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Methanotrophs consume methane as their major carbon source and play an essential role in 

the global carbon cycle by limiting escape of this greenhouse gas to the atmosphere1–3. 

These bacteria oxidize methane to methanol via soluble (sMMO) and particulate (pMMO) 

methane monooxygenases1–4. sMMO contains three protein components, a 251 kDa 

hydroxylase (MMOH), a 38.6 kDa reductase (MMOR), and a 15.9 kDa regulatory protein 

(MMOB) required to couple electron consumption with substrate hydroxylation at the 

catalytic diiron center of MMOH2. Until now, the role of MMOB has remained ambiguous 

owing to lack of atomic-level information about the MMOH-MMOB (hereafter H-B) 

complex. Here we remedy this deficiency by providing a crystal structure of H-B, which 

reveals the manner by which MMOB controls the conformation of residues in MMOH 

critical for substrate access to the active site. MMOB docks at the α2β2 interface of α2β2γ2 

MMOH and triggers simultaneous conformational changes in the α-subunit that modulate 

O2 and CH4 access as well as proton delivery to the diiron center. Without such careful 

control by MMOB of these substrate routes to the diiron active site, the enzyme operates as 

an NADH oxidase rather than a monooxygenase5. Biological catalysis involving small 

substrates is often accomplished in nature by large proteins and protein complexes. The 

structure presented in this work provides an elegant example of this principle.

Bacterial multicomponent monooxygenases (BMMs) are unique among diiron proteins by 

virtue of their ability to hydroxylate a broad spectrum of hydrocarbon substrates1–3. Soluble 

methane monooxygenases (sMMOs), alkene monooxygenases (AMOs), phenol 

hydroxylases (PHs), and alkene/aromatic monooxygenases (TMOs) belong to the BMM 
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superfamily1,2,4. sMMO is the only BMM capable of catalyzing the conversion of methane 

selectively to methanol by activation of O2 for insertion of an oxygen atom into a C–H bond 

(104.9 kcal/mol), as illustrated in eq 12,3. The crystal

(1)

structure of MMOH revealed a dimeric (α2β2γ2) architecture with a glutamate-bridged 

diiron active site in each α-subunit6,7. Substrate turnover in sMMO is initiated by electron 

transfer from MMOR to the resting state diiron(III) hydroxylase MMOHox, converting it to 

the reduced diiron(II) state, MMOHred. In the presence of MMOB, oxygen activation at the 

active site of MMOHred yields a diiron(III) peroxo intermediate that rapidly decays to form 

Q, the diiron(IV) species that performs methane oxidation, returning the enzyme to the 

resting state8,9. Comparison of oxidized and reduced hydroxylase structures revealed charge 

neutral active sites, reduction being accompanied by conversion of two bridging OH− ions to 

water (Supplementary Fig. 1)6,7,10. When MMOB binds MMOH, the (FeIII)2 → (FeII)2 

reduction potential is lowered, but only in the absence of MMOR11. Binding of MMOB to 

MMOH increases the rate and specificity of substrate hydroxylation12–14. The nature of the 

internal MMOH conformational changes induced by MMOB has remained unknown owing 

to the absence of structural information about the complex formed between these two 

component proteins.

A crystal of H-B that diffracted to 2.9 Å resolution allowed us to determine the X-ray 

structure by molecular replacement, as outlined in Methods Summary and Supplementary 

Table 1. There are two H-B complexes in the asymmetric unit comprising four 

crystallographically independent αβγB protomers (Supplementary Fig. 2). Within individual 

dimers, the protomers are related by a non-crystallographic twofold symmetry axis (Fig. 1a 

and Supplementary Fig. 3) and have nearly identical overall structures (Supplementary 

Table 2). MMOB binds to the hydroxylase with its core residues (Asp 36 ~ Leu 129) located 

primarily in a `canyon' region7 formed at the α2β2 interface of the two MMOH protomers. 

Similar canyon motifs occur in the hydroxylase components of phenol hydroxylase (PH) and 

toluene-4-monooxygenase (T4MO) for binding their respective regulatory proteins15–17, but 

these proteins lack the N-terminal tail that is critical for the function of sMMO 

(Supplementary Fig. 4). Proof that MMOB binds in the canyon of MMOH, the archetypal 

and most investigated member of the BMM family, and the structure and function of the 

MMOB N-terminus, are provided for the first time by the present structure determination.

NMR spectroscopic analysis18 of unbound MMOB from M. capsulatus (Bath) revealed a 

compact core region (Fig. 1b) and an unstructured N-terminal tail that is ~35 amino acids 

longer than the corresponding region of regulatory proteins from all other BMM subclasses 

(Supplementary Fig. 4). In the H-B complex, the MMOB core exhibits only minor structural 

changes with respect to that in the unbound protein, as reflected by Cα root-mean-square-

deviation values of ~2.1 Å. The N-terminus of MMOB becomes very well ordered in H-B, 

forming a remarkable ring-shaped structure on the α-subunit of MMOH (Figs. 1a and 1b). 

The extended N-terminus in MMOB was previously noted to be critical for sMMO 

catalysis19,20, and those results are confirmed in the present study, wherein N-terminal 
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truncates (Δ 1–8, Δ 1–17, and Δ 1–33) displayed substantially reduced activity with respect 

to full length MMOB (Fig. 1c).

The MMOB N-terminus binds to helices H and 4 of MMOH in the complex through 

hydrogen-bonding as well as hydrophobic interactions (Supplementary Fig. 5). A small α 

helix (Gly 17-Phe 25) in the MMOB tail facilitates formation of its ring-shaped structure on 

the MMOH surface (Fig. 1a and Supplementary Fig. 5). Within this ring structure, Phe 

residues 20, 24, and 25 of MMOB generate hydrophobic interactions with Lys 303 (helix 

H), Val 302, and Tyr 340 (helix 4 of MMOH), respectively, as shown in Supplementary Fig. 

5. These features of the N-terminus may help anchor MMOB on the MMOH surface, 

making it difficult for MMOR to displace it from a preformed H-B complex. Such a 

consequence would account for the diminished rate of intermolecular electron transfer 

observed between MMOR and MMOH in preformed H-B21. In addition, hydrophilic 

residues including Lys 18, Asp 19, Asp 22, and Gln 23 of MMOB, located opposite the H-B 

binding interface, contribute to the solubility of the H-B complex.

Additionally, when MMOB docks onto the α-subunit of MMOH, it imparts important 

conformational changes in the hydroxylase. These structural changes are largely confined to 

the α-subunits and involve particularly helices E, F, H, and 4 (Supplementary Figs. 6 and 7). 

In the H-B complex, Tyr 8 and Ser 111 of MMOB allosterically induce significant amino 

acid side chain movements near the diiron active site in MMOH helix E. Tyr 8 forms 

hydrogen bonds with Arg 307 and Glu 299 in MMOH helix H reorienting Trp 308 (Figs. 2a 

and 2b). This reorientation of Trp 308 is stabilized by π-interactions with Tyr 76 and Trp 78 

(β3 strand) of MMOB. In addition, Ser 111 of MMOB forms a hydrogen bond with Asn 214 

in MMOH helix E, which triggers a side chain reorientation in Thr 213, an active site, 

second coordination sphere residue of importance for the formation of oxygenated 

intermediates in the catalytic cycle2,3,9 and possibly proton-coupled electron transfer. In H–

B, the conformational change of Thr 213 generates hydrogen bonds with Glu 240. This 

event closes a pore in the MMOH structure, the shortest access route between the diiron 

active site and the protein surface defined by residues Glu 240, Thr 213 and Asn 214 (Figs 

2c, d and 3). This pore was previously proposed to be involved in proton transfer22.

Protons are an important substrate in BMM catalytic cycles9,22–24, and the H-B structure 

provides insight into the role that MMOB may have in facilitating proton access to the 

catalytic diiron center in soluble MMO. In the H-B complex, the conformational change of 

Thr 213 is accompanied by formation of a bifurcated hydrogen bond between the hydroxyl 

group of this residue and the carboxylate side chain of Glu 240. Glu 243 simultaneously 

undergoes a `carboxylate shift'25 (vide infra). In the absence of MMOB, the Glu 240 and 

Asn 214 side chains in MMOH are solvent accessible and linked through hydrogen bonding 

to a water molecule or hydronium ion (Fig. 2c). Upon H-B complex formation (Fig. 2d), Glu 

240 shifts toward the protein interior possibly delivering a proton in the process. One 

possible scenario is that, during the O2 activation steps by MMOH to form the peroxo and Q 

intermediates, both of which require a proton transfer,9,23 MMOB core binding, release, and 

rebinding to the hydroxylase might facilitate delivery of the requisite two solvent-derived 

protons through the pore. The anchoring of MMOB by its N-terminus may allow the core to 

function in this manner without complete dissociation of the regulatory protein from the 
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hydroxylase. The presence of these protons in the active site would also facilitate product 

and hydroxide ion release during reduction of the diiron(III) center in MMOHox to form 

MMOHred. Delivering protons through the pore may be one of the primary functions of the 

regulatory proteins in the BMM family.

Yet another important feature of MMOB binding to the α-subunit of MMOH is to control 

methane and O2 access to the active site. Previous structural analyses of MMOH crystals 

soaked in solutions of halogenated substrate analogs or pressurized with Xe identified a 

putative access route for these substrates26,27. In the MMOHox structure, cavities 2 and 3 are 

connected, but there is a discontinuity between cavities 1 and 2. This break in freely 

diffusible space blocks access of methane and oxygen to the active site (Fig. 3a and 

Supplementary Fig. 8). Molecular access to the diiron site via the cavities is gated by 

residues Phe 188 and Leu 1107,22,26. In the H-B complex, cavities 1 and 2 become 

connected as a consequence of a change in conformation of the Phe 188 side chain, and a 

structural comparison of MMOHox with that of H-B highlights the difference (Fig. 3 and 

Supplementary Figs. 8 and 9). A major function of MMOB binding to MMOH is, therefore, 

to facilitate methane and O2 access to the diiron active site by opening the gate. It is 

noteworthy that this structural alteration occurs concomitantly with closure of the pore (Fig. 

3 and Supplementary Figs. 8 and 9). Opening the pore upon MMOB dissociation also 

supports its previously proposed role as a hydrophilic route for methanol release26.

Changes also occur in the geometry of the diiron center upon MMOB binding, in accord 

with spectroscopic studies that revealed conformational rearrangements of coordinated 

amino acid side chains in the H-B complex2,3,9,14. The coordination environments of the 

iron atoms in H-B (Fig. 4a and Supplementary Fig. 10) exhibit many similarities to, as well 

as some key differences from, those observed in MMOHox and MMOHred (Figs. 4b and 4c 

and Supplementary Fig. 10)7,10,28. As in the other structures of MMOH, Fe1 and Fe2 in H-B 

are positioned within the four-helix bundle formed by helices B, C, E, and F. The positions 

of helices E and F shift upon MMOB binding, moving Fe2 ~1.1 Å from its location in 

MMOHox (Supplementary Fig. 11). The coordination of Glu 243 resembles that in Hred, but 

the Fe⋯Fe distance in H-B is closer to that in MMOHox.

Individual refinement of crystallographically independent diiron active sites within the four 

protomers revealed the same coordinated ligands, although with slightly different geometries 

(Supplementary Fig. 12). The Fe1 and Fe2 ions bond to the δ-N atoms of His 147 and His 

246, respectively, Glu 144 bridges the two metals, and Glu 209 binds in a monodentate 

fashion to Fe2, all as in MMOHox structures (Fig. 4 and Supplementary Figs. 10 and 12). 

The most notable change occurs in the Glu 243 side chain carboxylate, which chelates Fe2 

in a bidentate manner while being singly bonded to Fe1. In MMOHox, the carboxylate of 

Glu 243 forms a single bond with Fe2, and the dangling oxygen atom hydrogen bonds to a 

terminal water coordinated to Fe1 and a hydroxide ion bridging Fe1 and Fe2. The MMOHox 

active site contains a water molecule terminally bound to Fe1 that is not observed in H-B, 

either because it cannot be distinguished at 2.9-Å resolution or because it is not present in H-

B structure.
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In conclusion, the present structure reveals how the MMOB regulatory protein controls 

substrate access to the diiron center in the sMMO hydroxylase. Docking of the MMOB core 

in the MMOH canyon is accompanied by ordering of its long N-terminal tail on the α-

subunit of the hydroxylase, triggering allosteric changes that control proton, methane, and 

oxygen access to the active site. The timed entry of these substrates is important to assure 

events required for MMOR conversion of MMOHox to MMOHred and the generation of 

oxygenated intermediates that react with methane during the critical oxygen activation and 

substrate hydroxylation steps of the catalytic cycle. In this manner, MMOB can function to 

couple the consumption of electrons with efficient hydrocarbon hydroxylation. Finally, the 

present results can be used as a leading example of the use by nature of a large protein 

complex to delineate access pathways of some of its smallest substrates to the active site of a 

metalloenzyme to achieve a remarkable catalytic reaction.

Methods Summary

M. capsulatus (Bath) cultures were grown by fermentation and MMOH was purified as 

described previously9. Recombinant full-length and truncated MMOB proteins were 

expressed and purified from Escherichia coli as described29, 30. Crystallization, crystal 

structure determination, and enzyme activity studies with the MMOB N-terminal deletion 

mutants were performed as described in Methods. Data collection was performed at the 

Advanced Light Source beamline 8.2.2. at Lawrence Berkeley National Laboratory and the 

structure was determined by molecular replacement using the program “Phaser” with 

MMOHox (PDB Code: 1MTY) and MMOB (PDB Code: 1CKV) as search models.

Methods

sMMO fermentation and purification of MMOH

M. capsulatus (Bath) cultures were fermented and MMOH was purified via DEAE-

sepharose fast-flow, S-300 size exclusion, Q sepharose, and S-200 size exclusion 

chromatography9,29–32. The final eluent was concentrated to form a pale yellow solution.

MMOB and truncated version of MMOB expression and purification

The wild type and truncated versions of MMOB were prepared recombinantly in 

Escherichia coli. From a recombinant glycerol stock of native MMOB (pkk223-3-mmoB, 

JM105) or truncated versions of MMOB (pET22b(+)-mmoB, BL21(DE3)), cells were 

grown and expressed for 3 hr at 37 °C. The native and truncated regulatory proteins were 

purified using Q sepharose fast-flow and S-75 size exclusion chromatography to obtain a 

colorless solution18,19,29–31.

Enzyme activity measurement of MMOH in the presence of the full-length or N-terminal 
truncated regulatory subunit (MMOB)

MMOH (1.0 μM), MMOB (2.0 μM), and MMOR (0.5 μM) were incubated with propylene 

in 25.0 mM phosphate buffer at pH 7.0. Steady-state kinetic data were recorded by using an 

HP8452 diode array spectrophotometer19,31. The temperature was controlled at 45 °C with a 

circulating water bath. The reaction was initiated by addition of NADH (167.0 μM) in the 
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presence of propylene (approximately 1.0 mM). The consumption of NADH was monitored 

spectrophotometrically at 340 nm and quantified by using an extinction coefficient of 6,220 

M−1cm−1.

Crystallization, data collection, and structure determination

Purified MMOH (α2β2γ2) and MMOB, which was stored in 30 mM HEPES [pH7.5], 100 

mM NaCl, and 1 mM TCEP, were mixed with at a 1:2.2 molar ratio and the final 

concentration was adjusted to ~10 mg/ml. Crystals were grown for one month at 18 °C by 

the sitting drop vapor diffusion method in 0.1 M MES [pH 6.5] and 15% PEG 20,000 (w/v). 

Crystals were flash frozen in liquid nitrogen after transferring to a cryo-protectant solution 

containing the precipitant and 20% glycerol. The crystal in space group P212121, a=183.6, 

b=249.0, c=122.3, gave recordable diffracted to a minimum Bragg spacing of 2.9 Å at the 

Advanced Light Source (ALS) beamline 8.2.2. at Lawrence Berkeley National Laboratory. 

Data were processed using XDS33 and scaled with SCALA34. Molecular replacement 

computations with MMOHox (PDB code: 1MTY) and MMOB (PDB code: 1CKV) were 

performed using the program “Phaser”35. Model building and refinement were 

accomplished using Coot36 and PHENIX.refine37. We generated restraints for iron atoms 

and ligands using the program “PHENIX” (PHENIX.metal_coordination)37 and applied 

them during the refinement of the diiron center; no NCS restraints were applied in any stage 

of the refinement. The final refined model contains MMOH α-subunit (residues 15–526), β-

subunit (residues 2–389) and γ-subunit (residues 3–168), and MMOB (residues 2–133) with 

Rfactor and Rfree values of 20.6 and 25.8 respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. MMOB induces conformational changes that affect function
(a) Front (upper) and top (lower) views of a space-filling representation of the H-B complex. 

MMOB (magenta) binds to the canyon region formed by the α- (grey) and β- (blue) subunits 

of MMOH. The MMOH γ-subunit is depicted in green. (b) Structural alignment of the 

solution NMR structure of MMOB from M. capsulatus (Bath) (PDB Code: 1CKV) (cyan) 

with that of MMOB in the H-B complex (magenta). An α helix (Gly 17-Phe 25) forms in the 

MMOB N-terminus upon complexation with MMOH. (c) sMMO activity assay with wild 

type and truncated versions of MMOB. Propylene is converted to propylene oxide in the 

presence of NADH. Native MMOB is required for maximum sMMO activity. N-terminal 

truncated MMOB constructs tested, (Δ1–8), (Δ1–17), and (Δ1–33) show activity profiles 

similar to that observed in the absence of MMOB (n = 3, mean values ± deviation).

Lee et al. Page 9

Nature. Author manuscript; available in PMC 2013 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Conformational changes near the diiron center and pore residues in MMOH upon 
MMOB binding
In both (a) and (b), protein backbones are shown as ribbons in black (MMOHox), grey 

(MMOH from the H-B complex), and magenta (MMOB from the H-B complex). Iron atoms 

are depicted as black (MMOHox) or grey (H-B) van der Waals spheres. Interactions between 

key residues at the protein-protein interface are depicted as sticks; carbon atoms are colored 

to match to the protein backbone from which they stem, nitrogen atoms are shown in blue, 

and oxygen atoms in red; hydrogen bonds are represented as green dashes. Conformational 

changes in the MMOH pore residues upon MMOB binding are illustrated in MMOHox (c) 

and H-B (d). Iron-ligating helices B, C, E, and F and iron atoms are shown as black (c) and 

grey (d) ribbons and MMOB as magenta ribbons. Active site side chain ligands are shown as 

sticks in grey. Residues Thr 213 (green), Asn 214 (cyan), and Glu 240 (yellow) in MMOH, 

and Ser 111 in MMOB (magenta), are rendered as sticks. Nitrogen and oxygen atoms are 

shown in blue and red, respectively. The blue spheres in (c) are water molecules or 

hydronium ion. 2Fo-Fc electron density at 1.0 sigma from the H-B structure is drawn as a 

light blue mesh about key residues. The Glu 240 carboxylate side chain may function to 

deliver protons from solvent to the diiron site while closing the pore (see text).
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Figure 3. Pore closure and cavity opening upon MMOH-MMOB complex formation
Views of cavities 1 (green), 2 (cyan), and 3 (magenta), and the pore region (orange) are 

shown as translucent van der Waals surfaces in the hydroxylase interior. Protein residues 

that contribute to the interior surfaces are shown as sticks and colored to match the surfaces 

to which they primarily contribute. Active site iron atoms are depicted as grey spheres. 

MMOH from the MMOHox (PDB Code: 1MTY) is shown in (a), and the H-B complex is 

depicted in (b). The pore region in the hydroxylase interior becomes completely occluded by 

structural rearrangements that occur in the iron-ligating helices E and F, and in residues Asn 

214 and Glu 240 in particular, upon complex formation with the regulatory protein. Cavity-

gating residue Phe 188 also changes orientation as a consequence of the regulatory protein 

binding-induced rearrangements in helices E and F, and as a result cavities 1 and 2 (cyan/

green interface) merge. Hydrophobic cavities 2 and 3 in MMOH have sufficient space to 

accommodate the binding and translocation of these two gaseous substrates.
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Figure 4. Coordination geometry at the diiron active site of MMOH
(a) Electron density at the diiron site in H-B. Side chain ligands are shown as sticks in grey 

(carbon), blue (nitrogen), and red (oxygen). 2Fo-Fc electron density at 1.0 sigma and 5.0 

sigma is drawn as a mesh in light blue and magenta, respectively. Views comparing the 

diiron site in H-B (grey) with that in MMOHox (b, PDB code: 1MTY, black) and in 

MMOHred (c, PDB code: 1FYZ, yellow) are also presented in (b) and (c), respectively. 

Upon MMOB binding, Glu 243 undergoes a substantial conformational change, involving 

simultaneous chelation of Fe2 and bridging to Fe1. Such bidentate coordination of the Glu 

243 side chain resembles that in MMOHred, but distances between the carboxylate oxygen 

atoms and Fe2 (OE1-Fe2 and OE2-Fe2) are shorter in H-B (1.9 and 2.0 Å) than in 

MMOHred (2.4 and 2.4 Å). This result is more consistent with an Fe(III) than an Fe(II) 

oxidation state for the iron atoms in H-B. Solvent-derived ligands, such as hydroxide ion 

and water, are not observed in the H-B complex owing to the 2.9 Å resolution.
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