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WHY ARE NEURONS DIFFERENT? INTRODUCTION

The elusive diversity of neurons puzzled neuroscientists since discovering the first nerve cells in
the 1830s. Quantitative information about neuronal diversity began to flow from the middle of the
twentieth century. At that time, microelectrode and histochemical tools were applied to vertebrate
and invertebrate preparations. Simpler nervous systems of some gastropod mollusks, annelids, and
nematodes revealed identified neurons with defined transmitter specificity and functions. Early
systematic studies pointed out that most of the neurons composing their nervous systems might be
unique (Bullock andHorridge, 1965). That revelation provided tractable experimental preparations
to decipher cellular bases of behaviors (Kandel, 1976, 2001; Kuffler and Nicholls, 1976).

Today, with advances in single-cell (epi)genomics and transcriptomics, the astonishing diversity
of neuronal cell types exceeds any imagination (Moroz, 2018). The most straightforward question
is, how different are the neurons? But more fundamental questions are: Why are neurons different?
Why are there so many neurotransmitters? Why are neurotransmitters different? These questions
have been addressed by many (Kandel, 1979; Van Vallen, 1982; Bloom, 1984), aiming for
functional aspects.

In 1968–1974 these questions were asked from an evolutionary standpoint, and Dmitry
Sakharov had proposed the hypothesis of neuronal polygeny (=multiple origins of neurons)
(Sakharov, 1970a,b, 1972, 1974a,b). Using minimal comparative data available 50 years ago,
Sakharov suggested that neurons evolved from genetically different secretory cells. The
evolutionary view of neuronal evolution can be summarized as follows. Each of these populations
of secretory cells could use chemically distinct transmitter(s) and different (distant) receptors for
communications in early neural systems, where synapses are not required. Ancestral diversity
of secretory cell types (=secretory phenotypes) has been preserved over 500+ million years
of biological evolution, forming lineages of homologous neurons across phyla. Thus, neurons
are different because they have different genealogies. Subsequent functional “demands” and
specifications could further tune these different ancestral neurosecretory phenotypes. In other
words, the traditional one-root genealogy of neurons was transformed intomultiple genealogies or a
net of phyletic cell/neuronal lineages, as schematically presented in Figure 1.

The polygeny hypothesis stated that the transmitter-based primordial diversity of chemical
signaling networks and mechanisms is the cornerstone for any nervous system organization. It
was also suggested that neurons could evolve from heterogenous secretory cells in different tissues,
or embryonic layers. In other words, neurons could evolve more than once within early precursors
of ectoderm, endoderm, or mesoderm and/or other tissues. The presence of many transmitters
in extant nervous systems reflects the complex chemical organization or chemical wiring of early
neural systems. Extant neural systemsmight preserve at least some ancestral secretory lineages (and
gene regulatory networks/modules) over many millions of years.

The polygeny hypothesis also proposed the criteria and predicted neuronal homologs
across taxa or within evolutionary different cell type lineages using modern terms.
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Moroz Multiple Origins of Neurons

FIGURE 1 | Multiple origins of neurons and secretory cells. Schematic illustration of the ancestral cell lineages (different color trajectories) that led to the exant neural

systems in four basal metazoan clades with Placozoa as nerveless animals. Neural systems might consist of genetically diverged cell types with different ancestries,

gene regulatory networks, and signal molecules. This diagram integrates both the hypothesis of independent origins of neurons (as in ctenophores, Moroz et al., 2014)

and the sister-cell model (Arendt et al., 2016), which suggests that novel neuronal types arise in pairs, through sub-specialization of ancestral cell types. Thus, sister

neuronal subtypes can share gene-regulatory networks, perhaps, evolutionary conserved developmental pathways, and are expected to have more similar expression

profiles than each of them compared to other neuronal types. The key prediction of this model is that gene expression profiles from sister-cell types will form a

hierarchical tree structure in phylogenetic reconstructions. A complementary model predicts that neurons and novel neuronal subtypes arise through “co-options” or

“fusions” of regulatory modules and pathways “recruited” from genetically unrelated cell types. As a result, their expression profiles would be substantially different,

leading to net-type rather than tree-type cellular genealogies in phylogenetic reconstructions. We expect that both scenarios can coexist in any given nervous system.

But the tremendous diversity of neural systems across phyla suggests variable contributions of each historical scenario. Combining tools of (i) statistical geometry,

artificial intelligence and (ii) modern phylogenomics with (iii) massive parallel single-neuron transcriptome profiling would allow us to unbiasedly reconstruct the

genealogy of neurons by testing the treeness statistics as it was recently used for cancer and placental cells. The top illustrations are photos of Mnemiopsis,

Trichoplax, Podocoryne, Priapulus, and Aplysia. Some cell lineages (different colors) might become eliminated in the course of evolution (loss) or be expanded or

evolved in parallel from different secretory cell types.

Unique serotoninergic, catecholaminergic, and peptidergic
homologous neurons had been identified in mollusks (Sakharov,
1974b, 1976; Weiss and Kupfermann, 1976). Thus, even in the
1970–1990s, these findings provided clear illustrative examples
for the existence of conservative neuronal cell types separated
by million years of divergent evolution. Again, gastropod
mollusks were used as reference species (Sakharov, 1976; Weiss
and Kupfermann, 1976; Gillette and Davis, 1977; Moroz et al.,
1997; Sudlow et al., 1998). Remarkably, some homologous
neuronal cell types (such as a pair of serotonergic MCC
interneurons in Euthyneura) preserved their neurotransmitter
identities and functions for 380 million years (Moroz, 2018).
This hypothesis provided the versatile chemical foundation to
reconstruct neuronal evolution where evolutionary innovations
in neurosecretory and behavioral phenotypes multiply.

Below, we summarize three conceptual aspects of electrical vs.
chemical signaling paradigms to understand neuronal evolution.
(1) History of the idea to trace the origins of neurons

from secretory cells. (2) Postulates that substantiate different
evolutionary scenarios for neuronal evolution. (3) Prospectives of
multi-transmitter brain organization and transmitter-dependent
behaviors essential to understanding the grammar of neural
systems. The elusive chemical syntax of neural ensembles can
explain brain operations’ emerging properties, eventually leading
to basal cognition (Levin et al., 2021; Lyon et al., 2021).

BRIEF HISTORY OF THE IDEA

The diversity of low molecular weight and peptide transmitters
in all animals triggered several attempts to incorporate
transmitter signaling in neuronal evolution models. Several
recent publications provided different historical outlines and
perspectives of this endeavor (Moroz, 2009, 2014; Moroz and
Kohn, 2015, 2016; Arendt, 2021; Jekely, 2021; Moroz et al., 2021),
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which are not yet integrated into a comprehensive and unbiased
review of the subject.

Electrical Paradigm
The sensory-effector-contractility scheme of neuronal operation
was the dominant model in considering the neuronal evolution,
which can be traced to the Parker’s elementary neural system
(Parker, 1919; Pantin, 1956; Grundfest, 1959, 1965; Passano,
1963; Horridge, 1966, 1968). Mackie (1970) outlined the elegant
theory of the neuronal origin from myoepithelial-type cells
(like in extant cnidarians, Mackie, 1970). Within this theoretical
framework, Mackie and his colleagues further developed the
concept of parallel electrical signaling systems (often coupled to
contractility), supported by the widespread distribution of the
epithelial conductive pathways (Anderson, 1980; Satterlie and
Spencer, 1987; Mackie, 2004; Satterlie, 2015). Ancestral neuron-
muscle relationships have been emphasized in these models.

Chemical Paradigm
In 1954–1959 Clark, Haldane, and Grundfest were the first
students of neuronal evolution who proposed the origin of
neurons from secretory cells (Haldane, 1954; Clark, 1956a,b;
Pantin, 1956; Grundfest, 1959). These hypotheses provided
transmitter-centric prospects in deciphering neuronal evolution,
in contrast to earlier concepts, which were primarily based on
electrical, reflective paradigms (Kleinenberg, 1872; Claus, 1878;
Hertwig and Hertwig, 1878, 1879, 1880; Chun, 1880; Hertwig,
1880; Parker, 1919; Wyman, 1925; Pantin, 1956). At that time,
in the 1950–1960s, the distribution of signal molecules across
phyla was mostly unknown, but neurotransmitter functions of
acetylcholine, monoamines, and several neuropeptides have been
established (Valenstein, 2005).

Nevertheless, the dominant view was that neurons had a single
origin, and later in the evolution, the diversity of transmitters
increased following the classical single Tree of Life model. Lenz
specifically stressed this point in his influential work and the
book (Lentz, 1966, 1968). And the neuronal monophyly model
has not been challenged by other authors. For example: “The
conceptual model of the ancestral neuron, considered as the
phylogenetic derivative of an undifferentiated and pluripotential
epithelial cell, is that of a functionally versatile structure, equally
endowed for the dispatch of long-distance and localized chemical
signals. The neurosecretory neuron has remained closer to the
nerve cell precursor than has the conventional neuron with its
specialization for synaptic transmission.” (Scharrer, 1976).

In contrast, the independent origins of neurons frommultiple
types of secretory cells is a more realistic reconstruction of
neuronal evolution (Sakharov, 1974b; Moroz, 2009, 2014; Moroz
and Kohn, 2016). The postulates derived from this hypothesis are
summarized below. Electrical vs. chemical-centered hypotheses
of neuronal origins are complementary. But it was stressed that
transmitters made neural systems as integrative ensembles,
where the transmitter operated as a “versatile glue” recruiting
many proto-neurons and their effectors together to form
biologically relevant behaviors (Moroz et al., 2021).

POSTULATES OF THE POLYGENY
HYPOTHESIS

1) In early metazoans, neurons evolved from genetically

(genealogically) different secretory cells that used multiple

transmitters to communicate and integrate behaviors

without synapses. From this starting point, the evolutionary
innovations multiply. Nerveless Placozoa and Porifera
are two animal lineages that preserved such ancestral
intercellular communications and, likely, the integration
of behavior in a “pure” non-synaptic form (i.e., without
any recognized electrical or chemical synapses, Moroz
et al., 2021). In other words, both the diversity of

transmitters and their receptors predated the origins of

neural systems. The recruitments of classical transmitters
and (neuro)peptides in early developmental control
(Buznikov, 1990) might reflect this ancestral pre-neuronal
integrative functions of these intercellular signal molecules
(Koshtoyants et al., 1961; Buznikov et al., 1964, 1968,
1970, 2001, 2005, 2010; Buznikov and Shmukler, 1981;
Buznikov, 1991; Shmukier and Buznikov, 1998; Levin et al.,
2006).

2) In evolutionary terms, a neuron is a functional (not

genetic) category. The genetic category is referred to
the scenario that all neurons are derived from the same
ancestral cell lineage. Therefore, all neural systems
and neuronal cell types are homologous because
of their shared genetic ancestry. Alternatively, the
functional category signifies examples of convergent
evolution when similar chemical and physiological
constraints resulted in similar neuronal phenotypes.
This view does not prevent establishing evolutionary
lineages of homologous cell types within particular
taxonomical units such as classes, subclasses, orders,
families, and genera. The cell-lineage-specific homologies
across phyla are still a challenge (Tarashansky et al.,
2020).

3) What is a neuron? As their “ancestors,” all modern
neurons are polarized secretory cells specialized for

directional active conducting and release of more than

one transmitter: usually 2–5 peptides and a low-molecular
transmitter(s) (Weiss et al., 1992; Moroz et al., 2005, 2006;
Moroz and Kohn, 2010; Cropper et al., 2018; Merighi, 2018;
Nassel, 2018; Svensson et al., 2018). These features enable
neurons to convey signals, primarily chemical, beyond their
immediate neighbors and without affecting all intervening
cells en route. Evolutionary elaborated memory capabilities
of neurons are essential to generate stereotyped and
learned behaviors within the same cell ensembles (Kandel,
2001; Walters and Moroz, 2009; Walters and Williams,
2019).

4) An ancestral mode of intercellular communication

mediated by early neurons was a non-

synaptic transmission (= volume or paracrine
secretion; Moroz, 2009, 2014). The early
directional signaling was achieved due to
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the differential cell-specific expression of
receptors for secreted signaling molecules and
diffusion/microanatomical constraints.

5) As neurons, synapses evolved independently in animal

lineages and later in evolution (Moroz and Kohn,
2016). Early neural systems were without synapses but
with dozens and even hundreds of signal molecules
(=small transmitters and secretory peptides) and
multiplicity of their receptors (Moroz et al., 2021).
These classes of signal molecules formed the chemical
and dynamic connectome or a sort of multi-transmitter
“glue” uniting neurons to generate stereotyped and
learned behaviors.

6) Early neurons were primarily genetically different

because of their genealogy. The first level of evolutionary
constraints can be traced back to deep ancestry of complex
life cycles of eukaryotes and the nerveless ancestor of
all animals (=Urmetazoan). Alexey Zakhvatkin (1906–
1950) originally proposed this hypothesis (https://
www.si.edu/object/siris_sil_363532), which obtained
additional evidence (Mikhailov et al., 2009; Tikhonenkov
et al., 2020). The subsequent functional specification
within distinct cellular lineages results from parallel
evolutionary processes, perhaps similar to the cell-sister
type hypothesis (Arendt, 2008; Arendt et al., 2016), and
Figure 1.

Of note, even unicellular eukaryotes have many cell
types because of their complex life cycles. Cell types
in a given unicellular eukaryote are separated in time
of development, including the formation of colonial
organisms. In evolution of the lineage that led to animals’
multicellularity, the preexisting temporal separation of cell
types was switched to the spatial co-existence of similar
ancestral cell types (Mikhailov et al., 2009; Tikhonenkov
et al., 2020). The Urmetazoan could possess 10–50 distinct
cell types (Moroz, 2018; Sebe-Pedros et al., 2018; Musser
et al., 2019). Some of these early cell types could be
traced back to the complex life cycles of unicellular and
colonial eukaryotes.

7) Every neural system is chemically and genetically

chimeric. This prediction is the most straightforward
consequence of the neuronal polygeny hypothesis. Some
ancestral neural lineages were lost in evolution, but the
core genomic regulatory modules (transcription factors,
enhancers, etc.) were preserved in extant nervous systems
as decedents of early cell types. Most invertebrate ganglia,
neural “circuits” or neural ensembles are composed of
different cell lineages with distinct secretory phenotypes
and evolutionary histories. I predict the reconstruction
of hundreds of genealogies for metazoan secretory
cells and neurons in particular. Neurons might evolve
from ectodermal, entodermal, and mesodermal-type
derivatives. See illustrative examples from the sea
urchin (Wei et al., 2011), cnidarians (Nakanishi et al.,
2012), including recent scRNA-seq work (Arendt,
2019; Siebert et al., 2019), and ctenophores (Moroz
et al., 2014; Moroz, 2015a). Trans-differentiation with

transmitter phenotype switching both in development
and adult brains is possible (Spitzer, 2017; Bertuzzi
et al., 2018; Meng et al., 2018; Ferrarelli, 2020; Li
et al., 2020). But it might be a relatively rare event
stressing both modularity and substantial evolutionary
conservation of secretory specificity within the lineages of
homologous neurons.

8) By acting within synaptic clefts and beyond, the transmitters
are multi-level integrators of behaviors and behavioral

choice. Transmitters could be versatile integrative factors
that non-synaptically unite different effectors (ciliated,
secretory, contractile, immune cells, etc.) in early animals.
As a result, the tightly coupled integrative transmitter
systems (secretory phenotypes) are evolutionary conservative.
Thus, the transmitter specificity can be instrumental in
deciphering the homologous behaviors (=transmitter-
induced motor outputs and behaviors). For example,
serotonin acts as the integrator of behavioral [feeding]
arousal in annelids (Lent, 1974, 1984, 1985; Lent et al.,
1991) and mollusks (Kabotyanskii and Sakharov, 1991;
Moroz, 1991; Gillette et al., 2000) and many other
bilaterians (e.g., Sakharov, 1990). Serotonin has one of
the most evolutionary conservative systemic functions
across bilaterians. Dopamine and other catecholamines
also integrate behaviors in various evolutionary lineages
(e.g., Livingstone et al., 1980; Kravitz, 1988; Moroz,
1991), but the systemic functions of dopamine are less
evolutionary conserved than those for serotonin. These
functional differences might be related to the different
chemical reactivity and stability of two transmitter
molecules. Serotonin is an antioxidant capable of
terminating free radical oxidative reactions (therefore,
be more “resistant” to bioenergetic perturbations and
more evolutionary stable). In contrast, dopamine is easily
oxidized with several potentially toxic products (often
leading to neurodegeneration).

9) With more than 20 small and 100+ peptide transmitters

in nearly every nervous system, their chemical balances
provide unprecedented opportunities for evolutionary
innovations, behavioral controls, and behavioral choice—
all uniquely realized in different animal groups. Thus,
“transmitters made nervous system” (Moroz et al.,
2021). The foundation of brain languages is the
multi-transmitter organization of early neural systems.
Thus, both low molecular weight transmitters (amino
acids such as glutamate, aspartate, glycine, as well
as ATP, NO, protons) and short peptides were the
first transmitters or co-transmitters. Multi-transmitter
chemical wiring and integration were imperative both
in Precambrian metazoans and the present-day animals.
Some parasitic groups might have a reduced set of their
neurotransmitters because of secondary simplification
(e.g., orthonectids with about two dozen neurons in the
entire CNS; Slyusarev and Starunov, 2016; Slyusarev et al.,
2020).

10) The ancestral non-synaptic transmission has not

disappeared in the course of evolution, contributing
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to the neuronal integration in extant neural systems.
Paracrine, non-synaptic communication is also known as
the volume transmission (Agnati et al., 1995, 2006, 2010;
Zoli et al., 1998; Nieuwenhuys, 2000; Ridet and Privat,
2000; Sykova, 2004; Trueta and De-Miguel, 2012; Taber
and Hurley, 2014; Noble et al., 2018). Even non-synaptic
organization of central pattern generators is theoretically
possible; it can be illustrated by mathematical modeling of
chemical gradients and generation of rhythmic behaviors
without synapses. Changeable chemical gradients and
oscillations of extra-synaptic neurotransmitters have also
been experimentally detected in vivo using physically
isolated neurons as a biosensors (Chistopol’skii and
Sakharov, 2008; Chistopolsky et al., 2008; Dyakonova et al.,
2015).

Ctenophores or comb jellies seem to present the most extreme
case of multiple origins of neurons and synapses (Moroz et al.,
2014; Moroz and Kohn, 2016), with the remarkably different
multi-transmitter set. In this early-branching animal lineage
(Whelan et al., 2017), there are two morphologically functional,
molecularly and, perhaps, genetically different neural systems: (i)
skin nerve net and (ii) even more diffused cells in the mesoglea.
The mesogleal neuroid elements share their phenotypes with
muscle cells (Norekian andMoroz, 2019a,b, 2020). This situation
might be a relict; does it reflect the origins of some populations of
neurons and muscles from the same evolutionary predecessors?
A similar situation might be in cnidarians as outlined in the
hypothesis of G. Mackie (1970). However, in this scenario,
the evolutionary predecessors of neurons and muscles were
myoepithelial cells. The emerging single-cell sequencing data
in Hydra (Siebert et al., 2019) showed that selected muscle
and neuronal cells in cnidaria might share some transcriptional
factors summarized in the recent review (Arendt, 2021). Of note,
striated muscle cells also evolved at least two-three times in
evolution (Steinmetz et al., 2012).

QUESTIONS AND PROSPECTIVE FOR
EXPRERIMENTAL VALIDATION

The polygenesis hypothesis, and many of its predictions related
to reconstructions of cellular genetic relationships, can be
tested using single-cell “omics” approaches. The initial data
from different phyla and observed unprecedented diversity of
molecular phenotypes (Sebe-Pedros et al., 2018; Cocanougher
et al., 2019; Musser et al., 2019; Siebert et al., 2019) seems
to favor the hypothesis of multiple origins of neurons and
the existence of numerous cell-type-specific phyletic lineages.
However, the challenge is integrating vast comparative data (with
expected hundreds of cell-type-specific lineages across thousands
of species) with real-time physiology of individual cells and
their ensembles in each representative species. It might take
decades, but a new evolutionary theory for neural diversity and
functions needs interdisciplinary studies. I envision a Periodic
System of Cell Types—the natural genealogical classification of
cell phenotypes and states integrated with evolutionary cell trees
of Life and predictive power. It can be a conceptual analog to

the Periodic System of Chemical Elements; that is, the position
of an element in the Periodic System predicts its properties
(e.g., inert gases or metals). Similarly, the ideal classification of
cell types can predict their functional features and constraints
(Moroz, 2018). The fundamental questions to be addressed can
be broadly divided into two overlapping long-term objectives: (i)
deciphering neural evolution vs. (ii) decoding chemical networks
for intercellular communications, including methodology to
reveal numerous chemoconnectomes unbiasedly.

Deciphering Neuronal Evolution
Single-cell comparative data and novel informatics theory
are needed for multiple cross phyla genealogies. But, no
criteria for cell-specific homologies across phyla have been
established and experimentally validated. Some approaches are
suggested (Tarashansky et al., 2020), but true homology can
only be found with multiple cross-validated criteria, including
identifying potential continuity of homologs tracing intermedial
species. Here, the lack of required comparative data from
“minor” phyla and classes is a significant bottleneck. There
are ∼35 metazoan phyla and 100+ classes with dozens of
eukaryotic lineages related to metazoans. The most critical basal
metazoan groups to be investigated are Placozoa, Porifera, and
Ctenophores. For representatives of these groups and other
reference species (Striedter et al., 2014), the following questions
need to be addressed.

Are there yet unknown transmitters? Prediction: it can be
dozens of novel small (neuro)transmitters and many thousands
of novel neuropeptides. The secretory organelles are highly
conserved across eukaryotes. The recent comparative study
on the choanoflagellates (the sister group to Metazoa) clearly
illustrated a polarized localization of putative but quite diverse
secretory vesicles in two model species Salpingoeca rosetta and
Monosiga brevicollis (Gohde et al., 2021). However, it is unclear
how many signal molecules can be co-released? What are the
functions of such paracrine secretion in choanoflagellates?

What is the contribution of synaptic vs. non-synaptic release
across different animal lineages? For most transmitters, we
anticipate a broad spectrum of variations. A synapse can be at
one part of the spectrum, with the highly localized transmission
within the synaptic cleft constraints, to “true” hormonal distance
signaling. Volume transmission is not only restricted by diffusion
rates of signal molecules. Tissue micromechanics, cilia-induced
vortexes, and dynamic extracellular space can also clearly
increase passive diffusion rates in unicellular and colonial
organisms and multicellular, primarily nerveless, animals such as
sponges and placozoans.

How many types of synapses, and what is their
natural/evolutionary classification? Synapses in ctenophores
and cnidaria are poorly analyzed. Nothing is known about
volume transmitters in these organisms as in the majority of
bilaterians. Volume transmission in nerveless animals such as
placozoans and sponges has not been quantitatively measured.

Do transmitters evolve? Are there any constraints and
trends in the evolutionary selection of (neuro)transmitters and
synapses? Both functional (e.g., chemical stability vs. reactivity
[antioxidant/prooxidant properties], synthesis, inactivation, etc.)
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and evolutionary constraints (pre-adaptations, ecology, and
lifestyles) have to be considered. The chemical/secretory
organization and relationships among the digestive, immune and
neural cell types are unknown for basal metazoans.

Deciphering Chemoconnectomes and
Chemical Syntaxis of Neural Systems
A chemoconnectome is defined as an entire set of
neurotransmitters, neuromodulators, neuropeptides, and
receptors supporting chemical transmission in an animal (as
illustrated for Drosophila by Deng et al., 2019). However,
visualization of dynamic chemoconnectomes (which can change
in time: from milliseconds to hours and days), is a much
greater challenge than reconstructing traditional connectomes,
static descriptions of synaptic wiring. This challenge demands
conceptually new and innovative methods and theories to
simultaneously image dozens of specific molecules over
broad ranges of transmitter concentrations (nanomoles
to micromoles) in real-time. Unfortunately, most current
bioanalytical approaches measure one or a few neurotransmitters
at a time, and only for narrow concentration ranges. The
4D dynamic (3D space+time) of complex (extracellular)
milieus inferiors with hundreds of signal molecules (spread
from nanoliter to milliliter volumes) is the Frontier in cell,
developmental, and evolutionary biology as well as biomedicine.

Multiplexed nanotools (Farsi et al., 2016; Jing et al., 2018;
Wu et al., 2018; Dinarvand et al., 2019; Zeng et al., 2020)
are instrumental in visualizing cell-specific secretion of co-
transmitters and the actual balance of neurotransmitters as
stereotyped and learned behaviors are generated.

The combinatorial power of chemical interactions is
enormous, but constraints of neurotransmitters signaling also
exist, observed in well-defined phenomena of transmitter-
dependent behaviors (Dyakonova and Sakharov, 2019).
Methodological and theoretical efforts would decipher still
elusive “neuronal syntax” (Buzsaki, 2010) of the electrochemical
brain grammar (as “words,” “sentences,” or other hierarchically
organized “quanta” of bio-information), which, I think, is the
primary chemical, and transmitter-based, in its nature.

I would conclude that the current biodiversity of species with
the astonishing diversity of secretory and signaling mechanisms,
neurons and synapses, neural and alternative integrative systems
are true Gifts of Nature to neuroscientists and humankind.
We are only getting the first surprises from these gifts. We
are only starting to taste novel fundamental insights and
paradigm shifts in this endeavor. It might be controversial,
but the shortcut to better understanding our brains and
neurological disorders and regenerative medicine of the future
is studying small creatures in the world ocean. Admittedly,
not all marine creatures can be brought to the lab and
cultured. But we now have the capacity to bring labs to the
sea (Moroz, 2015b) and expand frontiers of the living world
and ourselves.
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