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Background: Lung cancer (LC) is one of the most aggressive, prevalent and fatal
malignancies. Gut microbes and their associated metabolites are thought to cause and
modulate LC development, albeit influenced by the host genetic make-up and
environment. Herein, we identified and classified gut microbiota and serum metabolites
associated with LC.

Methods: Stool samples were collected from 41 LC patients and 40 healthy volunteers.
The gut microbiota was analyzed using 16S rRNA gene sequencing. Serum samples were
collected from the same LC patients (n=30) and healthy volunteers (n=30) and serum
metabolites were analyzed using liquid chromatography-mass spectrometry (LC-MS).
Microbiome and metabolome data were analyzed separately and integrated for combined
analysis using various bioinformatics methods.

Results: Serum metabolomics uncovered 870 metabolites regulated in 76 metabolic
pathways in both groups. Microbial diversity analyses identified 15967 operational
taxonomic units (OTUs) in groups. Of these, the abundance of 232 OTUs was
significantly different between HC and LC groups. Also, serum levels of
glycerophospholipids (LysoPE 18:3, LysoPC 14:0, LysoPC 18:3), Imidazopyrimidines
(Hypoxanthine), AcylGlcADG 66:18; AcylGlcADG (22:6/22:6/22:6) and Acylcarnitine 11:0
were substantially different between HC and LC groups. Combined analysis correlated
LC-associated microbes with metabolites, such as Erysipelotrichaceae_UCG_003,
Clostridium and Synergistes with glycerophospholipids.

Conclusions: There is an intricate relationship between gut microbiome and levels of
several metabolites such as glycerophospholipids and imidazopyrimidines. Microbial-
associated metabolites are potential diagnostic biomarkers and therapeutic targets for LC.
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INTRODUCTION

Lung cancer (LC) is one of the most prevalent and fatal
malignancies globally. Data shows that, the incidence and deaths
due to LC have been increasing yearly (Sung et al., 2021). Most LC
patients are initially diagnosed when the disease is an advanced
stage, hence such patients have a poor prognosis. Thus, early
diagnosis can greatly improve disease management and the overall
survival rates of LC patients. Identifying key biomarkers and
mechanisms that promote development of LC can uncover
powerful diagnostic and treatment targets for LC. However,
these aspects are largely unexplored.

Accumulating evidence suggest that LC development is driven
by a combination of genetic and environmental factors
(Alexandrov et al., 2016; Malhotra et al., 2016). Recent studies
have shown that the occurrence and development of LC is also
related to human intestinal flora, where the interaction between
these organisms influence functioning of several pathways such as
metabolic, inflammatory and immune pathways (Dzutsev et al.,
2015; Chen et al., 2017; Mao et al., 2018). Meanwhile, diet and
physiological changes can affect the diversity and interaction
between host microbial community (Shoaie et al., 2015; Song
et al., 2015). The resilience and stability of the microbiome and its
responsiveness to physiological, pathological and environmental
changes make them and their associated metabolic pathways
attractive diagnostic and treatment targets for numerous
diseases (Magnusdottir et al., 2017; von Frieling et al., 2018).

Despite the progress in understanding the association of gut
microbiome in LC patients, the profile and functional role of these
organisms remain largely unknown (Hosgood et al., 2014; Qin et al.,
2014; Rutten et al., 2014; Wang et al., 2014; Zhang et al., 2018; Gui
et al., 2020; Zheng et al., 2020). In addition, several studies have
demonstrated a strong relationship between gut microbiome as well
as their metabolite and LC (DeBerardinis and Chandel, 2016; Pavlova
and Thompson, 2016; Liu F et al., 2019; Song et al., 2020; Zheng et al.,
2020). Gut microbiota can transform host nutrients into complex
metabolites (Anand and Mande, 2018). The resultant metabolites
play an important role in human health and can alter genotoxic or
tumor suppressor functions through several mechanisms such as
providing metabolic energy, promoting biosynthesis and modifying
signaling proteins (Anand and Mande, 2018). Therefore, disruption
of metabolite balance resulting from altered microbiome homeostasis
may promote tumorigenesis.

However, little is known regarding interactions between gut
microbiome and metabolites, and how they influence LC
development. Studies in this area using conventional methods are
limited by the high cost and restrictive nature of the invasive sample
extraction procedures. Herein, we evaluated the respective microbial
diversity and abundance of metabolites in fecal matter serum of LC
patients and their association with the cancer.
MATERIALS AND METHODS

Study Design
A total of 107 LC patients and 60 healthy individuals attending
the Hangzhou First People’s Hospital between October 2019 and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
June 2020 were enrolled to this study. Overall, 81 individuals
including 41 LC patients and 40 HC participants fulfilled the
inclusion criteria and were therefore incorporated in the final
study. The enrollment and selection process of the study
participants is highlighted in Supplementary Figure 1.
Demographic and clinical data of the study participants
captured at baseline included body mass index (BMI), sex, age,
medical history, family health history, lifestyle and dietary habits.
For LC patients, other clinical and pathological features
including tumor pathological type, tumor stage, serum
squamous cell carcinoma antigen (SCC), neuron-specific
enolase (NSE) and cytokeratin fragment (CYFRA21-1) were
also captured. To be included in this study, participants met
the following criteria: (1) ≥ 18 but < 80 years old; (2) have been
histopathologically confirmed with lung cancer and had no
history of malignancy. LC patients (1) with history of
chemotherapy, radiotherapy or cancer surgery; (2) with other
underling malignant tumors; (3) with cardiovascular diseases
(myocardial infarction or stroke); (4) have received probiotics,
antibiotics, proton pump inhibitors (PPI), and hormone drugs
within the past 2 months before enrollment; (5) with history of
gastrointestinal surgery; (6) with inflammatory bowel disease
(IBD) and irritable bowel syndrome (IBS); (7) with diabetes and
depression were excluded from the study. All healthy
participants had to have normal bowel habits. Also, both
groups must not have used antibiotics, probiotics, prebiotics or
synbiotics within the two months prior to sampling. The
protocol for this study was proved by the Clinical Research
Ethics Committee of Hangzhou First People’s Hospital.

Sample Collection
Stool and serum samples were collected in the morning after
overnight fasting (≥ 8h). The stool samples were divided into 5
equal parts (each 200mg), put in sterile frozen pipes and in an ice
box and transported immediately to the laboratory for storage at
-80°C. Blood samples were collected in coagulant tubes. The
tubes were gently shaken after blood collection and centrifuged
at 3000r for 10 minutes at room temperature. The supernatant
(serum) was collected in 1.5ml frozen tubes and stored at -80°C
pending further analyses.

Microbial DNA Extraction in Fecal Matter
The genomic bacterial DNA in stools was extracted using the
E.Z.N.A.® Stool DNA Kit (Omega, USA), according to the
manufacturer’s protocols. The integrity and fragment sizes of
the extracted DNA were analyzed using 1% agarose gel
electrophoresis. The DNA was quantified using NanoDrop
2000 (Boston, USA).

High-Throughput 16S Ribosomal RNA
Gene Sequencing
The V3-V4 variable region of 16S rRNA was amplified using
341F : 5 ’ -CCTACGGGNGGCWGCAG-3 ’ and 805R:
5 ’- GACTACHVGGGTATCTAATCC -3 ’ primers and
Phusion® Hot Start Flex 2X Master Mix (New England
biolabs, USA). The 5’ ends of the primers for each sample
were tagged with specific barcodes. The amplicons were
August 2021 | Volume 11 | Article 725284
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purified using AMPure XT beads (Beckman Coulter Genomics,
USA) and thereafter quantified using Qubit (Invitrogen, USA).
The amplicons were processed, sequenced and assessed for size
and quantity using the Agilent 2100 Bioanalyzer (Agilent, USA).
The amplicon Library was then quantified using the
Quantification Kit for Illumina (Kapa Biosciences, USA).
Sequencing was performed using the NovaSeq PE250 platform
(Illumina, USA), according to the manufacturer’s protocol.

Analysis of Sequence Data
The paired-end reads were assigned to samples based on their
unique barcodes, before cutting off the barcodes and primers.
Paired end reads were merged using the FLASH software. The
raw reads were cleaned using fqtrim (v. 0.94). Chimeric
sequences were filtered using the Vsearch software (v2.3.4).
Dereplication was performed using DADA2 to obtained
feature table and sequence. Alpha and beta diversities were
calculated using QIIME2, whereas the corresponding
phylogenetic tree was constructed using R software V. 3.5.2.
Alignment of sequences and annotation of species was
performed using Blast tool, whereas alignment of sequences
was performed using SILVA and NT-16S.

Processing Samples and Analysis of
Serum Samples
After thawing on ice, metabolites in the serum samples were
extracted using 50% methanol Buffer. Briefly, 120 mL of
precooled 50% methanol was added to 20 mL of sample,
vortexed for 1 minute, incubated at room temperature for 10
minutes and thereafter at -20°C, overnight. After centrifugation
at 4,000 g for 20 minutes, the supernatants were transferred into
new 96-well plates. QC samples were prepared by pooling
together 10 mL of each extract. The metabolites were stored at
-80°C prior to the Liquid Chromatography-Mass Spectrometer
(LC-MS) analysis.

LC-MS Analysis
The samples were analyzed using a TripleTOF 5600 Plus high-
resolution tandem mass spectrometer (Boston, USA) with both
positive and negative ion modes. Chromatographic separation was
performed using an ultra-performance liquid chromatography
(UPLC) system (Boston, USA). Reversed-phase separation was
per formed us ing an ACQUITY UPLC T3 column
(100mm*2.1mm, 1.8mm) (Boston, USA). Eluted metabolites
were detected and quantified using the TripleTOF 5600 Plus
system. For the positive-ion mode, the ion spray floating voltage
was set at 5kV, whereas for the negative-ion mode, the voltage was
set at ‐4.5kV. The MS data was acquired in IDA mode. The TOF
mass range was 60-1200Da. During the entire period, the mass
accuracy was calibrated after every 20 samples. Furthermore, the
QC sample was analyzed after every 10 samples to evaluate the
stability of the LC-MS.

Metabolomics Analysis
Processing of the MS data including peak picking, peak grouping,
retention time correction, second peak grouping and annotation
of isotopes and adducts was performed using XCMS software.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
LC-MS raw data files were converted into mzXML format before
processing using XCMS, CAMERA and metaX toolbox in R
software. Each ion was identified by combining retention time
(RT) and m/z data. The intensity of each peak was recorded. A
three-dimensional matrix of arbitrarily assigned peak indices
(retention time‐m/z pairs), sample names (observations) and ion
intensities (variables) was also generated.

The metabolites were annotated using online KEGG and
HMDB databases by matching molecular mass data (m/z) of
samples with those in the database. If the difference between
observed and the database mass was less than 10 ppm, the
metabolite would be annotated with its molecular formula
further identified and validated by isotopic distribution
measurements. The identity of the metabolite would further be
validated using an in‐house fragment spectrum library of
metabolites. Peak intensity data was further preprocessed using
metaX. Peaks in less than 50% of QC samples or 80% of
biological samples were removed, whereas those with missing
values were imputed with the k‐nearest neighbor algorithm to
further improve the data quality. Identification of outliers and
evaluation of batch effects were performed using PCA based on
the pre‐processed dataset. Quality control‐based robust LOESS
signal correction was fitted to the QC data with respect to the
order of injection to minimize drifting of signal intensity over
time. In addition, the relative standard deviations of the
metabolic features were calculated across all QC samples, with
those > 30% removed.

Statistical Analysis
Continuous variables were expressed as mean ± standard
deviation (SD). Comparison between two groups was
performed using Student’s t test or separate variance estimation
t-test for independent samples. Differences between categorical
variables were assessed using chi-square test. The relationship
between metabolites or between species and metabolites were
assessed using Spearman’s rank correlation analysis. Moreover,
the association of systemic inflammatory markers with gut
butyrate-producing bacteria were assessed using Spearman’s
rank correlation. For LC-MS/MS analysis, Supervised PLS‐DA
was performed using metaX to discriminate different variables
between groups. The VIP threshold for important features was set
at1.0. Statistical significance was set at P < 0.05. Raw P values were
adjusted for multiple tests using an FDR (Benjamini–Hochberg).
Data were analyzed using SPSS version 22.0 (Statistical Product
and Service Solutions, IBM, USA) and R version 3.5.2 (R
Foundation for Statistical Computing, Austria).
RESULTS

Population and Clinical Characteristics
Herein, 16S rRNA gene sequencing of microorganism in fecal
matter and LC-MS analysis of serum samples were performed to
investigate the differences in gut microbiome and metabolites
between LC patients and healthy individuals. Overall, two LCs
(LC_13, LC_34) were excluded because they lacked
August 2021 | Volume 11 | Article 725284
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pre-treatment serum samples, so we analyzed samples for 79
individuals (39 LCs and 40 HCs). For the metabolome samples,
four samples (HC_33, LC_16, LC_17 and LC_18) were excluded
according to PCA (principal component analysis) because they
deviated significantly from the major groups (Supplementary
Figure 2). Therefore, only data for 56 individuals (27 LCs and 29
HCs) was included in the final 16S rRNA, metabolomic and
correlation analyses. All participants were Han Chinese from
Zhejiang region. There were no significant differences in age, sex
and BMI, but several clinical parameters including white blood
cell (WBC), lymphocyte (L), platelet-lymphocyte ratio (PLR),
prognostic nutritional index (PNI), total bilirubin (TBIL),
triglyceride (TG) levels among others, were differed between
the HC and LC group. Details of demographic and clinical
characteristics of the LC and HC participants are shown in
Supplementary Table 1.

Gut Microbial Profiles
After filtration, we obtained 4,074,514 high-quality sequences
from the 79 samples, averaging 51,576 sequences per sample.
There were also 15,967 OTUs, averaging 202 OTUs per sample
(Supplementary Table 2). The rarefaction curve of richness and
diversity (observed OTUs, chao, shannon, simpson index) in the
two groups tended to be flat or reached a plateau, demonstrating
satisfactory sequencing depth (Supplementary Figure 3).

Alpha diversity analysis revealed there was no significant
difference in Sobs, Chao, Shannon and simpson index between
the LC and HC groups (Figure 1A). However, Principle
coordinate analysis (PCoA) and Analysis of similarities
(ANOSIM) test for Beta diversity revealed a significant
difference in the composition and abundance of gut microbiota
between the two groups (Unweighted Unifrac P = 0.001 and
Bray-Curtis P = 0.006) (Figure 1B).

LC-Related Changes in the Composition
of Gut Microflora
Taxon-dependent analysis (Figure 1C) revealed 22 phyla in each of
the LC and HC group, with Firmicutes, Bacteroidetes,
Proteobacteria and Actinobacteria being the most dominant
phyla. Firmicutes was the most predominant phylum, accounting
for 62.25% and 57.24% of gut microbiota in the HC and LC group,
respectively. Additionally, Actinobacteria were more predominant
in LC (3%) than HC group (1.56%). A similar trend was observed
for Fusobacteria (0.22% for HC and 1.14% for LC). Cyanobacteria
were more abundant in HC (0.09%) than LC group (0.01%). There
was no association between Firmicutes/Bacteroidetes and LC
(Supplementary Figure 3F), Although it has been considered
that Firmicutes/Bacteroidetes ratio is associated with a variety of
diseases (Magne et al., 2020).

Further analyses revealed that at phylum level, Tenericutes (P <
0.0001) and Cyanobacteria (P = 0.0183) were significantly more
abundant in HC group, whereas Halanaerobiaeota (P = 0.0202)
were more abundant in LC group (Supplementary Figure 4A). At
Genus level, members of 77 genera were significantly different
between LC and HC groups. Among them, Actinomyces (P <
0.0051), Veillonella (P = 0.0057), Megasphaera (P = 0.0149),
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Enterococcus (P = 0.0183) and Clostridioides (P = 0.0202) were
more abundant in LC than in HC group (Supplementary Figure
4B). Because discriminative analysis did not identify major taxa
differences, we used LDA Effect Size (LEfSe) analysis to generate a
Cladogram to reveal differences in taxa abundance between LC
and HC (Figure 2). We found significant differences in
42 OTUs (LDA>3), in which Enterococcus, Veillonella,
Agathobacter, Megasphaera and Coriobacteriaceae (all LDA
scores (log10)>3.5) were more abundant in the LC
group, relative to the HC group. Contrarily, Faecalibacterium,
Eubacterium_coprostanoligenes_group, Phascolarctobacterium,
Acidaminococcaceae and Ruminococcaceae_UCG_002 were
significantly more abundant in the HC (all LDA scores (log10) >
3.5) than LC group. The heat map for the relative abundance of the
77 genera is shown in Figure 3. In general, 42 OTUs were more
abundant in the HC group, compared with 35 OTUs in the LC
group. (Supplementary Table 3). Overall, these findings
demonstrated that the abundance of microbes in the LC group
was relatively lower than those in the HC group, sufficient enough to
distinguish healthy individuals from LC patients.

Next, we performed liquid chromatography-mass
spectrometry (LC-MS) of serum samples from 27 LC patients
and 29 healthy individuals. Firstly, we used Venn diagram to
determine whether the intestinal flora profile (n = 27 and n = 29,
LC vs. HC) could represent the overall status (n =39 and n = 40,
LC vs. HC). Comparing the microbial profiles of LC patients and
HC participants (n = 39 and n = 40, LC vs. HC) showed that the
common OTUs was 12527 (78.5%, Supplementary Figure 5A),
while the common altered genera was 33 (42.9%, Supplementary
Figure 5C; P<0.01). Thus, the flora profile in the 27 LC patients
and 29 healthy individuals was a good representative of the
overall intestinal flora (LC=39 and HC=40, LC vs. HC).

Overall Blood Metabolome of LC and
HC Groups
Considering the large impact of the gut microbiome on blood
metabolites (Wikoff et al., 2009) and the above findings, it was
hypothesized that gut microbes in the LC patients impact on blood
metabolic pathways. Accordingly, non-targeted metabolomics
based on LC-MS identified and quantified 870 metabolites in the
HC and LC groups (Supplementary Table 5). KEGG analysis
revealed that synthesis of blood metabolites was regulated by 76
different metabolic pathways, including Alpha Linolenic Acid and
Linoleic Acid Metabolism pathway (7 metabolites), Urea Cycle
pathway (8) and Phenylacetate Metabolism pathway (3) among
others (Supplementary Figure 6A).

Group Differential Blood Metabolites
Supplementary Table 5 shows major metabolites at substantially
different levels in the HC and LC groups. The most abundant
metabolites in the HC group mainly included organooxygen
compounds (2,4-Dihydroxyacetophenone 5-sulfate), benzene
and substituted derivatives (D8’-Merulinic acid A, 1,2,3-
Trihydroxybenzene), carboxylic acids and their derivatives
(His-Thr), imidazopyrimidines (Theobromine, ParaXanthine,
Hypoxanthine) and large fatty acyls (Acylcarnitine 13:0,
August 2021 | Volume 11 | Article 725284
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Acylcarnitine 11:0, Acylcarnitine 13:1, Octanoylcarnitine). In
contrast, the LC group displayed higher levels of fatty acyls
(12S-HHT, Acetyl-DL-carnitine, Docosatrienoic acid),
glycerophospholipids (LysoPC 14:0, LysoPC 16:1, Plasmenyl-
PC 16:0; PC(P-14:0/2:0), LysoPE 18:3) and prenol lipids (beta-
Santalyl acetate). These findings suggest that LC group had
higher lipid metabolism and oxidation relative to the HC
group (Supplementary Table 6 and Figure 4).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Multiple Analytical Approaches Revealed
the Discriminatory Metabolites Between
the HC and LC Groups
Hierarchical clustering (HCA) analysis revealed higher levels of
serum organoheterocyclic compounds and benzenoids in the HC
group relative to the LC group. In contrast, serum lipids and
lipid-like molecules, organic acids and their derivatives, organic
oxygen compounds were significantly higher in the LC group
A B

C

FIGURE 1 | Structure and diversity analysis of the gut microbiota. (A) Differences in alpha diversity between LC and HC based on the observed species, chao1,
shannon, and simpson indices. LC, lung cancer group; HC, healthy control group; NS, not significant. (B) Beta diversity differences between the LC and HC were
estimated by Principle coordinates analysis (PCoA). Left, Unweighted UniFrac; right, Bray-Curtis. LC group (red dots); HC group (blue dots). The percentage of
variance explained by the first two principal coordinates (PCs) is labeled in brackets. (C) The proportions at the bacteria phylum level for each group. n = 39 for the
LC group, and n = 40 for the HC group. Bottom left: The relative proportion of dominant taxa at the phylum level was assessed by the assignment of microbial taxa,
with the most dominant phyla being the Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria. Bottom right: Heat map showing the relative abundance of the
22 phyla in the two sample groups. The phyla are showed in the rows and the relative abundance is indicated by a color gradient.
August 2021 | Volume 11 | Article 725284
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than in the HC group (Figure 5A). Correlation analysis further
revealed a strong association between the above metabolites
and with LC phenotype (Supplementary Figure 6B and
Supplementary Table 7). More specifically, we observed
higher levels of Imidazopyrimidines such as Hypoxanthine,
Theobromine and ParaXanthine, Benzene and their derivatives
such as 1,2,3-Trihydroxybenzene and D8’-Merulinic acid A as
well as Fatty Acyls such as Octanoylcarnitine, Acylcarnitine 11:0/
13:0/13:1 in the HC group. Contrarily, Glycerophospholipids
such as LysoPC 14:0, LysoPC 16:1, Plasmenyl-PC 16:0 PC
(P-14:0/2:0), LysoPE 18:3, LysoPE 18:2, LysoPA 18:2 and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
PC 9:0, PC (4:0/5:0), Fatty Acyls such as 12S-HHT, Acetyl-DL-
carnitine, Docosatrienoic acid, Acylcarnitine 18:3/20:1/20:2,
8Zand 14Z-Eicosadienoic acid were more abundant in the LC
group. PCA revealed comparable findings, which based on
the first two principal components, PC1 (11.12%) and PC2
(4.32%) (Figure 5B). OPLS-DA analysis also revealed
consistent findings, in which the level of several metabolites
including Docosatrienoic acid, 12S-HHT, LysoPC 14:0, beta-
Santalyl acetate, LysoPC 16:1, Plasmenyl-PC 16:0;PC(P-14:0/
2:0), PC 9:0;PC(4:0/5:0), LysoPE 18:3, Hypoxanthine,
Linoleoylcarnitine, Theobromine, LysoPE 18:2, Acetyl-DL-
A

B

FIGURE 2 | Linear discriminant analysis (LDA) combined with effect size (LEfSe). (A) Cladogram showing the phylogenetic distribution of microbiota associated with
group HC or LC. (B) Histogram of the LDA scores, where the LDA score indicates the effective size and ranking of each differentially abundant taxon (LDA > 3).
August 2021 | Volume 11 | Article 725284
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carnitine, LysoPE 16:0, LysoPE 20:3 and LysoPE 18:1 was
significantly different between LC patients and healthy
individuals (Figure 5C).

Multi-Omics Approach Reveals
Differences Between HC and LC Groups
Based on the above findings, we assessed the relationship between
21 genera and 28 metabolites in LC (Supplementary Table 8). A
strong positive correlation was observed between the abundance of
several microbial genera and level of serummetabolite in LC group
(Figure 6A). Network analysis based on the integrated
metabolomic and genomic datasets was conducted to identify
broader association between the microbiome and LC-related
metabolites (Figure 7A). In this network diagram, a
microbiome/metabolite cluster is defined. The associations
between g:Erysipelotrichaceae_UCG-003, g:Phascolarcto-
bacterium, g:Clostridioides, g:Synergistes and 27 metabolites are
indicated. Thus, this cluster represents a short list of species and
metabolites associated with the disease for future testing in clinical
models. KEGG analysis of data in the MetPA database (part of
MetaboAnalyst) (www.metaboanalyst.ca) revealed the unique
metabolic pathways between the LC and HC group (Figure 7B).
Particularly, Glycerophospholipid, Glycerolipid, Caffeine,
Ether lipid and Linoleic acid metabolism pathways as well as
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
GnRH signaling and unsaturated fatty acids biosynthesis
pathways are the main pathways in LC group.

Based on the coefficient of variation (CV) for the abundance
of serum metabolites, we selected a CV of 0-0.25 (less noise,
better as a biomarker) (Supplementary Table 6). Metabolites
with the lowest CVs (least variability) in LC group included
LysoPC 20:3, Plasmenyl-PC 18:0; PC(P-14:0/4:0), LysoPC 18:0,
12S-HHT, LysoPC 16:1, LysoPE 18:0, LysoPA 18:2, LysoPC 20:4,
LysoPE 18:3, LysoPE 16:0 and LysoPE 18:1, whereas those with
higher CVs (greater variability) included PC(18:2(9Z,12Z)/18:2
(9Z,12Z)), Acylcarnitine 20:3, Stearamide, PC(16:0/20:3
(5Z,8Z,11Z)) and Plasmenyl-PE 18:0 and PE(P-15:0/3:0). For
HC group, metabolites with the lowest CV included
Acylcarnitine 13:1, Hypoxanthine, AcylGlcADG 66:18;
AcylGlcADG (22:6/22:6/22:6), 1,2,3-Trihydroxybenzene and
His-Thr, whereas those with higher CV included 2,4-
Dihydroxyacetophenone 5-sulfate, Octanoylcarnitine, D8’-
Merulinic acid A and Theobromine.

Considering the high abundance of glycerophospholipids in
LC group, further analyses were conducted on them. Area under
the receiver operating characteristic (ROC) curve for the
association between specific glycerophospholipids and LC was
as follows LysoPE 18:3 (AUC, 0.908), LysoPC 14:0 (AUC, 0.895),
LysoPC 18:3 (AUC, 0.893), AcylGlcADG 66:18; AcylGlcADG
FIGURE 3 | Heat map illustrating relative abundance of the 77 OTUs that differentiated the HC and LC groups. OTUs z-transformation data from low (in blue) to high
(in red) abundance. Data were compared by Wilcoxon rank sum test (Mann-Whitney U test). All 77 OTUs were distributed to families and genera.
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(22:6/22:6/22:6) (AUC, 0.906), Acylcarnitine 11:0 (AUC, 0.854)
and Hypoxanthine (AUC, 0.769) all at P<0.001 (Figure 6B).
Thus, the diagnostic potential of glycerophospholipids for LC
was superior to that SCC (AUC, 0.539; P = 0.56), NSE (AUC,
0.536; P = 0.58) and CYFRA21-1 (AUC, 0.592; P = 0.16).
DISCUSSION

Gut microbiota are all microorganisms that live in the digestive
tract (Gilbert et al., 2018). Even though the total number of gut
microbiota equals that of human cells, gene expression of these
organisms is more than 150 times that in human cells (Human
Microbiome Project, C 2012). Gut microbiotas perform
numerous essential functions in the human gut such as
fermentation of food components into absorbable metabolites.
The resultant metabolites in turn regulate numerous pathways
related to energy balance, nutrient intake and immune
homeostasis (Kamada et al., 2013; Poutahidis and Erdman,
2016; Heintz-Buschart and Wilmes, 2018; Mithieux, 2018).
Meanwhile, increasing evidence has linked microbiome and
their metabolome to lung carcinogenesis (Kumar et al., 2017;
Zheng et al., 2020). Moreover, the gut microbiome substantially
influences the level of blood metabolites (Marcobal et al., 2013;
Wilmanski et al., 2019; Lee-Sarwar et al., 2020). Therefore,
analysis of gut microbiome and serum metabolome can
potentially be used for cancer diagnosis. Advances in high-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
throughput tools have revolutionized genetic and molecular
research and have led to discovery of numerous disease
diagnostic biomarkers and uncovered other highly complex
interactions in organisms. Compared to fecal metabolomics,
serum metabolomics better reflects the interactions between
the intestinal flora and distal organs and pathways (Wilmanski
et al., 2019; Lee-Sarwar et al., 2020). Therefore, serum
metabolomics can potentially identify diagnostic biomarkers.
Herein, we employed this approach to explore the association
between gut flora and metabolic pathways associated with
lung cancer.

In the present study, LC patients displayed significantly high
levels of serum metabolites such as Fatty Acyls (Docosatrienoic
acid, 12S-HHT, Linoleoylcarnitine, Acylcarnitine 18:3/20:1/20:2,
etc.) and Glycerophospholipids (LysoPC 14:0, LysoPC 16:1,
Plasmenyl-PC 16:0; PC(P-14:0/2:0), PC 9:0; PC(4:0/5:0), LysoPE
18:3, etc.). High serum phospholipids, lysophospholipids and
fatty acids in LC patients have been previously reported (Ros-
Mazurczyk et al., 2017; Yu et al., 2017; Zhang et al., 2020). Lipids,
especially phospholipids, participate in cellular trans-membrane
transport, energy metabolism, signal transduction and cancer
development (Pendaries et al., 2003; Ogretmen and Hannun,
2004; Gorke et al., 2010; Lee et al., 2012; Santos and Schulze,
2012). In our study, we also observed high serum LysoPA 18:2
levels in LC group, relative to HC group. Lysophosphatidic acid
(LPA) is one of the active components of lysophospholipids and
regulates transmission of extracellular signals and functioning of
FIGURE 4 | Volcano plot showing accumulated [log2 (FC) on X axis] metabolites that were significantly different [log10 (P value) on Y axis] between LC group and
HC group.
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A

B C

FIGURE 5 | Key discriminatory metabolites were identified by clustering and multivariate correlation analysis between HC group and LC group. (A) Hierarchical
clustering analyses (HCA) was based on the relative abundance of normalized numbers of metabolomics data from HC and LC group. (B) OPLS-DA scores
displaying the discrimination between HC group and LC group by the first two principal components (PCs). (C) Important discriminatory metabolites displayed on
variable importance in projection (VIP) plot obtained from OPLS-DA.
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intracellular second messengers (Lee et al., 2020). As early as
1991, Merchant et al. identified lysophospholipid components
such as LPA in malignant tumor tissues (Merchant et al., 1991).
Later in 2003, Gordon Mills reported that LPA levels positively
correlated with tumorigenesis, invasion and metastasis of cancers
(Mills and Moolenaar, 2003). Recent related studies further
demonstrated that LPA mainly inhibits apoptosis of tumor
cells, thus promotes proliferation of these cells in situ. This
promotes tumor angiogenesis, adhesion and migration of tumor
cells, leading to the formation of cancer emboli (Tsujiuchi et al.,
2014; Yung et al., 2014; Valdes-Rives and Gonzalez-Arenas, 2017;
Benesch et al., 2018; Tigyi et al., 2019; Xu, 2019). LPA production
is regulated by two main pathways. In the main pathway,
phospholipase A (PLA1 or PLA2) catalyzes the production of
lysophospholipids (LP), which is converted to LPA by prolidase
(PLD) (Ye, 2008). Alternatively, autotoxin (ATX) present in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
tumor cells, fibroblasts and vascular smooth muscle cleaves the
main groups in LP (choline, ethanolamine or serine),
transforming it into LPA (Aoki et al., 2008). Interestingly,
LysoPC 14:0/16:1/18:3 and LysoPE 16:0/18:1/18:2/18:3/20:3/
22:5/22:6 which are highly expressed in the LC cells relative to
normal cells can be converted to LPA by ATX, where they drive
cancer processes. Serum AcylGlcADG 66:18;AcylGlcADG(22:6),
Acylcarnitine 11:0/13:0/13:1, Octanoylcarnitine, Hypoxanthine
and ParaXanthine levels were also high in HC group. However,
research shows that these metabolites are significantly low in the
serum of patients with different cancers (Long et al., 2017; Kim
et al., 2019; Park et al., 2019; Zoni et al., 2019). Acylcarnitine is a
key metabolite in cellular metabolism. Binding of acylcarnitine to
fatty acids activates b-oxidation of the fatty acids in the
mitochondria (Brosnan and Brosnan, 2009). Translocation of
long-chain acylcarnitines across the mitochondrial matrix
A

B

FIGURE 6 | Integrated correlation analysis of microbes and metabolites. Heatmap of Spearman’s rank correlation analysis in the HC group and LC group. (A) The
Enrichment is indicated by colored bars on the left and top of the plot in either group. Red, positive correlation; blue, negative correlation. Significant correlations
regions are denoted by white stars (*P-value < 0.05; **P-value < 0.01; ***P-value < 0.001). (B) Metabolite abundance biomarker analysis showed high AUCs values
for NSE, CYFRA21-1, SCC, LysoPE 18:3, LysoPC 14:0, LysoPC 18:3, AcylGlcADG 66:18; AcylGlcADG (22:6/22:6/22:6), Acylcarnitine 11:0, Hypoxanthine.
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requires specific transferases such as carnitine/acetylcarnitine
translocase (CACT), carnitine palmitoyl transferase (CPT).
Contrarily, acylcarnitines with medium-chain fatty acids
directly move through the mitochondrial membrane, where
they fuel energy production (Li et al., 2019). In cancer cells,
acylcarnitine metabolism participates in regulating switch
between glucose and fatty acid metabolism. As such, is it
precisely triggers metabolic flexibility in cancer cells (Melone
et al., 2018). Levels of different chain lengths acylcarnitines in
cancer cells are regulated by metabolic reprogramming in the
cancer cells (Wang et al., 2018). This balances energy production
and consumption as well as the synthesis of metabolic
intermediates that drive cancer processes (Fujiwara et al., 2018).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
Abnormal expression of enzymes involved in acylcarnitine
metabolism may lead to the accumulation of acylcarnitines with
specific chain lengths (Hagenbuchner et al., 2018). For example,
in prostate cancer cells, reduced expression of CPT and CACT
negatively affects the oxidation of fatty acids (Valentino et al.,
2017). In addition, significant alterations in the carnitine/
acetylcarnitine pathway have been found in patients with
bladder cancer. In patients with non-muscle-invasive bladder
cancer, CPT and CACT expression are significantly
downregulated compared to normal bladder tissue (Kim et al.,
2016). the lack of CPT and CACT expression resulted in the
accumulation of long-chain acylcarnitines and reduced level of
short- and medium-chain acylcarnitines in the circulation
A

B

FIGURE 7 | Lung cancer-associated networks based on integrated fecal microbiome and serum metabolome. (A) Mapping of association networks for correlations
between bacterial species and metabolites using integrated microbiome and metabolome datasets. Red connecting lines indicate positive correlation between
nodes, whereas blue lines indicate negative correlations. Bacterial species and metabolites enriched in samples from healthy individuals and those with lung cancer
are indicated by dashed lines or solid lines, respectively. Black borders indicate significantly different strains and gray borders indicate significantly different
metabolites (Spearman’s rank correlation analysis, r > 0.4, P < 0.05). (B) KEGG enrichment scatter plots show significant alterations in the biological processes and
metabolism in the serum of lung cancer patients.
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(Kim et al., 2016; Valentino et al., 2017). We speculate this result
from the high catabolism of medium-chain acylcarnitine,
following the shift in energy metabolism in lung cancer cells.
This may explain the lower levels of medium-chain acylcarnitine
in the LC but higher levels of long-chain acylcarnitine in the LC
group. Furthermore, xanthine and hypoxanthine are mostly under
–expressed in cancer tissues and polyps, which may result from
high DNA synthesis (adenine utilization) in the hyperproliferative
tissues (Long et al., 2017). Patients with non-Hodgkin’s
lymphoma have substantially low levels of urine hypoxanthine,
relative to healthy individuals (Yoo et al., 2010). Also, several
studies have demonstrated low serum hypoxanthine levels in
patients with gastric and colorectal cancers as well as
glioblastoma cancers (Jung et al., 2014; Kim et al., 2015;
Bjorkblom et al., 2016). Similarly, in this study, we found
significantly low serum hypoxanthine in LC patients, relative to
HC individuals. Overall, we found clear and significant difference
in serummetabolites between LC patients and healthy individuals.

Changes in the abundance of gut flora are a common hallmark
of neoplastic disease (Schwabe and Jobin, 2013; Garrett, 2015).
Intestinal flora such as Fusobacterium nucleatum, Escherichia coli,
Bacteroides fragilis and Aspergillus have been associated with
carcinogenesis (Schwabe and Jobin, 2013; Garrett, 2015).
However, differences in microbiota may not be used to clearly
explain the role of microbiota in health and disease (Integrative,
H.M.P.R.N.C 2014). Therefore, the use of a prospective multi-omics
approach combined with a comprehensive analysis of microbes as
well as metabolites, may be one way to unravel the pathogenesis of
the disease. During the multi-omics analysis, we need to avoid the
influence of environmental factors such as diet, antibodies and other
drugs, and hygiene on microbiomics and metabolomics results.
Meanwhile, we also need to overcome the common challenges in
multi-omics analysis, such as customized and sophisticated
software, integrated data repositories and standardized sampling
of blood, colon biopsy and stool (Panagi et al., 2019). In this study,
we found that the abundance of Erysipelotrichaceae_UCG_003 and
Phascolarctobacterium were substantially more abundant in HC
group than LC group. Erysipelotrichaceae_UCG_003 is one of the
main butyrate producing bacteria (Liu S et al., 2019), whereas
Phascolarctobacterium participates in the synthesis of short-chain
fatty acids (SCFAs) (Zhang et al., 2015). Propionate in a SCFA that
modulates the immune system and proliferation of cancer cells
(Sivaprakasam et al., 2016), hence maintain intestinal tract
homeostasis (Liu et al., 2018), inhibits histone deacetylase and
performs several anticancer functions (Conte et al., 2018). One
previous study demonstrated that the abundance of butyrate-
producing bacteria decreased significantly in the intestine of non-
small cell lung cancer (NSCLC) patients (Gui et al., 2020).
Interestingly, this change was directly proportional to feedback
effect on the immune response in the distal lung through “lung-
gut axis” (Budden et al., 2017). A 3.7-fold increase in Megasphaera
and a 270-fold increase in the abundance of Clostridioides were
observed in LC patients relative to the HC group. This finding
demonstrates the complex and consistent dynamic change in fecal
microbiome of cancer paints. A previous study showed that the
abundance of Bacteroides, Veillonella and Clostridium were
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
significantly higher in the LC patients than normal individuals
(Zhang et al., 2018), consistent with our findings. LC carcinogenesis
is thought to result from dysbiosis, not from activities of specific
pathogens (Schwabe and Jobin, 2013).

The abundance of intestinal flora was found to be strongly
associated with serum metabolic activities in the two groups. For
example, LEfSe analysis revealed that the abundance of
Erysipelotrichaceae_UCG_003, one of the most abundant
genera in group HC group, was negatively associated with
glycerophospholipid metabolism. And this negative correlation
may be one of the ways involved in regulating metabolism in vivo
and modulating tumor development. Furthermore, a strong
positive correlation was found between the abundance of
Clostridium and Synergistes and glycerophospholipid
metabolism in patients with lung cancer, suggesting that the
bacteria contribute to carcinogenic processes of lung cancer. In
summary, the profile of gut flora combined with levels of serum
metabolites has potential clinical significance.

Our findings notwithstanding, this study suffered several
limitations. Although 16s rRNA gene sequencing is widely used
for microbiota identification, it is not very effective for complete
gene characterization. Also, the level of serum metabolites is
influenced by several other factors such as diet (and the
microbiota within it) and lifestyle. As such, identifying the source
of metabolites without isotopic dietary labeling of is very
challenging. Moreover, the sample size was relatively small and
the data was not representative, having been collected from just a
single centre. Therefore, further metagenomics and metabolomics
studies utilizing larger sample sizes frommultiple centers are needed
to validate our findings. Even so, our findings have opened a new
frontier regarding the association between gut microbiome as well
as serum metabolome and cancers in general.
CONCLUSION

Non-targeted metabolomics approach based on LC-MS can
successfully distinguish LC patients from healthy individuals.
In addition, the abundant of certain fecal microbiome such
as Megasphaera, Clostridioides, Erysipelotrichaceae and
Phascolarctobacterium in LC patients is significantly different
from that of normal individuals. Also, the microbial diversity in
LC patients is significantly higher than that of normal individuals.
Particular, the serum level of certain glycerophospholipids
(LysoPE 18:3, LysoPC 14:0, LysoPC 18:3) as well as
AcylGlcADG 66:18;AcylGlcADG (22:6/22:6/22:6), Acylcarnitine
11:0 and Hypoxanthine can distinguish between LC patients and
normal individuals. In general, the profiles of gut microbiota and
serum metabolites are potential diagnostic markers for LC.
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