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Abstract
Cancer-associated fibroblasts (CAFs) are the most abundant cell type in the tumor 
microenvironment and are responsible for producing the desmoplastic reaction that 
is a poor prognostic factor in ovarian cancer. Long non-coding RNAs (lncRNAs) have 
been shown to play important roles in cancer. However, very little is known about 
the role of lncRNAs in the tumor microenvironment. We aimed to identify lncRNAs 
expressed in ovarian CAFs that were associated with patient survival and used com-
putational approaches to predict their function. Increased expression of 9 lncRNAs 
and decreased expression of 1 lncRNA in ovarian CAFs were found to be associated 
with poorer overall survival. A “guilt-by-association” approach was used to predict 
the function of these lncRNAs. In particular, MIR155HG was predicted to play a role 
in immune response. Further investigation revealed high MIR155HG expression to be 
associated with higher infiltrates of immune cell subsets. In conclusion, these data 
indicate expression on several lncRNAs in CAFs are associated with patient survival 
and are likely to play an important role in regulating CAF function.
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1  | INTRODUC TION

Epithelial ovarian cancer is the fifth leading cause of cancer death in 
women and the most lethal gynecological malignancy.1 High-grade 
serous ovarian cancer is the most common and aggressive subtype 
of ovarian cancer, and despite advances in understanding the un-
derlying genetic causes of HGSOC and improved treatment strate-
gies, most women diagnosed with HGSOC have a poor prognosis.2 
Most women are diagnosed at an advanced stage and while initial 
response rates to chemotherapy are high, recurrence of chemore-
sistant disease is a significant problem.3 Continuing to improve our 
understanding of the factors that influence patient prognosis and re-
sponse to therapy will be beneficial to improve treatment strategies 
and outcomes for women diagnosed with ovarian cancer.

Until recently, most studies have focused on a greater under-
standing of the molecular changes present in ovarian cancer cells and 
how these affect tumor progression and patient outcome. However, 
increasingly the tumor microenvironment is gaining recognition as 
playing a vital part in the initiation, survival, growth, and metastasis 
of tumors.4 In addition, cells within the tumor microenvironment are 
more genetically stable than cancer cells, which potentially reduces 
the likelihood of continued treatment causing the accumulation of 
genetic changes and subsequent development of acquired resis-
tance to therapy.5 For these reasons, the tumor microenvironment is 
emerging as an attractive therapeutic target to treat cancer.

In ovarian cancer, the stromal proportion present in tumors can 
vary from 7% to 83% of tumor tissue, and patients with a higher stro-
mal proportion have a worse overall survival.6 Furthermore, expression 
profiling of HGSOC has identified a subtype that displays a “stromal 
expression signature”.7 Importantly, patients with this signature show 
higher levels of desmoplastic stroma and the poorest survival. Within 
the tumor microenvironment, the stroma contains multiple cell types 
such as endothelial cells, immune cells, and CAFs, which have all been 
shown to contribute to cancer progression. Cancer-associated fibro-
blasts represent the most abundant cell type in the tumor stroma and 
are responsible for producing the desmoplastic reaction that is a poor 
prognostic factor in HGSOC. Additionally, CAFs have been shown to 
play multiple roles in ovarian cancer to promote tumor cell prolifera-
tion, migration and invasion.8-11

Gene expression profiling of several cancer types has revealed 
marked heterogeneity of CAFs.12-14 Therefore, distinct subtypes of 
CAFs could play varying roles in the tumor microenvironment and in-
fluence patient survival differently. Cancer-associated fibroblast or 
stromally derived prognostic gene expression signatures have been 
identified in several cancer types.15-17 Furthermore, in ovarian can-
cer, studies have uncovered genes differentially expressed in CAFs 
that are predictive or prognostic biomarkers such as VCAN,18 CTGF,19 
MFAP5,10 FOSB,20 EGR1, 20 and NPPB.9 However, studies investigat-
ing the DNA mutations in ovarian CAFs have concluded that somatic 
mutations are unlikely to contribute to gene expression changes 
seen in ovarian CAFs and raise the likelihood that alternative mech-
anisms of gene regulation occur in CAFs.21 A study published by 
Mitra et al showed that changes in the expression levels of miR-31, 

miR-214, and miR-155 contribute to the reprogramming of normal 
fibroblasts into CAFs.22 In other cancer types, DNA methylation 
changes have also been shown to occur in CAFs.23-26 A greater un-
derstanding of how gene expression is regulated in CAFs will help to 
identify new stromal biomarkers and potential therapeutic targets.

Long non-coding RNAs represent another possible mechanism 
for regulating gene expression in CAFs. We have previously shown 
differences in lncRNA expression in ovarian CAFs compared to nor-
mal ovarian fibroblasts and that several of these lncRNAs might 
promote the prometastatic role of CAFs in ovarian cancer.27 Long 
noncoding RNAs are noncoding RNAs greater than 200 nucleotides 
long that do not encode protein. Once thought to be “transcriptional 
noise,” lncRNAs are now recognized to play crucial roles in several 
biological functions such as chromatin modification, transcription, 
and translation.28 They have also been shown to play important 
roles in several diseases, including cancer.29 Studies have identified 
lncRNAs involved in ovarian cancer that are also candidate prognos-
tic biomarkers.30,31 However, these studies have been restricted to 
whole tumor specimens or cell lines and none have examined the 
role of lncRNAs in the tumor microenvironment. As CAFs are known 
to represent a heterogeneous population of cells, with varying func-
tional capacities that could influence patient outcome, this study 
aimed to investigate lncRNA expression in ovarian CAFs to deter-
mine those associated with patient outcome. We then employed a 
network-based “guilt-by-association” approach to predict their func-
tions. Additional analysis indicated that increased expression of one 
lncRNA, MIR155HG, was associated with significant increases in sev-
eral immune cell subsets.

2  | METHODS

2.1 | Tissue specimens

Primary tumor specimens from 67 women diagnosed with HGSOC 
were obtained as previously described.19,32 All specimens were 
from previously untreated HGSOC patients hospitalized at the 
Brigham and Women’s Hospital between 1990 and 2000. Patient 
specimens and corresponding clinical information were collected 
by written consent under protocols approved by the review board 
of the Brigham and Women’s Hospital Ethics Committee. All pro-
cedures were carried out in accordance with the approved guide-
lines and regulations. Classification was determined according to the 
International Federation of Gynecology and Obstetrics standards. 
Survival information was not available for 5 patients whose samples 
were excluded.

2.2 | Microdissection, RNA isolation, 
amplification, and hybridization

Microdissection, RNA isolation, amplification, and hybridization to 
GeneChip Human Genome U133 Plus 2.0 Oligonucleotide arrays 
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(Affymetrix) are previously described.19 Gene expression of en-
dothelial cell markers (TIE-2 and VEGFR1) and T cell markers (CD8 
and CD45) were below the level of detection in our samples, indi-
cating a lack of immune or endothelial components and enrichment 
for fibroblasts.19 All gene array data are available through Gene 
Expression Omnibus accession number GSE40595.

2.3 | Statistical data preprocessing

Data preprocessing was undertaken using R Bioconducter, “affy” 
package. Data were normalized and background corrected using the 
Robust Multi-Array Average method33 and expression values Log2 
transformed. Variations across samples were assessed using the in-
terquartile range values for each probe, and those with interquartile 
range less than 1 were removed for subsequent analyses. A total of 
2448 probes were identified previously to be associated with lncR-
NAs.34 The gene symbols and titles corresponding to these probes 
were retrieved from GeneAnnot,35 which provides revised and im-
proved annotations of the Affymetrix Human Genome U133 Plus 
2.0 probes.

2.4 | Survival analysis

The expression levels of all lncRNAs across samples were sepa-
rated into low vs high expression using a fuzzy clustering al-
gorithm, wherein each data point belongs to a cluster to some 
degree that is specified by a membership degree.36 The member-
ships are nonnegative, and for a fixed sample, they sum to 1. For 
each lncRNA, the fuzzy clustering algorithm was set to identify 2 
clusters of samples representing higher vs lower expression lev-
els. Samples belonging to either of clusters with the membership 
degree greater than 0.7 were included, ie, the remaining samples 
were considered as “undetermined” and excluded from subse-
quent analyses, resulting in 2 distinct groups of low vs high ex-
pression for each lncRNA. Fuzzy clustering was undertaken using 
R “cluster” package.

Kaplan-Meier analysis and the log-rank test were used to as-
sess the association between the expression level of each lncRNA 
in CAFs and the patients’ overall survival. The prognostic value of 
each lncRNA’s expression levels as well as debulking status and che-
motherapy response (sensitive vs the rest) was determined with uni-
variate Cox proportional hazard modelling, and those significantly 
related to survival were incorporated into a multivariate analysis. 
In order to overcome the multicollinearity among lncRNA expres-
sion, principle component regression analysis was performed.37 
Accordingly, instead of lncRNA expression profiles, the correspond-
ing principal components were used as covariates in the multivariate 
Cox regression analysis. The Wald test was used to assess the statis-
tical significance of the Cox models (α = 0.05). All survival analyses 
were carried out using R “survival” package; tied event times were 
handled by Breslow’s approximation.38

2.5 | Functional prediction of lncRNAs associated 
with patient survival

Potential functions of prognostic CAF-expressed lncRNAs were pre-
dicted using a network-based “guilt-by-association” approach as follows.

2.5.1 | Construction of coexpressed “interactome”

A coexpression network was first constructed where nodes are the 
identified lncRNAs and all protein-coding genes and edges represent 
significant correlations, ie, |Pearson’s correlation coefficient| > 0.7, cor-
relation adjusted P-value < 10E-6. The gene coexpression network was 
then mapped on a cellular interactome comprising protein-protein and 
gene regulatory interactions. Experimentally validated human PPIs de-
tected in more than 2 experiments were combined with highly ranked 
predicted PPIs (ie, FDR > 60%) as predicted by kotlyar et al39 to form a 
comprehensive PPI database. An experimentally derived gene regula-
tory network was secured from ORTI,40 a comprehensive repository of 
mammalian transcriptional interactions. The resulting network is a co-
expressed interactome comprising coexpressed protein-protein or gene 
regulatory interactions plus coexpressed lncRNA-gene associations.

Network modules were identified using “community” detection 
algorithms where communities are groups of nodes with dense con-
nections internally and sparser external connections.41 Communities 
represent transcripts that are more likely to be involved in distinct 
similar biological processes and thus can be used to assign func-
tions to lncRNAs associated with them. All network analyses were 
performed using R “igraph” package. Different community detection 
algorithms were tried out, eg, Louvain,42 greedy,43 infomap,44 and 
walktrap.45 The Louvain algorithm found clusters with a relatively 
higher modularity score and thus was used to report the results.

2.5.2 | Functional enrichment analysis

Network modules containing at least 1 lncRNA underwent GO and 
pathway enrichment analysis using the R “enrichR” package which 
implements Fisher’s exact test and FDR adjustment on a wide range 
of gene set libraries.46 We used biological processes (GO_Biological_
Process_2017b, comprising 10 125 GO terms on 13 247 genes) and 
KEGG pathways (KEGG_2016, comprising 293 pathways on 7010 
genes) as EnrichR datasets to predict putative functions of lncRNAs. 
For ease of visualization, GO terms enriched by each module were 
summarized into representative subsets of the terms using REViGO.47

2.6 | Validation of MIR155HG in stromal-enriched 
whole tumor specimens

To determine whether MIR155HG was prognostic in whole tumor sam-
ples, we used the same cohort as was used for the CIBERSORT analysis. 
Tothill et al7 have previously clustered these samples into 6 molecular 

info:ddbj-embl-genbank/GSE40595
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subtypes (C1-C6) using k-means clustering and identified that C1 is 
enriched by genes associated with stromal cell types, enabling us to 
validate MIR155HG prognostication in an independent cohort.

We followed our pipeline to preprocess GSE9899 raw data and 
to compare survival differences between patients with high and low 
MIR155HG expression using Kaplan-Meier analysis and the log-rank 
test in each of the subgroups. Average MIR155HG gene expression was 
also compared between the subgroups and differences were compared 
using the nonparametric Wilcoxon test to account for nonnormality of 
MIR155HG mean expression across samples within each subgroup.

2.7 | CIBERSORT analysis to determine immune cell 
infiltrates

CIBERSORT is an analytical tool designed to accurately estimate the 
immune cell subsets present in whole tumor samples from their gene 
expression profiles.48 We used the default LM22 signature matrix consist-
ing of 547 genes that accurately distinguish 22 mature human hemat-
opoietic populations and activation states, including 7 T cell types, naïve 
and memory B cells, plasma cells, natural killer cells, and myeloid subsets.

Using CIBERSORT, we quantified immune cell infiltrates from 
a cohort of 83 previously characterized high-grade ovarian tu-
mors7 described as having a stromal expression signature and an 
increased density of fibroblasts (C1) with data available from Gene 
Expression Omnibus, accession number GSE9899. Differences 
were compared between tumors with high and low MIR155HG ex-
pression. Data are expressed as absolute fractions of each immune 
cell type and differences between groups were measured by t test, 
with significance determined by a P value of less than .05.

3  | RESULTS

3.1 | Long noncoding RNA expression levels in 
ovarian CAFs associated with patient prognosis

Characteristics of patients and tumor samples included in this study 
are shown in Table 1. Microdissected CAF samples were quality 

controlled for CAF composition using 14 gene markers of CAFs and 
fibroblasts previously reported.49 To this end, differential expression 
analysis was carried out comparing CAFs vs matched microdissected 
epithelial tumors; a total of 7161 genes were identified to be signifi-
cantly upregulated in CAFs (adjusted P value < .05 using moderated 
t test with FDR correction) covering 86% (12/14) of CAF markers, 
which indicates significant enrichment for CAF composition (ie, P 
value = 1.02e-5, Fisher’s exact test). Additionally, expression profiles 
of marker genes in each individual CAF sample were assessed and 
visualized as shown in Figure S1, clearly illustrated the high expres-
sion level of CAF markers across all samples.

Kaplan-Meier survival analysis indicated increased or decreased 
expression levels of 10 lncRNAs in ovarian CAFs were associated 
with patients’ overall survival (P-value < .05). The symbols, chro-
mosomal locations, and titles of these 10 lncRNAs are listed in 
Table 2. Kaplan-Meier plots of each lncRNA identified distinct sur-
vival trends between samples in groups of high vs low expression 
(Figure 1). These groups were identified using a fuzzy clustering 
algorithm that was set to categorize samples into 2 clusters rep-
resenting high vs low expression levels. The box plots beside each 
Kaplan-Meier plot show how samples were clustered into 2 groups 
of high and low expression. Fuzzy clustering assigns membership 
grades to each sample indicating the degree to which it belongs to 
each cluster. The middle gray box in each plot represents “uncatego-
rized” and “removed” samples that did not strongly belong to either 
group (membership degree < 0.7). We also undertook an identical 
analysis on the gene expression data using microdissected epithelial 
tumor cells from matched patient samples. Other than CRNDE, none 
of the identified lncRNAs was significantly associated with patients’ 
overall survival (Figure 2), confirming the CAF-specific prognostic 
utility of the identified lncRNAs. Additionally, CAF expression pat-
terns of the lncRNAs were not significantly correlated with their ex-
pression in matched epithelial samples (Figure 2), corroborating CAF 
distinct regulatory mechanisms.

The statistics of univariate cox proportional hazards analysis are 
shown in Figure 3A. Expression profiles of CRNDE, MALAT1, MEG3, 
TP73-AS1, and XIST, as well as chemoresponse and tumor debulk-
ing, were statistically significant predictors of mortality in univar-
iate analysis. The identified lncRNAs showed mutually significant 

Characteristic n = 62 Description

Age at diagnosis, years 
(mean ± SD)

60.94 ± 12.37 —

Stage (III/IV), grade 55/7, 3 —

Debulking (optimal/
suboptimal)

49/13 Optimal debulking corresponds to 
<1 cm residual tumor

Site, histological type Ovary, serous —

Chemoresponse (R/S/R-S/
Ref)

18/24/7/4 R, resistant (recurred < 6 months); 
S, sensitive (recurred > 6 months); 
R-S, resistant-sensitive (recurred at 
6 months); Ref, refractory (never 
responded)

TA B L E  1   Clinical characteristics of 
patients with ovarian cancer and tumor 
samples

info:ddbj-embl-genbank/GSE9899


     |  1809COLVIN et aL.

correlations with each other (Figure 3B), but not with chemore-
sponse or tumor debulking (Figure S2). To adjust for existing col-
linearity among lncRNAs, the first principal component of these 10 
lncRNAs (capturing 98% of variations) as well as clinical character-
istics (ie, chemoresponse and debulking) were used as regressors in 
multivariate analysis. The first principal component of the lncRNAs (P 
value = .000116, HR = 0.74) and chemoresponse (P value = .000168, 
HR = 0.22) were significant predictors of survival in multivariate cox 
analysis. Debulking status approached, but did not reach statistical 
significance (P value = .067754, HR = 1.91).

3.2 | Prognostic lncRNAs in ovarian CAFs enriched 
for pathways known to be involved in CAF function

“Guilt-by-association” assigns putative functions to coding/noncod-
ing transcripts based on genes coexpressed with them. It relies on 
the idea that genes with similar expression patterns across multi-
ple samples are more likely to be coregulated, share similar func-
tions, or are involved in similar biological processes.50 Coexpression 
network analyses have been previously used to predict functions of 
lncRNAs.51-53

Figure 4A depicts a schematic view of a network-based 
“guilt-by-association” approach followed in this work. We first 
constructed a coexpression network whose nodes include all pro-
tein-coding genes as well as 10 lncRNAs identified by the survival 
analysis; edges represent coexpression relationships (|Pearson’s 
correlation coefficient| >0.7). This network held 6791 nodes and 
5 557 325 edges and shows a relatively low degree of modularity 
(0.18) where 91% of nodes fall into 3 gigantic clusters. A high 
degree of modularity, however, has often been reported in bio-
logical networks.54 We mapped the coexpression network on a 
cellular interactome comprising PPIs and gene regulatory inter-
actions to derive a coexpressed interactome. The corresponding 

network held 6791 nodes and 43 545 edges whose modularity 
was improved to 0.47. Overall, 17 clusters (excluding singletons, 
ie, clusters including only 1 member) were identified; 3 clusters 
contained the identified lncRNAs. DANCR, LOC642852, MALAT1, 
MEG3, MGC2752, TP73-AS1, and XIST were coclustered in a rela-
tively large module of 1711 genes. MIR155HG fell into a separate 
cluster (size = 242 genes), which is in concordance with the cor-
relation pattern of lncRNAs visualized in Figure 2B CRNDE was 
clustered with only 2 protein-coding genes, which is not sufficient 
for enrichment analysis, and NEAT1 was identified as a singleton. 
NEAT1 does not show sufficiently high correlation with any gene, 
indicating that the correlation-based guilt-by-association analysis 
cannot reveal its function and complementary analyses are re-
quired. We therefore undertook functional enrichment analysis 
on the 2 former clusters comprising 8 of 10 lncRNAs of interest 
and identified cellular processes and pathways overrepresented 
(adjusted P value < .05) by the corresponding 2 subnetworks as 
predicted by functions of the constituent lncRNAs. Figure 4B 
shows the clusters and summarizes representative enriched GO 
terms. A list of all enriched GO terms as well as overrepresented 
pathways and cluster composition are available in Document 
S1. The cluster containing DANCR, LOC642852, MALAT1, MEG3, 
MGC2752, TP73-AS1, and XIST showed an enrichment for path-
ways primarily involved in metabolic processes as well as autoph-
agy and cilium assembly. The cluster containing MIR155HG was 
enriched for GO terms associated with the immune system, par-
ticularly pathways associated with T cell activation, antigen pro-
cessing and presentation, leukocyte migration, and activation of 
an immune response. This cluster was also enriched for pathways 
involved in ECM organization, cell death, metabolic processes, 
and cytokine signaling. The KEGG pathways related to infectious 
diseases, immune diseases, and the immune system were also en-
riched, suggesting a role for MIR155HG in regulating the immune 
microenvironment.

Symbol Chromosome Title

CRNDE chr16q12.2 Colorectal neoplasia differentially 
expressed (nonprotein coding)

DANCR chr4q12 Differentiation antagonizing non-protein 
coding RNA

LOC642852 chr21q22.3 Uncharacterized LOC642852

MALAT1 chr11q13.1 Metastasis associated lung adenocarcinoma 
transcript 1 (nonprotein coding)

MEG3 chr14q32 Maternally expressed 3 (nonprotein coding)

MGC2752 chr19q13.43 Uncharacterized LOC100653267

MIR155HG chr21q21.3 MIR155 host gene (nonprotein coding)

NEAT1 chr11q13.1 Nuclear paraspeckle assembly transcript 1 
(nonprotein coding)

TP73-AS1 chr1p36.32 TP73 antisense RNA 1 (nonprotein coding)

XIST chrXq13.2 X (inactive)-specific transcript (nonprotein 
coding)

TA B L E  2   Long noncoding RNAs 
(lncRNAs) associated with overall survival 
in ovarian cancer patients based on 
Kaplan-Meier analysis (P value < .05) 
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F I G U R E  1   Differentially expressed long noncoding RNAs (lncRNAs) in cancer-associated fibroblasts associated with significant 
differences in overall survival among ovarian cancer patients. Higher expression of 9 lncRNAs was associated with shorter survival, whereas 
increased expression of MIR155HG was associated with longer survival as depicted in the Kaplan-Meier curves. Box plots show results from 
the fuzzy clustering algorithm that separates high and low expression into 2 distinct groups
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F I G U R E  2   Expression of long noncoding RNAs (lncRNAs) that are prognostic in cancer-associated fibroblasts (CAFs) are not prognostic 
in matched tumor epithelium of ovarian cancer patients. With the exception of CRNDE, expression of the lncRNAs in tumor epithelium 
were not associated with differences in patient survival, as depicted in the Kaplan-Meier curves. Expression of lncRNAs was not correlated 
between microdissected CAF samples and matched tumor epithelium
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3.3 | Validation of MIR155HG 
expression and prognostication in stromal-enriched 
whole tumor specimens

We were interested to know whether MIR155HG would remain 
prognostic using gene expression data from whole tumor samples. 
Therefore, we examined its prognostic value using an independent 
dataset.7 In this dataset, samples were classified into 6 subtypes (C1-
C6) based on gene expression. As shown in Figure 5A, MIR155HG 
was only prognostic in the C1 subtype (log-rank test P value = .0199). 
This subtype is described as having a stromal expression signature 
and an increased density of myofibroblasts. Therefore, our obser-
vation that MIR155HG is only prognostic in the Cluster 1 subgroup 
likely reflects the higher contribution of CAFs to the observed gene 
expression in this subtype.

We also compared MIR155HG expression levels between the 
different subtypes. MIR155HG expression was significantly higher 
in the C1 and C2 subtypes (Figure 5B). Both these subtypes have 
previously been associated with higher levels of infiltrating CD3+ 

T cells, with the C1 subtype showing high levels of stromal CD3+ T 
cells and the C2 subtype showing a high level of intratumoral CD3+ 

T cells.7 The higher MIR155HG expression seen in these subtypes 
supports our functional prediction analysis and the CIBERSORT re-
sults showing higher CD3+ T cells in tumors with high MIR155HG 
expression.

3.4 | High MIR155HG expression associated with 
increase in immune cell subsets in stromal-enriched 
whole tumor specimens

Based on the enrichment analysis and the longer survival seen in 
patients with high MIR155HG expression, we hypothesized that 

MIR155HG is associated with differences in immune cell infiltrates 
within the tumor. In order to investigate this further, we used 
CIBERSORT48 to examine the immune infiltrates present in whole 
tumor specimens obtained from a cohort of 285 ovarian cancer 
patients,7 separated by their MIR155HG expression. As shown in 
Figure 6, tumors with high MIR155HG expression had significantly 
higher numbers of plasma cells, CD8+ T cells, CD4+ memory acti-
vated T cells, follicular helper T cells, gamma delta T cells, M1 mac-
rophages, and eosinophils.

4  | DISCUSSION

Cells within the microenvironment of solid tumors are not passive 
bystanders in tumor progression and metastasis but play an active 
and essential role. In many tumor types, including ovarian, CAFs are 
known to influence tumor cell behavior by increasing tumor cell sur-
vival, proliferation, migration, and invasion.8-11 Cancer-associated 
fibroblasts also interact with the other cell types present in the 
tumor microenvironment to promote angiogenesis and help tumor 
cells evade immune destruction.13,55 Given these findings, a greater 
understanding of the molecular features of CAFs and their potential 
role in the clinical behavior of tumors is essential when designing 
new therapies that target CAFs.

We recently reported that several lncRNAs are differentially 
expressed in ovarian CAFs compared to normal ovarian fibroblasts 
and that several of these lncRNAs contribute to the prometastatic 
phenotype of CAFs.27 In the current study, we investigated whether 
differences in lncRNA expression in CAFs influence patient outcome 
in HGSOC. Given the importance of CAFs in ovarian cancer, there is 
a rationale for exploring the molecular aberrations present in CAFs 
as these could provide valuable prognostic information. We identi-
fied 10 lncRNAs with variable expression in ovarian CAFs that were 

F I G U R E  3   Univariate Cox proportional hazards and correlation analyses. A, Expression levels of CRNDE, MALAT1, MEG3, TP73-
AS1, and XIST (highlighted) were significant predictors of mortality among patients with ovarian cancer as well as debulking status and 
chemoresponse. B, The majority of lncRNAs were significantly positively correlated with each other (blue shaded boxes, darker blue 
represents stronger correlations). Nonsignificant correlations are depicted by small gray circles; significant correlations are depicted by 
larger black circles as outlines in the correlation significance scale
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F I G U R E  4   Functional enrichment analysis. A, Workflow for prediction of long noncoding RNA (lncRNA) function using the proposed 
network-based guilt-by-association approach that incorporates known protein-protein and gene regulatory interactions to derive a 
coexpressed interactome. Coexpressed communities were then identified and modules containing at least 1 lncRNA were subject to 
functional enrichment analysis. B, Two clusters were identified containing at least 1 lncRNA. For each cluster, representative Gene Ontology 
terms are listed in the tables and are grouped by a broad functional classification. Overall, the node size is proportional to degree of nodes 
and nodes are colored blue to red by log2 of degree. Nodes are labeled by the gene/lncRNA name if degree > 50
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associated with overall survival in HGSOC. In addition, an expression 
signature based on these 10 lncRNAs was an independent predictor 
of patient survival. Several of these lncRNAs are already known to 
play a role in either ovarian cancer,56-58 or other cancer types59; how-
ever, these previous studies have only examined lncRNAs in whole 
tumor specimens, therefore, it is not clear whether it is expression 
in the tumor cells or the microenvironment that is associated with 
patient survival. By analyzing expression data from microdissected 
CAFs and matched tumor cells, we were able to show that for 9 out 
of 10 of our lncRNAs, differential expression in CAFs specifically, 

and not tumor cells, was associated with patient survival. This sug-
gests for the first time that these lncRNAs could play an important 
role in CAFs and the tumor microenvironment.

Even though several of the lncRNAs identified in this study 
have previously been studied in ovarian cancer or other cancers, 
their function in CAFs is not clear. In addition, LOC642852 and 
MGC2752 are not well characterized. In order to elucidate the 
potential functions of these lncRNAs in CAFs we used a net-
work-based guilt-by-association approach. The majority of ln-
cRNAs clustered together, suggesting they play similar roles in 

F I G U R E  5   Analysis of MIR155HG in whole tumor specimens. A, High expression of MIR155HG was able to predict prolonged survival in 
the C1 subtype of ovarian tumors that have been shown to have a stromal gene expression signature, but was not prognostic in the other 
subtypes. B, C1 and C2 subsets showed significantly higher MIR155HG expression than the other subtypes
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CAFs. This cluster was associated with pathways involved in 
metabolism, autophagy, and cilium assembly. Cancer-associated 
fibroblasts are already known to play a role in the metabolic repro-
gramming of the tumor microenvironment in order to favor cancer 
growth and metastasis.60 Through alterations in their metabolic 
activity, CAFs take on a catabolic phenotype that is then able to 
provide nutrients to anabolic cancer cells.61 In ovarian cancer, 
CAFs have been shown to have altered metabolism compared to 
normal ovarian fibroblasts and targeting this altered metabolism 
resulted in tumor regression.62 An essential part of tumor metab-
olism, the process of autophagy, is activated in CAFs as a potential 
mechanism to allow CAFs to provide metabolic products to feed 
cancer cells, and high levels of autophagy in the tumor microenvi-
ronment has been associated with cancer progression.63 In ovarian 
cancer, autophagy could protect ovarian CAFs against oxidative 
stress.64 Supporting our findings, both MEG3 and MALAT1 have 
been shown to induce autophagy in ovarian cancer.65,66 Cilium as-
sembly pathways were also enriched in this cluster. Primary cilia 
are important for signaling between stromal cells and adjacent 
tumor cells and autophagy promotes cilia formation.67 Enrichment 
of pathways associated with metabolism, autophagy, and cilium 
assembly suggests that lncRNAs belonging to this cluster might be 
important in creating a metabolic environment conducive to ovar-
ian tumor growth. Higher levels of these lncRNAs could be indica-
tive of more metabolically active and aggressive tumors, resulting 
in worse patient survival. However, further studies are required 
to validate the functional roles of these lncRNAs in ovarian CAF 
metabolism and autophagy.

The other cluster identified in this study contained the lncRNA 
associated with longer survival, MIR155HG. MIR155HG was origi-
nally identified as a proto-oncogene in B-cell lymphomas68 and is 
known to regulate many immune and inflammatory processes.69 The 
role of MIR155HG has not been well-studied in cancer; however, re-
cent studies have shown increased expression to be associated with 
worse survival in glioma and pancreatic adenocarcinoma patients, 
but improved survival in colorectal cancer patients.70-73 In tumor 
cells, MIR155HG appears to have an oncogenic role and is associated 
with increased cell growth and decreased apoptosis.73,74 However, 
MIR155HG could play a different role in CAFs. Our functional pre-
diction analysis showed the cluster containing MIR155HG was highly 
enriched for immune-related pathways involved in T cell activation 
and activation of an immune response. Given patients with higher 
expression of MIR155HG in CAFs survived for longer, MIR155HG 
could be an important component in the interaction between CAFs 
and immune cells, and might be promoting or permitting an anti-
tumor immune response. The CIBERSORT analysis indicated high 
MIR155HG expression to be associated with increased immune cell 
subsets previously shown to be associated with improved survival,75 
further experiments manipulating MIR155HG expression in CAFs are 
required to determine whether or not MIR155HG is directly involved 
in the induction of an antitumor immune response. Interestingly, 
MIR155HG’s associated miRNA, miR-155, is a well-known regula-
tor of immunity and its expression has been shown in preclinical 

mouse models to be essential for mounting an antitumor immune 
response.76,77 This finding could support a role for MIR155HG in an-
titumor immunity as many miRNA host genes have been shown to 
have similar functions to their associated miRNA,78 however, this 
requires further investigation.

The concept that lncRNAs are involved in the regulation of the 
immune system and more specifically in the regulation of tumor 
immunity is relatively recent and therefore their importance in the 
tumor microenvironment and their potential clinical utility is not yet 
well known. Given that high MIR155HG expression in CAFs is associ-
ated with increased patient survival as well as increased infiltration 
of antitumor immune cell subsets, MIR155HG expression could rep-
resent a useful biomarker to predict response to immunotherapy.

In summary, we have identified that variable expression of sev-
eral lncRNAs in ovarian CAFs is linked to patient survival. Functional 
prediction using computational models highlights several potential 
ways these lncRNAs are regulating the ovarian tumor microenviron-
ment to create an environment for tumors to grow and metastasize 
and evade immune destruction. Given the crucial role of the tumor 
microenvironment in cancer initiation and progression, continuing 
to understand the complexity of CAFs is essential to identify novel 
biomarkers and improved ways to therapeutically target the tumor 
microenvironment.
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