
nanomaterials

Article

Gold Nanoparticle DNA Damage by Photon Beam in a
Magnetic Field: A Monte Carlo Study

Mehwish Jabeen 1 and James C. L. Chow 2,*

����������
�������

Citation: Jabeen, M.; Chow, J.C.L.

Gold Nanoparticle DNA Damage by

Photon Beam in a Magnetic Field: A

Monte Carlo Study. Nanomaterials

2021, 11, 1751. https://doi.org/

10.3390/nano11071751

Academic Editor: Giancarlo Rizza

Received: 4 June 2021

Accepted: 1 July 2021

Published: 3 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada; mehwish.jabeen@ryerson.ca
2 Department of Radiation Oncology, University of Toronto and Radiation Medicine Program, Princess

Margaret Cancer Centre, Toronto, ON M5G 1Z5, Canada
* Correspondence: james.chow@rmp.uhn.ca; Tel.: +1-416-946-4501

Abstract: Ever since the emergence of magnetic resonance (MR)-guided radiotherapy, it is important
to investigate the impact of the magnetic field on the dose enhancement in deoxyribonucleic acid
(DNA), when gold nanoparticles are used as radiosensitizers during radiotherapy. Gold nanoparticle-
enhanced radiotherapy is known to enhance the dose deposition in the DNA, resulting in a double-
strand break. In this study, the effects of the magnetic field on the dose enhancement factor (DER) for
varying gold nanoparticle sizes, photon beam energies and magnetic field strengths and orientations
were investigated using Geant4-DNA Monte Carlo simulations. Using a Monte Carlo model including
a single gold nanoparticle with a photon beam source and DNA molecule on the left and right, it
is demonstrated that as the gold nanoparticle size increased, the DER increased. However, as the
photon beam energy decreased, an increase in the DER was detected. When a magnetic field was
added to the simulation model, the DER was found to increase by 2.5–5% as different field strengths
(0–2 T) and orientations (x-, y- and z-axis) were used for a 100 nm gold nanoparticle using a 50 keV
photon beam. The DNA damage reflected by the DER increased slightly with the presence of the
magnetic field. However, variations in the magnetic field strength and orientation did not change the
DER significantly.

Keywords: gold nanoparticle; nanoparticle-enhanced radiotherapy; MR-guided radiotherapy; DNA
damage; Monte Carlo simulation; dose enhancement; magnetic field

1. Introduction

In radiotherapy, the aim is to acquire a conformal dose at the tumor or target as
high as possible while, at the same time, sparing the surrounding normal tissues at the
minimum dose. One way to achieve this goal is to add a heavy-atom radiosensitizer such
as gold nanoparticles to the tumor to increase its compositional atomic number [1–3]. This
increase in radiosensitivity is due to a combination of the physical dose enhancement
and additional chemical and biological effects associated with the nanoparticle [4]. Gold
nanoparticles can be transported to living cells through a liposome-based system. This
makes the treatment delivery of gold nanoparticle-enhanced radiotherapy possible [5].
There are two advantages of adding gold nanoparticles to the tumor. First, the increase
in the compositional atomic number of the tumor increases the radiation dose absorption
through the enhancement of the photoelectric effect. This dose enhancement is particularly
significant when photon beam energy in the kilovoltage (kV) range is used, where the
photoelectric effect is dominant [6–8]. Moreover, the dose enhancement can increase cancer
cell killing. Second, due to the increase in the deviation of beam absorption between the
target (with gold nanoparticle addition) and its surrounding tissue (without gold nanopar-
ticle addition), contrast enhancement can be achieved in medical imaging modalities such
as computed tomography (CT) using a kV photon beam [9–11]. The increase in target
contrast will make it easier for the radiation oncologist to identify the tumor and contour it
more accurately in radiation treatment planning. Therefore, gold nanoparticle-enhanced

Nanomaterials 2021, 11, 1751. https://doi.org/10.3390/nano11071751 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-4202-4855
https://doi.org/10.3390/nano11071751
https://doi.org/10.3390/nano11071751
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11071751
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11071751?type=check_update&version=1


Nanomaterials 2021, 11, 1751 2 of 8

radiotherapy has become popular, resulting in many studies on the basic science and
clinical application [12–15]. Many preclinical works have been carried out, and clinical
trials are being conducted, building a potential roadmap to clinical implementation [16].

In radiobiology, it is well known that cancer cell killing or control is caused by the
energy deposition from the secondary electrons at the deoxyribonucleic acid (DNA). These
secondary electrons generated by the ionizing radiation in the tumor medium (water
equivalent) would travel to the strands of DNA and damage the molecule, for example,
causing a single- and double-strand break [17,18]. The addition of gold nanoparticles to the
tumor can enhance the energy deposition because extra secondary electrons are produced
by the irradiated nanoparticles. Therefore, more lethal double-strand breaks would be
produced in the DNA [19]. Reproduction of the cancer cell is therefore terminated because
the DNA has been damaged by the radiation and irradiated gold nanoparticles.

Recently, with advances in magnetic resonance (MR)-guided radiotherapy [20–22],
MR images can be acquired during radiation dose delivery. This allows radiation staff to
examine the patient’s tumor when it is irradiated by photon beams. Moreover, MR imaging
can provide an excellent contrast of soft tissue compared to the routine CT imaging. This
results in better tumor contouring and targeting [23]. To date, MR-guided radiotherapy has
improved soft tissue visualization, management of the intrafraction and interfraction organ
motion and online adaptive radiotherapy [24]. However, there is a concern over the dose
distribution, affected by the magnetic field from the MR system, in the patient [25]. The
absorbed dose contributing to cancer cell killing is determined by the energy deposition in
the DNA, due to the secondary electrons generated from the interaction between the radia-
tion beam and tumor medium. Since an electron is a charged particle and its traveling path
is affected by the magnetic field, the electron distribution in the tumor can be affected by
the presence of a magnetic field, leading to a change in final dose distribution. This may, in
turn, affect the treatment outcome of MR-guided gold nanoparticle-enhanced radiotherapy.
Although there are macroscopic studies concerning the variation in dose distribution due
to the magnetic field in MR-guided radiotherapy [26–28], there is a lack of study on the
nanodosimetry regarding the DNA damage, not to say with gold nanoparticle addition.

In this study, we investigated this problem by focusing on the nanodosimetry of a gold
nanoparticle and DNA. Using Monte Carlo simulation, we examined the dose enhancement
of DNA in the presence of a gold nanoparticle when a magnetic field is or is not added to
the beam irradiation. Through determining the dose enhancement factor (DER) at the DNA
with different nanoparticle sizes, photon beam energies and magnetic field strengths and
orientations, we can find out the relationship between the DNA damage and the presence
of the magnetic field when an irradiated gold nanoparticle interacts with a DNA.

2. Materials and Methods
2.1. Monte Carlo Simulation

Monte Carlo simulation was used to investigate the influence of the magnetic field
on dose enhancement in the DNA when a gold nanoparticle was irradiated by a photon
beam. Monte Carlo simulation is a widely used mathematical method in medical physics to
model radiation techniques, assess the dose distribution and analyze radiation effects in a
certain environment under different experimental conditions [29,30]. In this study, Geant4
software developed by CREN was used to conduct Monte Carlo simulation [31]. The source
code, Geant4-DNA, is an extension of the Geant4 Monte Carlo toolkit used to simulate the
irradiation of gold nanoparticles and DNA with a photon beam [32]. The code can construct
the environment of a gold nanoparticle near a DNA irradiated by a photon beam at a
distance from the nanoparticle in the presence of a magnetic field. Geant4-DNA provides a
virtual machine containing CentOS Linux, and the latest version of Geant4 (version 10.7),
analysis tools, visualization tools and other utilities were used in the simulation. VMware
Workstation 16 player was used for running the virtual machine. This machine consists of
a Linux distribution of CentOS 8 64-bit. The virtual machine has pre-installed codes and
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all the software required to run Geant4. The virtual machine was installed from the CREN
website (https://geant4.cenbg.in2p3.fr/ accessed date: 1 January 2021).

The default DNA physics list class, “G4EmDNAPhysics_option2”, was implemented
in this study, which is recommended for cellular-scale simulations. It includes several
physics models that cover physical interactions needed for particle transport in water
medium [33]. Different physics models have to be defined in gold nanoparticles for
different particles such as photons and electrons. Since the transportation of particles
in Geant4-DNA is only valid in water medium, a macroscopic physics list, for example,
“G4LivemorePhysics”, is defined for physical interactions of photons with gold medium.
In this study, the environmental model of the cell was assumed to be water equivalent.

2.2. Simulation Model and Geomtry

A DNA model according to Henthorn et al. [34], alongside a gold nanoparticle, was
defined inside a spherical water phantom with a radius of 0.5 µm. The simulation variables
were similar to Chun et al. [35]. In this model, the backbones and bases were constructed
as tiny spheres with a radius of 0.24 nm and 0.208 nm, respectively. Figure 1 shows the
simulation setup for the study. The radiation source was defined as a circular plane source
with a radius of twice the radius of the gold nanoparticle. The three photon beam energies
considered for this simulation were 50, 100 and 150 keV. The primary photons emitted
from the left side of the gold nanoparticle reached the DNA molecule. The most important
cause of energy deposition in the DNA is the secondary electrons emitted from the gold
nanoparticle. In this study, different nanoparticle diameters (30, 50 and 100 nm) with a
nanoparticle-to-DNA distance of 30 nm were used. Photon beam energies of 50, 100 and
150 keV were used with a uniform magnetic field (0, 1 and 2 T) defined along each axis, in
order to examine the effect of the magnetic field on the dose enhancement. In Figure 1, three
orientations were considered for the magnetic field (Bx, By and Bz), separately. Since the
primary photons were emitted along the z-axis, the magnetic field orientation parallel to the
z-axis was also parallel to the trajectory of the photon, and the magnetic field orientation
parallel to the x-axis and y-axis was perpendicular to the trajectory of the photon.
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Figure 1. The Monte Carlo model geometry simulated in Geant4-DNA (not to scale). The gold
nanoparticle was placed between the photon beam (green) and the DNA molecule. Nanoparticle
diameters of 30, 50 and 100 nm were used in the simulation.

Figure 2 shows electron tracks in the simulation model. Energy deposition happened
when secondary electrons (yellow dots) were generated along the electron tracks (red). If
energy deposition occurred in the DNA (i.e., right-hand side of Figure 2), ionization of the
strand of DNA may happen, leading to DNA damage [9,19,36]. The number of histories
for the photons interacting with the gold nanoparticle was equal to 300 million in this
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study, and more photons (~2 billion) were required to achieve a similar uncertainty (2–5%
standard deviation) for the simulation model without the gold nanoparticle.
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Figure 2. Schematic diagram showing the gold nanoparticle irradiated by the photon beam with electron
tracks (red) generated from the nanoparticle. Energy deposition happens when the secondary electrons
(yellow dots) are generated along the electron paths. When energy deposition occurs in the DNA, lethal
DNA damage such as a double-strand break may be produced, leading to cancer cell killing.

2.3. Dose Enhacnement Ratio

The enhancement of energy deposition in the presence of gold nanoparticles, resulting
in DNA damage, can be expressed as the DER [37]:

Dose Enhancement Ratio (DER) = Dose in the DNA with gold nanoparticle addition
Dose in the DNA without gold nanoparticle addition

When no gold nanoparticle was added to the simulation model, the material of the
particle was changed from gold to water. This mimicked the environment of a homoge-
neous tumor with water equivalent. The DER is therefore equal to one. A DER greater than
one shows a dose enhancement due to the gold nanoparticle addition.

3. Results and Discussion

The relationships between the DER and different simulation variables, namely, nanopar-
ticle size and magnetic field strength and orientation for photon beam energies of 50, 100
and 150 keV, are shown in Figure 3a–c, respectively. The gold nanoparticle diameters were
equal to 30, 50 and 100 nm, and the magnetic field strengths were equal to 0, 1 and 2 T, with
orientations parallel to the x-, y- and z-axis, as shown in Figure 1. The distance between the
nanoparticle and DNA was equal to 30 nm.

3.1. Dependence of DER on Nanoparticle Size and Beam Energy

When there was no magnetic field present in the simulation model (i.e., magnetic field
strength = 0), the DER was found to increase with the gold nanoparticle size. The rates of
increase in the DER were 3.4%, 4.5% and 2.9%/nm for photon beam energies equal to 50,
100 and 150 keV, respectively (Figure 3a–c). The maximum DER was found to be 7.16 for
the gold nanoparticle with a diameter equal to 100 nm using the 50 keV photon beam, while
the minimum DER was 3.59 for the nanoparticle with a 30 nm diameter using the 150 keV
beam. The reason for an increase in the DER with an increase in the nanoparticle size is that
the larger particle contains more gold atoms to interact with photons in order to produce
secondary electrons, resulting in more energy deposition in the DNA [6]. However, when
the nanoparticle size becomes larger, the self-absorption of electrons in the nanoparticle
also becomes more significant. This self-absorption effect would decrease the DER when
the nanoparticle size increases [38].
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Figure 3. Relationships between the DER and simulation variables of gold nanoparticle size and magnetic field strength
and orientation using photon beams with energies equal to (a) 50, (b) 100 and (c) 150 keV.
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For the same nanoparticle size with various photon beam energies, it was found
that the DER decreased with a beam energy increase. For the nanoparticle with a 50 nm
diameter, as shown in Figure 3a–c, the DER was found to decrease from 6.09 to 4.55
when the photon beam energy increased from 50 to 150 keV. This can be explained by the
enhancement of the photoelectric effect as the cross-section or attenuation coefficient of
the photoelectric interaction decreased with an increase in the photon energy [7–9]. The
trends of variation in the DER on the nanoparticle size and photon beam energy agreed
with results of our previous work using an older DNA model in the simulation [35].

3.2. Dependence of DER on Magnetic Field Strength and Orientation

For the nanoparticle with a 100 nm diameter using the 50 keV photon beam, as shown
in Figure 3a–c, the DER was found to be 7.16, 7.35 and 7.36 when the magnetic field strength
was equal to 0, 1 and 2 T along the z-axis. These were increases of about 2.5% and 2.7% in
the DER when a magnetic field of 1 and 2 T was added to the simulation model along the
z-axis (Figure 1). Similar increases in the DER could be found in the nanoparticles with
diameters equal to 30 and 50 nm. It is found that the presence of the magnetic field along
the central beam axis would increase the energy deposition in the DNA slightly. However,
the increase in the magnetic field strength did not lead to a significant increase in energy
deposition in the DNA.

When considering the nanoparticle with a 100 nm diameter using the 50 keV photon
beam, with the magnetic field perpendicular to the central beam axis, but parallel to the
DNA (i.e., x-axis in Figure 1), the DER was found to be 7.16, 7.36 and 7.46 when the
magnetic field strength was equal to 0, 1 and 2 T (Figure 3a–c). These were increases of
about 2.7% and 4.0% when a magnetic field of 1 and 2 T was added to the simulation model
along the x-axis. Similar increases in the DER were found for nanoparticles of 30 and 50 nm
diameter. However, the increase in the DER was in the range of 0.50–1.8%, which was
smaller than the nanoparticle with a 100 nm diameter. It is seen that the presence of a
magnetic field perpendicular to the central beam axis would increase the energy deposition
in the DNA more than along the central beam axis, and the increase was more significant
for the larger nanoparticle.

With the same photon beam energy of 50 keV, with the magnetic field along the y-axis
(Figure 1), the orientation of the field was perpendicular to the central beam axis and the
DNA. This beam and magnetic field geometry was different from placing the magnetic field
along the x-axis because the DNA was parallel to the x-axis of the photon beam. For the
nanoparticle with a diameter of 100 nm, the DER was found to increase by 2.8% and 4.9%
when the magnetic field strength increased by 1 and 2 T, respectively (Figure 3a–c). This
increase in energy deposition in the DNA was very similar to the magnetic field orienting
in the x-axis. It is seen that the orientation of DNA did not affect its energy deposition
significantly regarding the magnetic field orientation.

This work focused on the nanodosimetric change in the DNA interacting with an
irradiated gold nanoparticle in the presence of a magnetic field. Based on the results in
this study, it is worthwhile to further investigate the dependence of the DER on multiple
nanoparticles with different distribution patterns, sizes and shapes. Moreover, macroscopic
Monte Carlo simulation [39] can be carried out to investigate the dose enhancement of a
tumor in a patient treated with magnetic resonance-guided radiotherapy. This multi-scale
study can help us to understand, in detail, the impact of the magnetic field on cancer
control from the nanometer to centimeter scales.

4. Conclusions

The DER determined, based on the energy deposition in the DNA, for varying gold
nanoparticle diameters (30, 50 and 100 nm), photon beam energies (50, 100 and 150 keV)
and magnetic fields (0 T, 1 T and 2 T) in the x, y and z orientations was investigated using
Monte Carlo simulation. In general, the DER with no magnetic field present increased as
the gold nanoparticle size increased. Moreover, the DER decreased as the photon beam
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energy increased, since the secondary electrons generated at high energies are less than
the electrons generated at lower energies. In the presence of a magnetic field, the DER
increased by about 2.5–5% for various field strengths (1 and 2 T) and orientations (x-, y-
and z-axis) for the largest nanoparticle (diameter equal to 100 nm) using the lowest photon
beam energy (50 keV) in this study. It was found that the increase in the DER was even
smaller for smaller gold nanoparticles using a higher photon beam energy.

The results in this work provide important information concerning the variation
in energy deposition in DNA when a magnetic field is present in an irradiated gold
nanoparticle. Moreover, this single-nanoparticle model can act as a base for the construction
of a more complicated multi-nanoparticle model focusing on a more realistic cellular
environment for clinical practice.
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