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Let 𝐷 be a digraph of order 𝑛 and with 𝑎 arcs. The signless Laplacian matrix 𝑄(𝐷) of 𝐷 is defined as 𝑄(𝐷) =
𝐷𝑒𝑔(𝐷) +𝐴(𝐷), where 𝐴(𝐷) is the adjacency matrix and 𝐷𝑒𝑔(𝐷) is the diagonal matrix of vertex out-degrees of 𝐷. 
Among the eigenvalues of 𝑄(𝐷) the eigenvalue with largest modulus is the signless Laplacian spectral radius or 
the 𝑄-spectral radius of 𝐷. The main contribution of this paper is a series of new lower bounds for the 𝑄-spectral 
radius in terms of the number of vertices 𝑛, the number of arcs, the vertex out-degrees, the number of closed 
walks of length 2 of the digraph 𝐷. We characterize the extremal digraphs attaining these bounds. Further, 
as applications we obtain some bounds for the signless Laplacian energy of a digraph 𝐷 and characterize the 
extremal digraphs for these bounds.
1. Introduction

Let 𝐷 = (𝑉 (𝐷), 𝐸(𝐷)) be a digraph, where 𝑉 (𝐷) = {𝑣1, 𝑣2, … , 𝑣𝑛} is 
the set of vertices and 𝐸(𝐷) is the set of arcs in 𝐷. A digraph 𝐷 is 
called a simple digraph if there are no loops or multiple arcs. A digraph 
𝐷 is called strongly connected if any two vertices 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 (𝐷) can be 
connected by directed paths from 𝑣𝑖 to 𝑣𝑗 and vice versa. A digraph 
is considered as connected if its undirected version is connected as a 
graph. Throughout this paper, we confine ourselves to connected simple 
digraphs. For any notions not defined explicitly in the paper we will 
refer the reader to the standard book [9].

For two vertices 𝑢 and 𝑣 in a digraph 𝐷, if there is an arc (𝑢, 𝑣) ∈𝐸(𝐷)
or (𝑣, 𝑢) ∈𝐸(𝐷), they are called adjacent. If both arcs (𝑢, 𝑣), (𝑣, 𝑢) ∈𝐸(𝐷), 
the two vertices are called doubly adjacent. Given an arc 𝑒 = (𝑣𝑖, 𝑣𝑗 ) ∈
𝐸(𝐷), we call 𝑣𝑖 the initial vertex of 𝑒, 𝑣𝑗 the terminal vertex, and 𝑣𝑖 a 
tail of 𝑣𝑗 . The in-neighborhood and out-neighborhood of 𝑣𝑖 is denoted, 
respectively, by 𝑁−

𝐷
(𝑣𝑖) = {𝑣𝑗 ∈ 𝑉 (𝐷)|(𝑣𝑗 , 𝑣𝑖) ∈𝐸(𝐷)} and 𝑁+

𝐷
(𝑣𝑖) = {𝑣𝑗 ∈

𝑉 (𝐷)|(𝑣𝑖, 𝑣𝑗 ) ∈𝐸(𝐷)}. Accordingly, the in-degree and out-degree are de-

noted by 𝑑−
𝑖
= |𝑁−

𝐷
(𝑣𝑖)| and 𝑑+

𝑖
= |𝑁+

𝐷
(𝑣𝑖)|, respectively. Let 𝛿+ be the 

minimum out-degree and Δ+ be the maximum out-degree. Similarly, 
let 𝛿− be the minimum in-degree and Δ− be the maximum in-degree. 𝐷
is called out-degree regular if 𝑑+1 = 𝑑+2 =⋯ = 𝑑+𝑛 .

Let 𝜋 ∶ 𝑢 = 𝑢0, 𝑢1, … , 𝑢𝑙 = 𝑣 be a sequence of vertices, where (𝑢𝑘−1, 𝑢𝑘)
forms an arc in 𝐷 for any 1 ≤ 𝑘 ≤ 𝑙. 𝜋 is called a walk of length 𝑙 from 
𝑢 to 𝑣. 𝜋 is a closed walk if 𝑢 = 𝑣. Write 𝑐(𝑖)2 for the number of closed 
walks of length 2 associated with the vertex 𝑣𝑖 ∈ 𝑉 (𝐷). The sequence 
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(
𝑐
(1)
2 , 𝑐

(2)
2 ,… , 𝑐

(𝑛)
2

)
is a closed walk sequence of length 2 in 𝐷. Clearly, 

we know that 𝑐2 = 𝑐
(1)
2 + 𝑐(2)2 + … + 𝑐(𝑛)2 is equivalent to the number of 

closed walks of length 2.

A digraph 𝐷 is symmetric if the existence of any arc (𝑢, 𝑣) ∈ 𝐸(𝐷)
implies the existence of the other one (𝑣, 𝑢) ∈ 𝐸(𝐷). It is easy to see 
that any simple graph naturally corresponds to a symmetric digraph by 
following the mapping 𝐺→ ⃖⃖⃗𝐺, where ⃖⃖⃗𝐺 and 𝐺 share the same vertex 
set and each edge 𝑢𝑣 in 𝐺 is mapped to the arcs (𝑢, 𝑣) and (𝑣, 𝑢).

Write 𝐷 for a digraph having the adjacency matrix 𝐴(𝐷) = (𝑎𝑖𝑗 ), 
where 𝑎𝑖𝑗 = 1 if (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸(𝐷) and 𝑎𝑖𝑗 = 0 otherwise. The diagonal 
matrix of out-degrees is denoted by 𝐷𝑒𝑔(𝐷) = (𝑑+1 , 𝑑

+
2 , … , 𝑑+𝑛 ). The sign-

less Laplacian matrix 𝑄(𝐷) of the digraph 𝐷 is defined as 𝑄(𝐷) =
𝐷𝑒𝑔(𝐷) + 𝐴(𝐷). Clearly, 𝑄(𝐷) is a real non-negative matrix, which is 
not necessarily symmetric. The signless Laplacian eigenvalues of the di-

graph 𝐷, denoted by 𝑞1(𝐷), 𝑞2(𝐷), … , 𝑞𝑛(𝐷), are the eigenvalues of 𝑄(𝐷). 
The signless Laplacian spectral radius or 𝑄-spectral radius, denoted by 
𝑞1(𝐷) = 𝑞(𝐷), is the eigenvalue that has the largest modulus [6]. When 
𝐷 forms a strongly connected digraph, an immediate application of the 
Perron-Frobenius Theorem [16] implies that 𝑞(𝐷) is an eigenvalue of 
𝑄(𝐷) and 𝑞(𝐷) admits a unique positive unit eigenvector. This eigen-

vector is the so-called Perron vector of 𝑄(𝐷). The signless Laplacian 
spectral radius of digraphs have attracted considerable attention in the 
algebraic graph theory and as such various papers have been published 
featuring the bounds and extremal results. Some recent results in this 
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direction have been reported in for example [1, 2, 7, 10, 13, 15, 19, 22] 
and the references therein.

For a digraph 𝐷 with 𝑛 vertices and 𝑎 arcs, the signless Laplacian 
energy is denoted by 𝐸𝑆𝐿(𝐷) and is defined in [23] as

𝐸𝑆𝐿(𝐷) =
𝑛∑
𝑖=1

|𝑞𝑖(𝐷) − 𝑎𝑛 | = 𝑛∑
𝑖=1

|𝛼𝑖|,
where 𝛼𝑖 = 𝑞𝑖(𝐷) −

𝑎

𝑛
and 𝑞1, 𝑞2, … , 𝑞𝑛 are the signless Laplacian eigen-

values of 𝐷. For some bounds on the signless Laplacian energy of a 
digraph, we refer to [5, 23].

The rest of the paper is organised as follows. In Section 2, we ob-

tain some new lower bounds for the 𝑄-spectral radius in terms of the 
number of vertices 𝑛, the number of arcs, the vertex out-degrees, the 
number of closed walks of length 2 of the digraph 𝐷. We characterize 
the extremal digraphs attaining these bounds. Further, as applications 
we obtain some bounds for the signless Laplacian energy of a digraph 
𝐷 and characterize the extremal digraphs attaining these bounds.

2. Signless Laplacian spectral radius

Given a nonnegative matrix 𝐴 = (𝑎𝑖𝑗 ) ∈ ℝ𝑛×𝑛, its geometric sym-

metrization is given by 𝑆(𝐴) = (𝑠𝑖𝑗 ) ∈ ℝ𝑛×𝑛, where 𝑠𝑖𝑗 =
√
𝑎𝑖𝑗𝑎𝑗𝑖 for 

𝑖, 𝑗 = 1, 2, … , 𝑛. Let 𝜆(𝑀) be the spectral radius of the matrix 𝑀 . The 
spectral radius of the matrices 𝐴 and 𝑆(𝐴) satisfies [18] 𝜆(𝐴) ≥ 𝜆(𝑆(𝐴)).

For a digraph 𝐷 of order 𝑛 with 𝑎 arcs, we denote by 𝑄(𝐷) its signless 
Laplacian matrix. The geometric symmetrization of 𝑄(𝐷) is given by 

𝑆(𝑄(𝐷)) = (𝑠𝑖𝑗 ). Clearly, we have 
𝑛∑
𝑗=1
𝑠𝑖𝑗 = 𝑑+𝑖 + 𝑐(𝑖)2 for any vertex 𝑣𝑖 ∈

𝑉 (𝐷).
The following lemma is a result in [16].

Lemma 2.1. Let 𝐴 and 𝐵 be nonnegative matrices with their respective 
spectral radii 𝜆(𝐴) and 𝜆(𝐵). If 0 ≤ 𝐴 ≤ 𝐵, then 𝜆(𝐴) ≤ 𝜆(𝐵). Furthermore, 
if 𝐵 is irreducible and 0 ≤𝐴 < 𝐵, then 𝜆(𝐴) < 𝜆(𝐵).

The following result gives a lower bound for the signless Laplacian 
spectral radius of a digraph.

Theorem 2.2. Let 𝐷 digraph of order 𝑛 having 𝑎 arcs. Let 𝑄2 = (𝑞∗
𝑖𝑗
) be the 

square of the signless Laplacian matrix and let 𝑆(𝑄2) = (𝑠∗
𝑖𝑗
) be the geometric 

symmetrization of 𝑄(𝐷)2. Then

𝑞(𝐷) ≥

√∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑠

∗
𝑖𝑗

𝑛
. (2.1)

For a strongly connected digraph 𝐷, equality occurs in (2.1) if and only 
if 𝐷 = ⃖⃖⃗𝐺 with each connected component of 𝐷 a 𝑟-regular graph such that 
𝑟2 =

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑠

∗
𝑖𝑗

𝑛
.

Proof. Let 𝑆(𝑄2) = (𝑠∗
𝑖𝑗
) be the geometric symmetrization of 𝑄2. There-

fore 𝑄2 ≥ 𝑆(𝑄2) ≥ 0. In the light of Lemma 2.1, we obtain 𝜆(𝑄2) ≥
𝜆(𝑆(𝑄2)). Noting that the matrix 𝑆(𝑄(𝐷)2) is symmetric, via Rayleigh 
quotient, we obtain for 𝑋 = 𝑒 = (1, 1, … , 1)𝑇 , the all one 𝑛-column vec-

tor, and that

𝜆(𝑄(𝐷)) =
√
𝜆(𝑄2) ≥

√
𝜆(𝑆(𝑄2)) =

√
max
𝑋≠0

𝑋𝑇 𝑆(𝑄2)𝑋
𝑋𝑇 𝑋

≥

√
𝑒𝑇 𝑆(𝑄2)𝑒
𝑒𝑇 𝑒

=

√∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑠

∗
𝑖𝑗

𝑛
. (2.2)

This proves the inequality (2.1). If the equality in (2.1) is true, the 
above involved inequalities will become equalities. Using the equality 
in (2.2), it is clear that 𝜆(𝑄2) = 𝜆(𝑆(𝑄2)) and 𝜆(𝑆(𝑄2)) = 𝑒𝑇 𝑆(𝑄2)𝑒

𝑒𝑇 𝑒
. The 

second equality indicates that 𝑒 is an eigenvector of 𝑆(𝑄2) associated 
with the eigenvalue 𝜆(𝑆(𝑄2)). Hence, the multiplicity of the eigenvalue 
2

𝜆(𝑆(𝑄2)) can be one or two. If 𝐷 is strongly connected, 𝑄(𝐷) be-

comes irreducible and 𝑄2 is irreducible too. Recall that 𝑄2 ≥ 𝑆(𝑄2) and 
𝑄(𝐷) is an irreducible matrix. If 𝑄2 > 𝑆(𝑄2), invoking Lemma 2.1 we 
know that 𝜆(𝑄2) > 𝜆(𝑆(𝑄2)). This is a contradiction to the assumption 
of equality. Consequently, we proved that 𝑄2 = 𝑆(𝑄2), which means 
𝑄(𝐷) is symmetric and hence 𝐷 = ⃖⃖⃗𝐺. If the multiplicity of 𝜆(𝑆(𝑄2))
is one, 𝑄2 = 𝑆(𝑄2) is symmetric and 𝜆(𝑄2) = 𝜆2(𝑄(𝐷)). Noting that 𝑒
is an eigenvector associated with the eigenvalue 𝜆(𝑄2), we know that 
𝜆(𝑄(𝐷)) is an eigenvalue of 𝑄(𝐷) associated with eigenvector 𝑒. This 
suggests that 𝐷 is a 𝑟-regular graph satisfying 𝑟2 =

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑠

∗
𝑖𝑗

𝑛
. There-

fore, the equality holds true when 𝐷 = ⃖⃖⃗𝐺 and 𝐷 is 𝑟-regular satisfying 
𝑟2 =

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑠

∗
𝑖𝑗

𝑛
. On the other hand, if the multiplicity of 𝜆(𝑆(𝑄2)) is 

two, both 𝜆(𝑆(𝑄(𝐷))) and −𝜆(𝑆(𝑄(𝐷))) are eigenvalues of 𝑄(𝐷). This 
suggests that some of the eigenvalues of 𝑄(𝐷) must be negative. Note 
that 𝐷 = ⃖⃖⃗𝐺 implies that 𝑄(𝐷) coincides with the signless Laplacian ma-

trix 𝑄(𝐺) of the graph in question. In view of the fact that 𝑄(𝐷) is 
positive semi-definite, this case is false.

Suppose that 𝐷 is the direct sum of its disjoint strongly connected 
components 𝐷1, 𝐷2, … , 𝐷𝑠. Denote by 𝑄(𝐷𝑘) ∈ℝ𝑛𝑘×𝑛𝑘 the signless Lapla-

cian matrix of the component 𝐷𝑘 satisfying ∑𝑛𝑘=1 𝑛𝑘 = 𝑛. We obtain

𝑄2(𝐷) =

⎛⎜⎜⎜⎜⎝
𝑄2(𝐷1)

𝑄2(𝐷2)
⋱
𝑄2(𝐷𝑠)

⎞⎟⎟⎟⎟⎠
,

where the unspecified elements are zeros. Note that 𝑆(𝑄2) is a block 
diagonal matrix. As 𝑆(𝑄2) is symmetric, we obtain 𝜆(𝑆(𝑄2(𝐷))) =
max𝑘 𝜆(𝑆(𝑄2(𝐷𝑘))). Let 𝑒𝑘 be the all one column vector of order 𝑛𝑘. 
Since the equality in (2.1) holds true, we obtain

𝜆(𝑄(𝐷)) =
√
𝜆(𝑄2) ≥

√
𝜆(𝑆(𝑄2)) =

√
max
𝑋≠0

𝑋𝑇𝑆(𝑄2)𝑋
𝑋𝑇𝑋

=

√
𝑒𝑇 𝑆(𝑄2)𝑒
𝑒𝑇 𝑒

=

√√√√ 𝑠∑
𝑘=1

𝑛𝑘𝜆(𝑆(𝑄2(𝐷𝑘)))
𝑛

≤
√

max
𝑘
𝜆(𝑆(𝑄2(𝐷𝑘)))

= max
𝑘

√
𝜆(𝑆(𝑄2(𝐷𝑘))) =

√
𝜆(𝑆(𝑄2(𝐷))) =

√
𝜆(𝑄2(𝐷)) = 𝜆(𝑄(𝐷)),

which means for every 𝑘 = 1, 2, … , 𝑠,

𝜆(𝑄(𝐷)) =
√
𝜆(𝑄2(𝐷)) =

√
𝜆(𝑄2(𝐷𝑘)) =

√
𝜆(𝑆(𝑄2(𝐷𝑘)))

=

√√√√ 𝑠∑
𝑘=1

𝑒𝑇𝑛𝑘
𝑆(𝑄2(𝐷𝑘))𝑒𝑛𝑘
𝑛𝑘

.

As a result, 𝐷𝑘 = ⃖⃖⃖⃖⃗𝐺𝑘 is a symmetric digraph, in which every connected 
component 𝐺𝑘 is a 𝑟-regular graph. This completes the proof. □

For any 𝛼 ∈ [0, 1], the generalized adjacency matrix 𝐴𝛼(𝐷) of a di-

graph 𝐷 is given by

𝐴𝛼(𝐷) = 𝛼𝐷𝑒𝑔(𝐷) + (1 − 𝛼)𝐴(𝐷).

We have 𝐴𝛼(𝐷) = 𝐴(𝐷) if 𝛼 = 0, 2𝐴𝛼(𝐷) = 𝑄(𝐷) if 𝛼 = 1
2 , and 𝐴𝛼(𝐷) =

𝐷𝑒𝑔(𝐷) if 𝛼 = 1. It turns out that the matrix 𝐴𝛼(𝐷) unifies the spec-

tral theory of the adjacency matrix 𝐴(𝐷) and the signless Laplacian 
matrix 𝑄(𝐷) of a digraph 𝐷. Let 𝜆1(𝐴𝛼(𝐷)), 𝜆2(𝐴𝛼(𝐷)), … , 𝜆𝑛(𝐴𝛼(𝐷)) be 
the eigenvalues of 𝐴𝛼(𝐷). They are often referred to as the general-

ized adjacency eigenvalues or the 𝐴𝛼 -eigenvalues of 𝐷. The matrix 
𝐴𝛼(𝐷) is not symmetric in general and may have complex spectra. Let 
𝜆1(𝐴𝛼(𝐷)) = 𝜆(𝐴𝛼(𝐷)) be the eigenvalue of 𝐴𝛼(𝐷) with largest modulus. 
It is often called the generalized adjacency spectral radius or 𝐴𝛼 -spectral 
radius of digraph 𝐷. For some recent papers regarding the spectral prop-

erties of generalized adjacency matrix, we refer to [3, 4, 11, 12, 20, 21, 
24] and the references therein.
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Using the concept of geometric symmetrization and proceeding sim-

ilar to Theorem 2.2, the following lower bounds (Theorem 2.3 and 
Theorem 2.5) were obtained in [11].

Theorem 2.3. Let 𝐷 be a digraph of order 𝑛 with 𝑎 arcs. Suppose that 𝛼 ∈
[0, 1). Denote by 

(
𝑐
(1)
2 , 𝑐

(2)
2 ,… , 𝑐

(𝑛)
2

)
the sequence of closed walks of length 

2. We have

𝜆(𝐴𝛼(𝐷)) ≥
𝛼𝑎+ (1 − 𝛼)𝑐2

𝑛
, (2.3)

where 𝑐2 = 𝑐
(1)
2 +𝑐(2)2 +⋯ +𝑐(𝑛)2 is the number of closed walks of length 2 in 𝐷. 

When 𝛼 = 0, the equality in (2.3) holds true if and only if 𝐷 = ⃖⃖⃗𝐺+{possibly 
some arcs that do not belong to cycles}, where every connected component 
of 𝐺 is 𝑟-regular satisfying 𝑟 = 𝑐2

𝑛
. If 𝛼 ≠ 0, for a strongly connected digraph 

𝐷, the equality in (2.3) holds true if and only if 𝐷 = ⃖⃖⃗𝐺, in which every 
connected component of 𝐺 is 𝑟-regular satisfying 𝑟 = 𝛼𝑎+(1−𝛼)𝑐2

𝑛
.

Taking 𝛼 = 1
2 in Theorem 2.3 and using the fact that 𝑄(𝐷) = 2𝐴 1

2
(𝐷), 

we get the following lower bound for the signless Laplacian spectral 
radius 𝑞(𝐷) in terms of the number of arcs, the number of closed walks 
and the order of the digraph 𝐷.

Theorem 2.4. Let 𝐷 be a digraph of order 𝑛 with 𝑎 arcs. Suppose that (
𝑐
(1)
2 , 𝑐

(2)
2 ,… , 𝑐

(𝑛)
2

)
is the sequence of closed walks of length 2. We obtain

𝑞(𝐷) ≥
𝑎+ 𝑐2
𝑛
, (2.4)

where 𝑐2 = 𝑐
(1)
2 + 𝑐(2)2 +⋯ + 𝑐(𝑛)2 is the number of closed walks of length 2

in 𝐷. For a strongly connected digraph 𝐷, the equality in (2.4) holds true 
if and only if 𝐷 = ⃖⃖⃗𝐺, in which every connected component of 𝐺 is 𝑟-regular 
satisfying 𝑟 = 𝑎+𝑐2

𝑛
.

Another lower bound for the generalized adjacency spectral radius 
is obtained in [11].

Theorem 2.5. Let 𝐷 be a digraph of order 𝑛 with 𝑎 arcs. Suppose that 𝛼 ∈
[0, 1). Denote by 

(
𝑐
(1)
2 , 𝑐

(2)
2 ,… , 𝑐

(𝑛)
2

)
the sequence of closed walks of length 

2. We obtain

𝜆(𝐴𝛼(𝐷)) ≥

√√√√√∑𝑛
𝑖=1

(
𝛼𝑑+
𝑖
+ (1 − 𝛼)𝑐(𝑖)2

)2

𝑛
. (2.5)

When 𝛼 = 0, the equality in (2.4) holds true if and only if 𝐷 = ⃖⃖⃗𝐺+{possibly 
some arcs that do not belong to cycles}, in which every connected component 
of 𝐺 is 𝑟-regular or (𝑟1, 𝑟2)− semiregular bipartite, satisfying 𝑟2 = 𝑟1𝑟2 =∑𝑛
𝑖=1

(
𝑐
(𝑖)
2

)2
𝑛

. When 𝛼 ≠ 0, for a strongly connected digraph 𝐷, the equality in 
(2.5) holds true if and only if 𝐷 = ⃖⃖⃗𝐺 with every connected component of 𝐺

being 𝑟-regular with 𝑟2 =
∑𝑛
𝑖=1

(
𝛼𝑑+
𝑖
+(1−𝛼)𝑐(𝑖)2

)2
𝑛

or 𝐷 = ⃖⃖⃗𝐺 with every connected 
component of 𝐺 having the property that 𝜆(𝐴𝛼(𝐷)) and −𝜆(𝐴𝛼(𝐷)) are the 
eigenvalues of 𝐴𝛼(𝐷) associated with the eigenvector 𝑒 = (1, 1, … , 1)𝑇 .

Taking 𝛼 = 1
2 in Theorem 2.5 and using the fact that 𝑄(𝐷) = 2𝐴 1

2
(𝐷), 

we get the following lower bound for the signless Laplacian spectral 
radius 𝑞(𝐷) in terms of the number of arcs, the number of closed walks 
and the order of the digraph 𝐷.

Theorem 2.6. Let 𝐷 be a digraph of order 𝑛 with 𝑎 arcs. Suppose that (
𝑐
(1)
2 , 𝑐

(2)
2 ,… , 𝑐

(𝑛)
2

)
is the sequence of closed walks of length 2. We have

𝑞(𝐷) ≥

√√√√√ 𝑛∑
𝑖=1

(
𝑑+
𝑖
+ 𝑐(𝑖)2

)2

𝑛
, (2.6)
3

where 𝑐2 = 𝑐
(1)
2 + 𝑐(2)2 +⋯ + 𝑐(𝑛)2 is the number of closed walks of length 2

in 𝐷. For a strongly connected digraph 𝐷, the equality in (2.6) holds true 
if and only if 𝐷 = ⃖⃖⃗𝐺 with every connected component of 𝐺 being 𝑟-regular 

with 𝑟2 =
∑𝑛
𝑖=1

(
𝑑+
𝑖
+𝑐(𝑖)2

)2
𝑛

.

The following Lemma was obtained in [8].

Lemma 2.7. Let 𝐴 ∈ ℝ𝑛×𝑛 be a nonnegative matrix. Let 𝑆(𝐴) be the ge-
ometric symmetrization of 𝐴. We have 𝑆(𝐴2) ≥ 𝑆(𝐴)2, where the equality 
holds true if and only if 𝐴 is symmetric.

Remark 2.8. Using Lemma 2.7, it is clear that the lower bound given 
by Theorem 2.2 is sharper than that shown in Theorem 2.4.

3. Bounds for the signless Laplacian energy

In this section, we obtain some new bounds for the signless Lapla-

cian energy of a digraph 𝐷 in terms of different parameters associated 
with the structure of the digraph. We characterize the extremal digraphs 
attaining these bounds.

The first Zagreb index of a graph 𝐺 is denoted by 𝑍𝑔(𝐺) and is 

defined as 𝑍𝑔(𝐺) =
𝑛∑
𝑖=1
𝑑2
𝑖
, where 𝑑𝑖 is the degree of the 𝑖-th vertex of 

𝐺. Likewise, we define the first out-degree Zagreb index, denoted by 

𝑍𝑔+(𝐷) of a digraph 𝐷 as 𝑍𝑔+(𝐺) =
𝑛∑
𝑖=1

(𝑑+
𝑖
)2 and the first in-degree 

Zagreb index of a digraph 𝐷 as 𝑍𝑔−(𝐺) =
𝑛∑
𝑖=1

(𝑑−
𝑖
)2.

The following result gives an upper bound for the signless Laplacian 
energy of a digraph 𝐷, in terms of the order, the number of arcs, the 
maximum out-degree, the first out-degree Zagreb index and the number 
of closed walks of length 2.

Theorem 3.1. Let 𝐷 be a digraph of order 𝑛 having 𝑎 arcs. Let Δ+ be the 
maximum out-degree, 𝑍𝑔+(𝐷) be the first out-degree Zagreb index and 𝑐2
be the number of closed walks of length 2 of 𝐷. Then

𝐸𝑆𝐿(𝐷) ≤ 2Δ+ − 𝑎
𝑛
+
√

(𝑛− 1)
(
𝑍𝑔+(𝐷) + 𝑎

(
1 − 𝑎
𝑛

)
−
( 𝑐2
𝑛

)2)
. (3.1)

For a strongly connected digraph 𝐷, equality occurs in (3.1) if and only 
if 𝐷 = ⃖⃖𝐾𝑛 or 𝐷 = ⃖⃖⃗𝐺 is Δ+-regular digraph with three distinct signless 
Laplacian eigenvalues, given by 𝑞(𝐷) = 2Δ+, 𝑎

𝑛
+ 𝜃 and 𝑎

𝑛
− 𝜃, where 𝜃 =√

𝑍𝑔+(𝐷)+𝑎(1− 𝑎
𝑛
)−
(
𝑐2
𝑛

)2
𝑛−1 .

Proof. Let 𝑄(𝐷) = (𝑞𝑖𝑗 ) be the signless Laplacian matrix of 𝐷. By Schur’s 
triangularization theorem [16], there exists a unitary matrix 𝑈 such 
that 𝑈∗𝑄(𝐷)𝑈 = 𝑇 , where 𝑇 = (𝑡𝑖𝑗 ) is an upper triangular matrix with 
diagonal entries 𝑡𝑖𝑖 = 𝑞𝑖, 𝑖 = 1, 2, … , 𝑛. Therefore,

𝑛∑
𝑖,𝑗=1

|𝑞𝑖𝑗 |2 = 𝑛∑
𝑖,𝑗=1

|𝑡𝑖𝑗 |2 ≥ 𝑛∑
𝑖=1

|𝑡𝑖𝑖|2 = 𝑛∑
𝑖=1

|𝑞𝑖|2,
that is,
𝑛∑
𝑖=1

|𝑞𝑖|2 ≤ 𝑛∑
𝑖,𝑗=1

|𝑞𝑖𝑗 |2 = 𝑛∑
𝑖=1

(𝑑+
𝑖
)2 + 𝑎 =𝑍𝑔+(𝐷) + 𝑎,

where 𝑍𝑔+(𝐷) =
𝑛∑
𝑖=1

(𝑑+
𝑖
)2 is the first out-degree Zagreb index of 𝐷. Now, 

proceeding similarly as in [23] (see inequality (8) onwards), we get

𝑛∑|𝛼𝑖|2 ≤ 𝑎+ 𝑛∑(
𝑑+
𝑖
− 𝑎
𝑛

)2
=𝑍𝑔+(𝐷) + 𝑎

(
1 − 𝑎
𝑛

)
. (3.2)
𝑖=1 𝑖=1
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Since 𝑄(𝐷) is a non-negative matrix, therefore 𝑞(𝐷) is an eigenvalue 
of 𝑄(𝐷). Let 𝑞(𝐷) = 𝑞1, 𝑞2, … , 𝑞𝑛 be the signless Laplacian eigenvalues 
of 𝐷 and let 𝛼𝑖 = 𝑞𝑖 −

𝑎

𝑛
, for 𝑖 = 1, 2, … , 𝑛. Applying the Cauchy-Schwarz 

inequality to the vectors (|𝛼2|, |𝛼3|, … , |𝛼𝑛|) and (1, 1, … , 1) of ℝ𝑛−1, we 
obtain( 𝑛∑
𝑖=2

|𝛼𝑖|)2
≤ (𝑛− 1)

𝑛∑
𝑖=2

|𝛼𝑖|2,
that is,(
𝐸𝑆𝐿(𝐷) − |𝛼1|)2

≤ (𝑛− 1)
( 𝑛∑
𝑖=1

|𝛼𝑖|2 − |𝛼1|2).
Using the inequality (3.2), we get

𝐸𝑆𝐿(𝐷) ≤ |𝛼1|+√
(𝑛− 1)

(
𝑍𝑔+(𝐷) + 𝑎

(
1 − 𝑎
𝑛

)
− |𝛼1|2). (3.3)

Since 𝑄(𝐷) is a non-negative matrix and for a non-negative matrix spec-

tral radius lies between the minimum and the maximum row sums, it 
follows that

2𝛿+ ≤ 𝑞(𝐷) ≤ 2Δ+, (3.4)

with equality for a strongly connected digraph if and only if 𝐷 is a Δ+-

out-degree regular digraph. So, we have |𝛼1| = 𝛼1 = 𝑞(𝐷) − 𝑎𝑛 ≤ 2Δ+ − 𝑎
𝑛
. 

By Theorem 2.4, we have 𝑞(𝐷) ≥ 𝑎+𝑐2
𝑛

, giving that |𝛼1| = 𝑞(𝐷) − 𝑎𝑛 ≥ 𝑐2𝑛 . 
With these observations, it follows from (3.3) that

𝐸𝑆𝐿(𝐷) ≤ 2Δ+ − 𝑎
𝑛
+
√

(𝑛− 1)
(
𝑍𝑔+(𝐷) + 𝑎

(
1 − 𝑎
𝑛

)
−
( 𝑐2
𝑛

)2)
.

The equality in (3.1) holds true if and only if

(i) 𝑇 = (𝑡𝑖𝑗 ) is a diagonal matrix,

(ii) |𝛼2| = |𝛼3| =⋯ = |𝛼𝑛|,
(iii) the equality in 𝑞(𝐷) ≤ 2Δ+ holds true and

(iv) the equality in 𝑞(𝐷) ≥ 𝑎+𝑐2
𝑛

holds true.

Thanks to Schur’s unitary triangularization theorem [16], we have that 
𝑇 = (𝑡𝑖𝑗 ) is diagonal if and only if 𝑄(𝐷) is normal. By (3.4), the equality 
for a strongly connected digraph 𝐷 in 𝑞(𝐷) ≤ 2Δ+ holds true, if and only 
if 𝐷 is a Δ+-out-degree regular digraph. By Theorem 2.4 the equality 
for a strongly connected digraph 𝐷 in 𝑞(𝐷) ≥ 𝑎+𝑐2

𝑛
holds true, if and 

only if 𝐷 = ⃖⃖⃗𝐺, where each connected component of 𝐷 is a 𝑟-regular 
graph with 𝑟 = 𝑎+𝑐2

𝑛
. Combining these observations it follows that the 

equality in (3.1) holds true if and only if 𝐷 = ⃖⃖⃗𝐺, where each connected 
component of 𝐺 is a Δ+-regular digraph and |𝛼2| = |𝛼3| = ⋯ = |𝛼𝑛|. If 
𝐷 = ⃖⃖⃗𝐺, then each of 𝑞𝑖(𝐷) is a real number and so using the fact 𝛼𝑛 =
𝑞𝑛(𝐷) −

𝑎

𝑛
< 0 and 𝛼2 = 𝑞2(𝐷) −

𝑎

𝑛
≥ 0 or 𝛼2 = 𝑞2(𝐷) −

𝑎

𝑛
< 0. If 𝛼2 = 𝑞2(𝐷) −

𝑎

𝑛
< 0, then |𝛼2| = |𝛼3| =⋯ = |𝛼𝑛| gives that 𝑞2(𝐷) =⋯ = 𝑞𝑛(𝐷) and so the 

equality holds if 𝐷 is symmetric Δ+-regular digraph with two distinct 
eigenvalues. Using a well-known fact that a connected graph 𝐺 has two 
distinct signless Laplacian eigenvalues if and only if 𝐺 ≅ 𝐾𝑛, it follows 
that equality occurs in this case if and only if 𝐷 = ⃖⃖𝐾𝑛. If 𝛼2 = 𝑞2(𝐷) −

𝑎

𝑛
≥

0, then |𝛼2| = |𝛼3| =⋯ = |𝛼𝑛| gives that their exists a positive integer 𝑡, 
such that 𝑞2(𝐷) −

𝑎

𝑛
=⋯ = 𝑞𝑡(𝐷) −

𝑎

𝑛
= 𝜃 and 𝑞𝑡+1(𝐷) −

𝑎

𝑛
=⋯ = 𝑞𝑛(𝐷) −

𝑎

𝑛
= −𝜃. That is, 𝑞2(𝐷) = ⋯ = 𝑞𝑡(𝐷) =

𝑎

𝑛
+ 𝜃 and 𝑞𝑡+1(𝐷) = ⋯ = 𝑞𝑛(𝐷) =

𝑎

𝑛
− 𝜃. Using the fact that for the digraph 𝐷 = ⃖⃖⃗𝐺, we have ∑𝑛𝑖=1 |𝛼|2 =
𝑍𝑔+(𝐷) + 𝑎(1 − 𝑎

𝑛
), it is easy to verify that 𝜃 =

√
𝑍𝑔+(𝐷)+𝑎(1− 𝑎

𝑛
)−
(
𝑐2
𝑛

)2
𝑛−1 . 

Thus, it follows that equality occurs in this case if and only if 𝐷 is 
a symmetric Δ+-regular digraph with three distinct signless Laplacian 
eigenvalues, which are 𝑞(𝐷) = 2Δ+, 𝑎

𝑛
+ 𝜃 and 𝑎

𝑛
− 𝜃.

Conversely, it is easy to see that equality occurs in (3.1) for the 
digraphs mentioned in the statement of the theorem. This completes 
the proof. □
4

We note that the problem of characterizing the connected graphs 
with three distinct signless Laplacian eigenvalues is well studied and 
some papers can be found in the literature in this direction. For recent 
developments we refer to [14] and the references therein.

Proceeding similarly as in Theorem 3.1 and making use of the lower 
bound given in Theorem 2.6, we obtain the following upper bound for 
the signless Laplacian energy of a digraph 𝐷.

Theorem 3.2. Let 𝐷 be a digraph of order 𝑛 with 𝑎 arcs. Let Δ+ be the 
maximum out-degree, 𝑍𝑔+(𝐷) be the first out-degree Zagreb index and 𝑐𝑖2
be the number of closed walks of length 2 at vertex 𝑣𝑖 of 𝐷. Then

𝐸𝑆𝐿(𝐷) ≤ 2Δ+ − 𝑎
𝑛
+
√

(𝑛− 1)
(
𝑍𝑔+(𝐷) + 𝑎

(
1 − 𝑎
𝑛

)
−
(
𝛽 − 𝑎
𝑛

)2)
. (3.5)

For a strongly connected digraph 𝐷, equality occurs in (3.5) if and only 
if 𝐷 = ⃖⃖𝐾𝑛 or 𝐷 = ⃖⃖⃗𝐺 is Δ+-regular digraph with three distinct signless 
Laplacian eigenvalues, given by 𝑞(𝐷) = 2Δ+, 𝑎

𝑛
+ 𝜃 and 𝑎

𝑛
− 𝜃, where 𝜃 =√

𝑍𝑔+(𝐷)+𝑎(1− 𝑎
𝑛
)−
(
𝛽− 𝑎
𝑛

)2
𝑛−1 and 𝛽 =

√
𝑛∑
𝑖=1

(
𝑑+
𝑖
+𝑐(𝑖)2

)2
𝑛

.

The following Arithmetic-Geometric mean inequality can be found 
in [17].

Lemma 3.3. If 𝑎1, 𝑎2, … , 𝑎𝑛 are non-negative numbers, then

𝑛

⎡⎢⎢⎣ 1𝑛
𝑛∑
𝑗=1
𝑎𝑗 −

(
𝑛∏
𝑗=1
𝑎𝑗

) 1
𝑛 ⎤⎥⎥⎦ ≤ 𝑛

𝑛∑
𝑗=1
𝑎𝑗 −

(
𝑛∑
𝑗=1

√
𝑎𝑗

)2

≤ 𝑛(𝑛− 1)
⎡⎢⎢⎣ 1𝑛

𝑛∑
𝑗=1
𝑎𝑗 −

(
𝑛∏
𝑗=1
𝑎𝑗

) 1
𝑛 ⎤⎥⎥⎦ .

Moreover equality occurs if and only if 𝑎1 = 𝑎2 =⋯ = 𝑎𝑛.

The following result gives bounds for the signless Laplacian energy 
of a digraph 𝐷, in terms of order 𝑛, the number of arcs, the first out-

degree Zagreb index and the determinant of the matrix 𝑄(𝐷) − 𝑎
𝑛
𝐼𝑛.

Theorem 3.4. Let 𝐷 be a digraph of order 𝑛 ≥ 3 with 𝑎 arcs having first 
out-degree Zagreb index 𝑍𝑔+(𝐺) and maximum out-degree Δ+. Then

𝐸𝑆𝐿(𝐷) ≤ 2Δ+ − 𝑎
𝑛
+

√
(𝑛− 2)(𝛾1 − (

𝑐2
𝑛
)2) + (𝑛− 1)

(
𝑛

𝑐2

) 2
𝑛−1
𝛾2

and

𝐸𝑆𝐿(𝐷)

≥
𝑐2
𝑛

+

√
|𝛾1 − 𝑎+ 𝑐2|− (

2Δ+ − 𝑎
𝑛

)2
+ (𝑛− 1)(𝑛− 2)

(
2Δ+ − 𝑎

𝑛

) −2
𝑛−1
𝛾2,

where 𝛾1 =𝑍𝑔+(𝐺) + 𝑎(1 −
𝑎

𝑛
) and 𝛾2 =

||||det(𝑄(𝐷) − 𝑎𝑛 𝐼𝑛)||||
2
𝑛−1

. Equality oc-

curs in both the inequalities if and only if 𝐷 ≅ ⃖⃖𝐾𝑛 or 𝐷 = ⃖⃖⃗𝐺 is a Δ+-regular 
digraph with three distinct signless Laplacian eigenvalues, 𝑞(𝐷) =Δ+ and the 

other two eigenvalues with absolute value 
√
𝑍𝑔+(𝐷)+𝑎(1− 𝑎

𝑛
)−( 𝑐2

𝑛
)2

𝑛−1 .

Proof. Replacing 𝑛 by 𝑛 − 1 and setting 𝑎𝑗 = |𝛼𝑗 |2, for 𝑗 = 2, … , 𝑛 in 
Lemma 3.3, we have

𝛼 ≤ (𝑛− 1)
𝑛∑
𝑗=2

|𝛼𝑗 |2 −(
𝑛∑
𝑗=2

|𝛼𝑗 |)2

≤ (𝑛− 2)𝛼,

that is,
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𝛼 ≤ (𝑛− 1)
𝑛∑
𝑗=2

|𝛼𝑗 |2 − (
𝐸𝑆𝐿(𝐺) − |𝛼1|)2 ≤ (𝑛− 2)𝛼, (3.6)

where

𝛼 = (𝑛− 1)
⎡⎢⎢⎣ 1
𝑛− 1

𝑛∑
𝑗=2

|𝛼𝑗 |2 −(
𝑛∏
𝑗=2

|𝛼𝑗 |2)
1
𝑛−1 ⎤⎥⎥⎦

=
𝑛∑
𝑗=2

|𝛼𝑗 |2 − (𝑛− 1)

(
𝑛∏
𝑗=2

|𝛼𝑗 |)
2
𝑛−1

=
𝑛∑
𝑗=2

|𝛼𝑗 |2 − (𝑛− 1)|𝛼1| 2
𝑛−1

||||det(𝑄(𝐷) − 𝑎𝑛 𝐼𝑛)||||
2
𝑛−1
.

Using inequality (3.2) and the value of 𝛼, it follows from the left in-

equality of (3.6) that(
𝐸𝑆𝐿(𝐷) − |𝛼1|)2

≤ (𝑛− 2)
𝑛∑
𝑗=2

|𝛼𝑗 |2 + (𝑛− 1)|𝛼1| 2
𝑛−1

||||det(𝑄(𝐷) − 𝑎𝑛 𝐼𝑛)||||
2
𝑛−1
,

that is,

𝐸𝑆𝐿(𝐷)

≤ 𝛼1 +

√
(𝑛− 2)(𝛾1 − 𝛼21) + (𝑛− 1)𝛼

−2
𝑛−1
1

||||det(𝑄(𝐺) − 𝑎𝑛 𝐼𝑛)||||
2
𝑛−1
, (3.7)

where 𝛾1 = 𝑍𝑔+(𝐷) + 𝑎(1 − 𝑎

𝑛
) and 𝛼1 ≥ 0. Since, by inequality (3.4), 

𝑞(𝐷) ≤ 2Δ+, it follows that |𝛼1| = 𝛼1 = 𝑞(𝐷) − 𝑎𝑛 ≤ 2Δ+ − 𝑎
𝑛
. Also, by The-

orem 2.4, we have 𝑞(𝐷) ≥ 𝑎+𝑐2
𝑛

, giving that |𝛼1| = 𝑞(𝐷) − 𝑎𝑛 ≥ 𝑐2
𝑛

. Using 
the inequalities 𝛼1 ≥

𝑐2
𝑛

and 𝛼1 ≤ 2Δ+ − 𝑎

𝑛
in (3.7) we get the first in-

equality.

Again using the value of 𝛼, it follows from the right inequality of

(3.6) that

(
𝐸𝑆𝐿(𝐷) − |𝛼1|)2

≥

𝑛∑
𝑗=2

|𝛼𝑗 |2 + (𝑛− 1)(𝑛− 2)|𝛼1| −2
𝑛−1

||||det(𝑄(𝐷) − 𝑎𝑛 𝐼𝑛)||||
2
𝑛−1
.

(3.8)

Note that in [23] it is shown that 
𝑛∑
𝑗=1
𝛼2
𝑗
=
𝑛∑
𝑗=1

(
𝑑+
𝑖
− 𝑎
𝑛

)2
+ 𝑐2 =𝑍𝑔+(𝐷) −

𝑎2

𝑛
+ 𝑐2 = 𝛾1 − 𝑎 + 𝑐2, giving that 

𝑛∑
𝑗=2

|𝛼𝑗 |2 ≥ | 𝑛∑
𝑗=2
𝛼2
𝑗
| = |𝛾1 − 𝑎 + 𝑐2|. This 

together with inequality (3.8) gives that

𝐸𝑆𝐿(𝐺)

≥ 𝛼1 +

√
|𝛾1 − 𝑎+ 𝑐2|− 𝛼21 + (𝑛− 1)(𝑛− 2)𝛼

−2
𝑛−1
1

||||det(𝑄(𝐷) − 𝑎𝑛 𝐼𝑛)||||
2
𝑛−1
.

(3.9)

Now, using the inequalities 𝛼1 ≥
𝑐2
𝑛

and 𝛼1 ≤ 2Δ+ − 𝑎
𝑛

in (3.9) we get the 
second inequality.

Equality occurs in the first inequality if and only if

(i) 𝑇 = (𝑡𝑖𝑗 ) is a diagonal matrix,

(ii) the equality in Lemma 3.3 holds true,

(iii) the equality in 𝑞(𝐷) ≤ 2Δ+ holds true and

(iv) the equality in 𝑞(𝐷) ≥ 𝑎+𝑐2
𝑛

holds true.

From Schur’s unitary triangularization theorem [16], we know that 𝑇 =
(𝑡𝑖𝑗 ) is a diagonal matrix if and only if 𝑄(𝐷) is a normal matrix. By (3.4), 
equality for a strongly connected digraph 𝐷 occurs in 𝑞(𝐷) ≤ 2Δ+, if and 
only if 𝐷 is a Δ+-out-degree regular digraph. By Theorem 2.4 equality 
for a strongly connected digraph 𝐷 occurs in 𝑞(𝐷) ≥ 𝑎+𝑐2

𝑛
, if and only if 

𝐷 = ⃖⃖⃗𝐺, where each connected component of 𝐺 is a 𝑟-regular graph with 
𝑟 = 𝑎+𝑐2

𝑛
. Combining these observations it follows from Lemma 3.3 that 

equality occurs in the first inequality if and only if 𝐷 = ⃖⃖⃗𝐺, where each 
5

connected component of 𝐷 is a Δ+-regular digraph and |𝛼2| = |𝛼3| =
⋯ = |𝛼𝑛|. Now, proceeding similar to Theorem 3.1, the result follows in 
this case.

On the other hand equality occurs in the second inequality if and 

only if equality occurs in 
𝑛∑
𝑗=2

|𝛼𝑗 |2 ≥ | 𝑛∑
𝑗=2
𝛼2
𝑗
| and equality occurs in (ii), 

(iii) and (iv). Equality occurs in 
𝑛∑
𝑗=2

|𝛼𝑗 |2 ≥ | 𝑛∑
𝑗=2
𝛼2
𝑗
|, if and only if 𝛼22 =

𝛼23 =⋯ = 𝛼2𝑛 . From this and above discussion the result now follows.

Conversely, it is easy to see that equality occurs in each of the in-

equalities for the mentioned cases. This completes the proof. □

If we apply the lower bound given by Theorem 2.6, we obtain the 
following result for the signless Laplacian energy of a digraph 𝐷.

Theorem 3.5. Let 𝐷 be a digraph of order 𝑛 ≥ 3 having 𝑎 arcs and having 
first out-degree Zagreb index 𝑍𝑔+(𝐺) and maximum out-degree Δ+. We 
have

𝐸𝑆𝐿(𝐷) ≤ 2Δ+ − 𝑎
𝑛
+

√
(𝑛− 2)(𝛾1 − (𝛽 − 𝑎

𝑛
)2) + (𝑛− 1)

(
𝛽 − 𝑎
𝑛

) −2
𝑛−1
𝛾2

and

𝐸𝑆𝐿(𝐷) ≥ 𝛽 −
𝑎

𝑛

+

√
|𝛾1 − 𝑎+ 𝑐2|− (

2Δ+ − 𝑎
𝑛

)2
+ (𝑛− 1)(𝑛− 2)

(
2Δ+ − 𝑎

𝑛

) −2
𝑛−1
𝛾2,

where 𝛾1 =𝑍𝑔+(𝐺) +𝑎(1 −
𝑎

𝑛
) and 𝛾2 =

||||det(𝑄(𝐷) − 𝑎𝑛 𝐼𝑛)||||
2
𝑛−1

. The equalities 

in both inequalities hold true if and only if 𝐷 ≅ ⃖⃖𝐾𝑛 or 𝐷 = ⃖⃖⃗𝐺 is a Δ+-regular 
digraph with three distinct signless Laplacian eigenvalues, 𝑞(𝐷) =Δ+ and the 

other two eigenvalues with absolute value 
√
𝑍𝑔+(𝐷)+𝑎(1− 𝑎

𝑛
)−(𝛽− 𝑎

𝑛
)2

𝑛−1 .

4. Concluding remarks

If we take 𝐷 = ⃖⃖⃗𝐺, in which ⃖⃖⃗𝐺 is the symmetric digraph correspond-

ing to the underlying graph 𝐺 of the digraph 𝐷, the results obtained 
in Sections 2 and 3 become the corresponding results for the signless 
Laplacian spectral radius 𝜆(𝑄(𝐺)) and the signless Laplacian energy 
𝑄𝐸(𝐺) of the graph 𝐺. Our results are a generalization of the known 
results for the signless Laplacian spectral radius and the signless Lapla-

cian energy of a graph 𝐺.
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