [25]. In contrast, an antigen-adjuvant conjugate

can ensure that both the antigen and adjuvant reach the APC simultaneously, and strongly

induce immune response, compared to an antigen-adjuvant mixture [26]. Recently, the anti-

gen-adjuvant conjugation has attracted attention, because it can induce a stronger immune

response at a lower concentration than the antigen-adjuvant mixture [26]. In this study, we

Fig 6. Ag85B-BCG-CWS induces Ag-specific Th1 and Th17 responses in lung cells and in the cervical lymph node after challenge with

Mtb. (A-C) IFN-γ, IL-17, IL-2 and IL-10 production by lung cells, spleen, and cervical lymph node in response to untreated or Ag85B

stimulation was measured by an ELISA. The data are shown as the means ± SD of 3 samples. One representative plot out of three independent

experiments is shown. ���p< 0.001 compared to between the untreated and Ag85B-stimulated cells in each group. Subsequently, IFN-γ-

producing T cells (IFN+CD4+) and IL-17-producing T cells (IL-17+CD4+) from (D) lung, (E) spleen, and (F) cervical lymph node were counted

by FACS. The gating strategy to assess intracellular cytokine are shown in S3B Fig. �p< 0.05, ��p< 0.01, and ���p< 0.001 compared to group 1.

All graphs show the results from one of the two experiments producing similar results (n = 3 animals/group). Group G1: Infection control, G2:

Ag85B alone, G3: BCG-CWS alone, and G4: Ag85B-BCG-CWS.

https://doi.org/10.1371/journal.pone.0213536.g006
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demonstrated that the immunization of the BCG-CWS conjugated with Ag85B elicits Th1 and

Th17 responses and a long-term protective response against TB in mice.

It is well known that mycobacterial components are typical immuno-adjuvants, such as the

complete Freund’s adjuvant (CFA). BCG has been used in humans for the prevention of TB

since 1921 and for immunotherapy against superficial bladder cancer [27], establishing their

safety and immunogenicity. Therefore, BCG or its components are promising candidates to

develop safe adjuvants or vehicle. We also previously demonstrated that BCG-CWS is an uni-

versal vaccine vehicle [11]. BCG-CWS consists of several components: mycolic acid, arabino-

galactan, and a peptidoglycan complex [20, 28, 29]. Arabinogalactan is a biocompatible

and mass-producible natural polysaccharide. Arabinogalactan increases splenocyte prolifera-

tion, stimulates macrophages, and enhances the relevant cytokine release [9, 30]. The arabino-

galactan-poly(I:C) induces a strong Th1 response against the conjugated protein [9, 30].

Peptidoglycan activates DCs to secrete IL-23 and IL-1β via the TLR2 pathway and eventually

differentiates naive T cells into Th17 memory cells [31]. The BCG-CWS promotes sufficient

antibody production and exerts anti-tumor activity in immuno-adjuvant therapy, acting as a

Fig 7. The long-term protective potential of Ag85B-BCG-CWS against Mtb challenge. (A) Schematic diagram of the

experimental design. Eight weeks after the first vaccine injection, mice were challenged with virulent Mtb. (B) Six or (C)

thirty-two weeks post-challenge, the mice were sacrificed and the bacterial burden (CFU) was measured in the lung and

spleen. The results from one of the two experiments producing similar results are shown (n = 3 animals/group). �p< 0.05,
��p< 0.01, and ���p< 0.001 compared to each to group 1. Group G1: Infection control, G2: BCG alone, G3: Heat-killed

BCG, G4: BCG-CWS alone, and G5: Ag85B-BCG-CWS.

https://doi.org/10.1371/journal.pone.0213536.g007
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potent adjuvant [11]. BCG-CWS has been applied in the treatment of bladder cancer [12, 13].

BCG-CWS activates DCs to express the costimulatory molecules and to secret TNF-α, IL-6,

and IL-12p40 through the TLR2 and TLR4 signaling pathways [14, 21]. Therefore, we hypoth-

esized that, if BCG-CWS conjugated with a protein used as a TB vaccine, BCG-CWS can

enhance the immune response specific to the conjugated protein. In this study, we found that

BCG-CWS enhanced the Ag85B-mediated pro-inflammatory cytokine production and expres-

sion of co-stimulatory and MHC class I/II molecules, when DCs were stimulated with Ag85B-

conjugated BCG-CWS.

It has been reported that the TB vaccine provides immunity by inducing antigen-specific

Th1- and Th17-cell-based immunity. Our data indicated that Ag85B-BCG-CWS activated

DCs to secrete TNF-α, IL-12, IL-1β, and IL-23, which are involved in either Th1 or Th17

differentiation. In fact, Ag85B-BCG-CWS-matured DCs induced both the Th1 and Th17

responses, which were also induced in the lungs, spleens, and lymph node from mice immu-

nized with Ag85B-BCG-CWS before infection and these responses were maintained after

challenge as well. Simultaneously, BCG-CWS or Ag85B-BCG-CWS significantly induced the

anti-inflammatory cytokine IL-10 in DCs, but the Ag85B-specific IL-10 production in lungs

from Ag85B-BCG-CWS-immunized mice was not observed. Early sources of IL-10 during

infection are macrophages or DCs, but the major source of IL-10 production in adaptive cell-

mediated response is the T cells [32]. Therefore, it appears that the T cells activated in the

Ag85B-BCG-CWS-immunized mice might not produce IL-10 at high level.

IFN-γ plays a critical role in the control of Mtb infection, as indicated by the IFN-γ-/- mice

which are affected by disseminated TB infection [33]. Recently, it has been reported that IFN-γ
is necessary to elicit the vaccine-specific CD4+ T cell response, but IFN-γ responsiveness is not

essential for the control of the Mtb burden by vaccination [34]. It is also reported that there is

an IFN-γ-independent mechanism for the control of Mtb infection in vivo [35], where they

suggest the involvement of Th17 in TB protection. There has been conflicting reports on the

protective roles of Th17/IL-17 responses during primary infection [36–38]. However, IL-17

contributes to the protection against TB in vaccine-induced immunity [39]. Recently, Gopal

et al. reported that IL-17 provides mucosal vaccine-induced protection against TB via CXCL13

induction [40]. In this study, BCG-CWS enhanced the conjugated Ag85B-specific Th1 and

Th17 responses in the lungs and lymph nodes before challenge and in the spleens too after

challenge. In particular, significant expansion of IFN-γ+CD4+T cells or IL-17+ CD4+T cells

was observed in Ag85B-BCG-CWS-immunized mice. These results suggest that BCG-CWS

plays an essential role to induce both the Th1 and Th17 responses to the conjugated antigen.

In vaccine efficacy test, Ag85B-BCG-CWS showed significant protective effect in terms of

bacterial loads and histopathology when compared to Ag85B or BCG-CWS alone. Although

we previously demonstrated that H37Ra can be used to test vaccine efficacy in the mouse

model [41], further investigation on the detailed protective efficacy and mechanism in a

mouse model using virulent Mtb H37Rv is urgently needed. In comparing the test with BCG

injection, Ag85B-BCG-CWS showed significant protective effect comparable with live BCG at

6 weeks after infection, but significant higher protective efficacy than live BCG, which had no

protective effect, at 32 weeks after infection. Interestingly, BCG-CWS alone had some protec-

tive effect at 6 weeks after infection, but no protective effect at 32 weeks after infection. Because

the CWS is a major component of the cell wall of BCG, it is possible that BCG-CWS alone

could induce a short-term protective effect. H56 vaccine mixed with the adjuvant CFA01,

which contains TDB as an immunomodulator, boosts the BCG with slightly lower bacterial

counts than the BCG-vaccinated mice at 4 weeks after challenge; but 24 weeks after infection,

H56 boosting results in significantly lower bacterial load than the BCG-vaccinated mice [42].
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Taken together, our results suggest that BCG-CWS may be a reliable adjuvant for the subunit

TB vaccine and is able to enhance a long-term protective response.

Supporting information

S1 Fig. Ag85B-BCG-CWS does not affect IL-10 secretion from T-cells. T cells activated by

unstimulated DCs, Ag85B-stimulated DCs, MPL-stimulated DCs, MPL+Ag85B-stimulated

DCs, BCG-CWS-stimulated DCs, or Ag85B-BCG-CWS-stimulated DCs were co-cultured for

1 day with CD4+ T cells of naïve mice at a DC-to-T-cell ratio of 1:10. (A) Subsequently, IL-

10-producing DCs (CD11c+CD11b+IL-10+) (B) and IL-10-producing CD4+ T cells (CD4+IL-

10+) were gated as shown.

(TIF)

S2 Fig. Bacterial burden of Ag85B-BCG-CWS and Ag85B+MPL-DDA in mice. (A) Sche-

matic diagram of the experimental design. (B) Differences in bacterial burden are shown

among mice immunized with MPL (25 μg)-DDA (250 μg) alone, Ag85B (2.5 μg)+MPL

(25 μg)-DDA (250 μg), BCG-CWS (5 μg) or Ag85B (2.5 μg)-BCG-CWS (5 μg) at 6 weeks after

a challenge with Mtb H37Ra (n = 3 animals/group). �p< 0.05, ��p< 0.01, and ���p< 0.001,

compared with Infection only or Ag85B+MPL-DDA groups. Group 1 (G1): Infection only G2:

MPL-DDA alone, G3: Ag85B+MPL-DDA, G4: BCG-CWS alone, G5: Ag85B-BCG-CWS.
�dimethyl dioctadecyl ammonium bromide (DDA).

(TIF)

S3 Fig. Gating strategy to assess intracellular cytokines. All samples were stained for surface

molecules and gated based on forward scatter (FSC) and side scatter (SSC). T cells were gated

from the lymphocyte gate by FSC vs. SSC, based on surface expression patterns of CD4+ T

cells. Using the CD4+ T cell gate, cells with specific staining for IFN-γ and IL-17 are shown in

stimulated spleen or lung cells. (A) lung cells and cervical lymph nodes, 4 weeks after final

immunization (Fig 4F) and (B) 6 weeks after Mtb challenge (Fig 6D–6F).

(TIF)
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