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Abstract: Parkinson’s disease (PD) and Alzheimer’s disease (AD) are the most common age-related
neurodegenerative disorders. Both diseases are characterized by chronic inflammation in the
brain—neuroinflammation. The first signs of PD and AD are most often manifested in old
age, in which the immune system is usually characterized by chronic inflammation, so-called
“inflammaging” In recent years, there is growing evidence that pathogenesis of these diseases
is connected with both regional and peripheral immune processes. Currently, the association of
clinical signs of PD and AD with different characteristics of patient immune status is actively being
researched. In this mini-review we compare the association of PD and AD alterations of a number of
immune system parameters connected with the process of inflammation.
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1. Introduction

The most common neurodegenerative diseases in the world are Alzheimer’s disease (AD)
and Parkinson’s disease (PD). These diseases are age-associated and most often have a late debut
of the manifestation with a subsequent stage of progression leading to signs of dementia with
similar symptoms: memory impairment, orientation problems, difficulties in performing service
functions, etc. AD and PD are referred to as “protein misfolding” diseases because deposits of
improperly-folded modified proteins are detected in specific areas of the patient brain [1–3]. In the
case of AD, these deposits contain β-amyloid proteins and hyperphosphorylated tau protein, which,
respectively, form extracellular plaques and intracellular fibrillar tangles [4]. In contrast, for PD
the deposits—called Lewy bodies—are formed due to the accumulation of α-sinuclein protein in
dopaminergic neurons mainly of the substantia nigra, as well as in other regions of the brain [5]. In both
AD and PD, neurodegeneration processes are generally accompanied by neuroinflammation [6].

At the same time, AD and PD have different pathogenetic mechanisms, which are evinced
in different manifestations of the diseases and are reflected in differences in the methods of their
treatment [7]. The pathogenesis of PD is considered as a result of the reduction of dopaminergic
activity of neurons of the substantia nigra, which leads to defects in movement control associated
with muscle rigidity and tremor at rest and coordination disorders [8]. AD is characterized by the
death of neurons and the loss of synaptic transmission in the brain regions responsible for learning
and memory (cerebral cortex, temporal and parietal lobes and parts of the frontal cortex and cingulate
gyrus), which is the cause of the appearance of cognitive disorders [9]. Despite some overlap of clinical
symptoms of the “protein misfolding” diseases, the different mechanisms of AD and PD pathogenesis
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account for distinctions between course of the diseases: the disturbance of motor functions in PD
in most cases does not leads to dementia; and conversely, in AD, mental disorders are not always
accompanied by impaired motor activity and coordination [10]. The effectiveness of the treatment of
these diseases depends strongly on how early the diagnosis was made and when the specific therapy
for AD and PD was started [11]. This is why great importance is attached to the search for associations
of neurophysiological signs of the disease development with other indicators of functioning of the
organism (biochemical, cytological and immunological), which could be used as specific markers for
diagnosis and prognosis of the course AD and PD.

2. Inflammation as A Main Immune Process Associated with AD and PD

For both diseases, the process of chronic inflammation in the brain (neuroinflammation) is
characterized. Neuroinflammation plays a central role in the development of PD and AD [6].
This process involves not only resident cells (microglia, astrocytes, neurons) of the central nervous
system (CNS) but also the cells and humoral factors of the peripheral immune system that penetrate
into the brain [12–16]. To date, there is no definite answer to the question whether neuroinflammation
is the result or the cause of the development of the neurodegenerative disorders [17]. At the same time
the latter assertion is supported by multiple studies indicating that activated microglia, being a source
of pro-inflammatory and oxidative mediators with a neurotoxic effect, contributes to the aggravation
of inflammation, neurodegeneration and nerve tissue dysfunction. Along with this, it is well known
that the first signs of AD and PD are most often manifested in old age, in which the immune system
is characterized generally by a state of chronic inflammation, so-called “inflammaging”. It has been
shown that this status is manifested, in particular, by the age-related increase in pro-inflammatory
mediators in peripheral blood [18]. This was the basis for the assumption that peripheral inflammatory
processes can stimulate the development of neuroinflammation and neurodegeneration [19–23].
Therefore, a number of authors suggested that the influence of the peripheral immune system on
the process of neuroinflammation can occur due to the changes in the cytokine network [24,25].
This concept allows us to consider the characteristics of immune status, obtained by the analysis
of peripheral blood of patients, as informative indicators for clinical diagnostics of the AD and PD
development and for the option of immunotherapeutic approaches to the therapy of these diseases.

Nevertheless, the problem of the cause-effect relations between regional and systemic
inflammatory processes in the development of PD and AD remains open. On the one hand, it has been
shown recently that peripheral immune response can influence regional inflammation in the brain and
exacerbate neurodegenerative processes [26–30]. It has also been demonstrated that proinflammatory
mediators induced during activation of the innate and adaptive immunity can penetrate through
the blood–brain barrier and affect the CNS, contributing to an exacerbation of neurodegeneration by
activation of primed microglial cells [30,31]. The possibility of overcoming this barrier is characteristic
not only of humoral factors but also of immune cells that infiltrate the sites of inflammation in the
brain [13,24,32,33]. On the other hand, there is evidence of the effect of regional neuroinflammation on
peripheral immune processes. In particular, it has been shown that the progression of neurodegradation
during PD leads to a significant increase in the level of circulating α-sinuclein protein in the blood and
this protein causes an essential systemic inflammatory response [34,35].

A series of studies is devoted to the αgenetic associations between inflammatory factors and
AD or PD with the aim to define genetic determinants regulating immune inflammatory response.
Common genetic changes associated with the risk of these diseases development have not been
identified yet [36]. Loss-of-function variants of genes were described as risk factors for AD, among them
TREM2, the triggering activating receptor expressed on myeloid cells and CD33 linked to reduced
β-amyloid protein phagocytosis by microglia [37,38]. Several variants of TREM2 exon 2 were presented
only in AD cases and showed highly significant association with an increase in AD risk. Such effect
of mutations in TREM2 is believed to be mediated by disturbance of immune response initiation in
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macrophages and dendritic cells and of phagocytosis control in microglia, which could be relevant to
the clearance of β-amyloid proteins [39].

The brains of individuals with PD show up-regulation of major histocompatibility complex class
II (MHC-II) antigens, suggesting the involvement of HLA-DR-positive microglia in pro-inflammatory
process [40,41]. A genome-wide association study (GWAS) allowed to detect a novel association of
sporadic and late-onset of PD with the HLA region [42]. GWAS also provided a study of association of
single nucleotide polymorphisms (SNPs) with PD. It was found that increased expression of seven HLA
genes (HLA-B, HLA-C, HLA-DQA1, HLA-DQB1, HLA-DQB1-AS1, HLA-DRB1 and HLA-DRB5) and
decreased expression of four genes (HLA-DOB, HLA-DQA2, HLA-DQB2 and HLA-DRB6) is associated
with the risk of PD [43]. Furthermore, it was demonstrated that PD is associated with both structural
and regulatory elements in HLA genes [44]. It was also shown that MHC-II expression is required
for α-synuclein-induced activation of microglia and genetic polymorphism of HLA alleles associated
with the risk of prolonged neuroinflammation [45]. Altogether these findings emphasize the role of
inflammatory reactions in PD pathogenesis. No conclusive association was found until now between
MHC-II expression pattern and AD progression.

While a potential role of neuronal MHC-I expression in PD was described [46], there is no
enough evidences of a significant risk for MHC-I genes in PD progression. In contrast, it has been
suggested that genetic determinants of MHC-I are involved in AD progression. AD association
with MHC-I HLA-A2 allele is widely discussed in a number of studies but results of the studies are
discordant. In one way, an association between the HLA-A2 allele and AD was described by several
authors [47,48]. However, this association was disproved in other studies [49–51]. Such inconsistency
of conclusions might result from clinical or genetic heterogeneity of the populations and frequency of
HLA-A2 allele between patients. A meta-analysis of AD cases and control studies before 2014 year
that evaluated a relationship between HLA-A and AD supports that HLA-A2 showed to be a mild risk
factor of AD with significant results only in some populations [52]. Nevertheless, this association may
indicate an involvement of neuronal MHC-I in neuroinflammatory processes and immune-mediated
neurodegeneration, suggesting a role T cell response in AD aetiology [53]. It should be noted that
neuronal MHC-I expression was also described to be linked to modulation of synaptic function in
hippocampal and cortical areas [54,55].

3. Alterations of Peripheral Cytokine Profiles in PD and AD

As it is noted above, the process of neuroinflammation accompanying PD and AD is associated
with alterations in the peripheral immune system, including the cytokine network. However,
the published studies contain contradictory data concerning changes in cytokine production in patients
with AD and PD. In particular, an essential increase of serum level of TNFα for patients with PD
and AD has been demonstrated by many groups [20,22,56–63]. Nevertheless, some authors claim
that there is no significant difference in the serum TNFα between the control group and the AD
group [64,65]. A significant increase of serum IL-1β has been also considered as a biomarker for the
diseases [20,56,57,59,62,66,67] but a number of investigations testify against the difference in serum
IL-1β between patients with PD or AD and healthy donors [61,65]. There are similar contradictions
in the data on the alteration of the serum level of IL-1α in PD and AD that is decreased for the
patients [66], or is unchanged in AD [22,65]. A similar situation is observed for the data on the
disease-related alterations of IL-8 and IFNγ. The published results report both increased [58,65] and
not altered [22,59] levels of the cytokines in patients with AD. No significant differences for these
cytokines were demonstrated between patients with PD and healthy donors [62]. Concerning IL-18,
the majority of publications indicate an increase in serum level of the cytokine for AD [59,68,69],
although there are reports showing no alterations in this level [70,71]. In contrast to AD there is a
lack of data about IL-18 serum level alteration in PD. The serum level of IL-12 in patients with AD
is increased as distinct from patients with PD [59,61] and, vice versa, the registered level of IL-2 and
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C-reactive protein in the blood of PD patients is higher compared to healthy donors, whereas in AD
these cytokines are not significantly changed [22,59,60,62,65,72].

The contradictions in the data mentioned above on the levels of cytokines in the blood can be
associated with different stages of the clinical course of the diseases. There is much concern about
age-matched healthy controls for studies of age-related diseases. Thus, the very large heterogeneity
of the immune statement of aged volunteers can also explain the contradictions in reported results.
Additionally, it is known that there are essential variations in the results of the experiments performed
with different approaches and different commercial kits.

Nevertheless, despite a wide scatter of data, an overall current representation of similarities and
differences in serum levels of the different measureable cytokines between patients with AD and PD
can be found using meta-analysis of a number of related publications. Such a type of study using
40 published works has demonstrated that AD is characterized by increased serum levels of IL-6,
TNFα, IL-1β, TGFβ, IL-12 and IL-18 [59]. For PD, the meta-analysis of 25 related studies determined
higher peripheral concentrations of IL-6, TNFα, IL-1β, IL-2, IL-10, C-reactive protein and RANTES [62].
Some cytokines seem to show an elevated serum level in either AD or PD alone. For AD, these are
IL-12, IL-18 and IFNγ—cytokines, known to stimulate Th1 differentiation, lymphocytes adhesion,
migration and cytotoxity, MHC-I and MHC-II expression [73,74]. PD is associated with elevated levels
of C-reactive protein, IL-2 and IL-10, known to regulate complement system activation, suppress Th1
differentiation and decrease MHC-II expression [75–78] (Table S1). The clinical significance and
pathological role of the elevated cytokine levels remains a subject of debate.

In contrast, the levels of IL-6, IL-1β and TNFα in the blood appear to be elevated in patients
with both AD and PD, which is the evidence of systemic inflammation that accompanies both of these
neurodegenerative diseases. Interestingly, there was an evidence of the ability of IL-6 to penetrate the
blood-brain barrier, as well as the involvement of this cytokine in memory consolidation [79]. It is
possible that an increase in the production of this cytokine, having both pro- and anti-inflammatory
properties, is a protective reaction of the peripheral immune system. The pro-inflammatory cytokines
IL-1β and TNFα is also known to modulate the statements of neurons. It has been demonstrated
that these cytokines exert variable (inhibiting or supporting) synapse-specific effects on long-term
potentiation (LTP; a persistent increase in synaptic strength required, in particular, for memory and
learning) maintenance [80–82]. It was also shown that IL-1β and TNFα in combination with IFNγ

can exacerbate the pathology in AD due to alterations of the β-amyloid precursor protein (βAPP)
metabolism resulting in triggering the production of β-amyloid peptides [83,84].

To conclude, establishing of peripheral cytokine applications as biomarkers of PD and AD is
complicated by the essential individual differences in cytokine levels among the patients. Nevertheless,
presumably, the use of a combined analysis of a number of peripheral cytokines may find in future a
diagnostic application in PD and AD.

4. The Role of Oxidative Stress in PD and AD: Products of Oxidative Stress in the Peripheral
Blood as Biomarkers of PD and AD

Oxidative stress is considered as one of the main factors in the pathogenesis of neurodegenerative
diseases. An increased concentration of free radicals in conjunction with a decrease in antioxidant
protection leads to damage of intracellular proteins, lipids and DNA in the nerve tissue [85–88].
Recently, it has been shown that the mitochondrial stress-induced accumulation of the oxidized form
of dopamine in human neurons is one of the key processes for PD development [89]. In the group
of patients with PD, an increase in the number and activity of mitochondria in neutrophils was
revealed [90]. Furthermore, it was demonstrated a possibility of application of mitochondria-targeted
antioxidants for treatment of PD [91]. A causative role of mitochondrial dysfunction in the brain in the
pathogenesis of AD is also discussed [92]. In particular, an elevated level of oxidative stress markers
was revealed in mitochondria, isolated from peripheral lymphocytes of AD patients [93].
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Along with the neurodegenerative effect of oxidative stress in nerve tissues, it should not be
excluded that neurodegeneration in AD itself can provoke intensification of reactive oxygen species
(ROS) production [94]. Activation of microglia in PD triggers increased levels of pro-inflammatory
mediators (TNFα, IL-1β and IL-6) and ROS, which aggravates microglia-derived inflammation and
neurodegeneration [95].

It has been also shown that, in PD and AD, the balance of antioxidant and oxidant system
activity is disturbed in different cells. AD patients are characterized by significant increases of the
oxidized form of RNA 8-hydroxyguanosine (8OHG) in neurons and an 8OHG level that is inversely
correlated with the progression of the disease [96]. Progression of neurodegeneration in PD is also
accompanied by accumulation of ROS, as well as by oxidative damage and violation of antioxidant
protection, which can be detected not only in brain cells but also in peripheral immune cells and serum
of the patients. For example, in peripheral blood mononuclear cells (PBMC) from the patients with
untreated PD, an increase in the ROS level was demonstrated [97]. In addition, in the PD group of
patients, the marker of induced genomic damage, the 8-hydroxy-2′-deoxyguanosine (8-OHdG) in
leukocytes, as well as the product of lipid peroxidation malondialdehyde (MDA) in the blood plasma
was increased concurrently with the reduced level of antioxidant protection [98,99].

Alterations of some biochemical and immune characteristics found in patients with
neurodegenerative disease progression may underlie the consideration of the characteristics and
their combinations among potential peripheral biomarkers of both AD and PD. For PD and AD,
a number of such markers include, in particular, the above-mentioned MDA—a product of lipid
peroxidation [86,100]. Products of oxidative stress in patient blood can also be referred to the indicators
of the development of AD. For instance, the level of 8-OHdG in plasma and in peripheral lymphocytes
in the AD group were significantly higher compared to the control group and it was observed together
with a considerable decrease in various components of anti-oxidative protection in the blood [101–103].
The effect of oxidative stress in AD is manifested by high levels of oxidized proteins, the products
of lipid peroxidation and by the toxic species of ROS and oxidative modifications in nuclear and
mitochondrial DNA. In particular, a significant increase in the degree of lipoprotein oxidation was
observed in the peripheral blood of AD patients [104].

Neutrophils are the main source of ROS production in the sites of inflammation. Therefore,
these cells could play a role in the development of neurodegeneration. Changes in the functional
characteristics of neutrophils in patients with neurodegenerative diseases have still been poorly studied.
However, it was shown that the activity of NO-synthase in neutrophils (nNOS) from the peripheral
blood of patients with PD was increased, resulting in an elevated production of nitrogen monoxide
(NO). At the same time the activity of the antioxidant enzyme catalase was significantly lower in the
neutrophils of PD patients compared to healthy donors [105]. In addition, it has been demonstrated
that another protective function of neutrophils—phagocytosis—is decreased in PD patients [106].

A possible participation of neutrophils in the development of AD has been demonstrated [107].
In a mouse model of AD, it has been shown that a recombinant form of β-amyloid protein Aβ42
promotes an increase in the adhesion of neutrophils and their migration through the epithelial barriers.
Additionally, both neutrophil depletion and suppression of the activity of the adhesion molecule
LFA-1 led to a decrease in neuropathology and to memory recovery in mice with developed cognitive
dysfunction [108].

5. HSP70 as A Possible Biomarker for Neurodegenerative Diseases

Among the potential peripheral biomarkers of neurodegenerative diseases, the studies in which
these indicators are searched by gene expression analysis in samples of peripheral blood cells of the
patients are worthy of special attention. In particular, it was shown that in PD, alterations of gene
expression in cells from the sources of neurodegeneration and from peripheral blood, had a largely
similar pattern [109]. Peripheral blood cells also showed significant changes in gene expression already
at an early stage of the development of the disease, which differed for PD and AD [110,111]. It was
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found that the gene encoding the chaperone protein HSP70 was among five genes considered as optimal
predictors of PD [110]. This is not surprising, because AD and PD are referred to as “protein misfolding”
diseases and one of the factors underlying their pathogenesis is reduced activity of the protein
homeostasis system, leading to accumulation of neurotoxic aggregates of the modified proteins in the
cells of the nervous tissue. Neuroprotective effects of HSP70 were demonstrated in several different
models of nervous system injury using transgenic animals overexpressing this protein [112–118].
From this point of view, the abnormalities of chaperone-associated system, in particular the HSP70
subfamily, which supports protein homeostasis and cell viability can be considered as one of the key
indicators reflecting the development of protein-misfolding diseases [119].

HSP70, a major member of the heat shock protein family, providing correct folding, refolding,
disaggregation of protein molecules and participating in the mechanism of chaperone-mediated
autophagy aimed at elimination of damaged and aggregated substrates, are among the main
components of the protein homeostasis system [120,121]. The possibility of using HSP70 as a peripheral
biomarker of neurodegenerative diseases is also evidenced by data demonstrating the changes in the
expression of these proteins not only at the gene level but also at the level of the intracellular content
of HSP70 in peripheral blood leukocytes of patients with PD [122,123].

Along with intracellular HSP70, the extracellular serum pool of these proteins circulating
in the body is also of undoubted interest in the search for peripheral biomarkers of process of
neuroinflammation and neurodegenerative diseases, in particular PD and AD [124,125]. It was
demonstrated that extracellular HSP70 exhibits potent immunomodulatory effects on innate and
acquired immunity [126,127]. At present, there is no reliable evidence that the clinical course of
the neurodegenerative diseases is correlated with the level of the serum HSP70 in the peripheral
blood of patients but there are numerous data on the considerable alterations of this level for a wide
range of pathologies [125,128]. In addition, a positive relationship has been found between the serum
level of HSP70 and some markers of inflammation in the elderly, which confirms the involvement
of these proteins in the diseases associated with processes of inflammaging [129]. Additionally,
age-related differences in the relationship between the expression of HSP70 and the production
of reactive oxygen species in the population of human peripheral blood neutrophils, involved in
inflammaging, have been demonstrated [130]. Taking into account that the overwhelming number of
neurodegenerative diseases is observed in the population of elderly people, it can be assumed that
analysis of the level of intracellular and extracellular pools of HSP70 in peripheral blood samples of
the patients is a promising approach for studying the mechanisms of the pathogenesis of PD and AD.

6. Conclusions

The recent studies presented in the mini-review show an increased attention focused on
the involvement of immune processes in the pathogenesis of the neurodegenerative diseases,
in particular, AD and PD. The research efforts are also aimed at the search of diagnostically
important biomarkers involved in peripheral immune reactions accompanying the processes of
neurodegeneration. In this mini-review, we emphasize the comparison of the relationships for the
most common age-associated neurodegenerative diseases—AD and PD, which related to the processes
of regional (neuroinflammation) and system (inflammaging) inflammation. The specified comparative
analysis was aimed at identifying common patterns of bi-directional interaction of the CNS and
peripheral immune system, characteristic of neurodegenerative diseases.

The accumulated literature data do not raise doubts that interactions of regional and peripheral
chronic inflammatory processes, is largely associated with characteristic for neuroinflammation
abnormal blood-brain barrier permeability for soluble factors and circulating cells of the immune
system. Nevertheless, the problem of the causal relationship between regional and system
inflammatory processes in the development of PD and AD remains open. Analysis of the
gene-dependent associations of the immune system with the risk of PD and AD development has
not revealed significant evidence of such associations common for both diseases. General genetic
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disorders/changes associated with the risk of developing these diseases have not yet been detected,
although several different genes related to the immune system was described as the risk factors for AD
and PD. A number of studies have demonstrated that process of neuroinflammation accompanying
PD and AD is associated with alterations in the peripheral immune system cytokine network. Elevated
levels of IL-6, IL-1β and TNFα often found in the blood of both AD and PD patients can be considered
as the evidence of systemic inflammation accompanied both of these neurodegenerative diseases.
Oxidative stress is believed as one of the main factors in the pathogenesis of neurodegenerative
diseases. It has also been shown that in PD and AD the balance of antioxidant and oxidant system
activity is disturbed in different cells. With respect to the discussion on peripheral biomarkers of
neurodegenerative diseases, studies in which these indicators are searched by gene expression analysis
in samples of peripheral blood cells of the patients are worthy of special attention. It was found that the
gene encoding the chaperone protein Hsp70 was among five genes considered as the predictors of PD.
Along with intracellular HSP70, the extracellular serum pool of these proteins circulating in the body
is also of undoubted interest in the search for peripheral biomarkers of process of neuroinflammation
and neurodegenerative diseases, in particular PD and AD. Taking into account that the overwhelming
number of neurodegenerative diseases is observed in the population of elderly people, it can be
assumed that the analysis of the level of intracellular and extracellular pools of HSP70 in peripheral
blood samples of the patients is a promising approach for studying the mechanisms of the pathogenesis
of PD and AD.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/12/2633/s1.
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