
REVIEW
published: 15 October 2019

doi: 10.3389/fimmu.2019.02061

Frontiers in Immunology | www.frontiersin.org 1 October 2019 | Volume 10 | Article 2061

Edited by:

Mark S. Cragg,

University of Southampton,

United Kingdom

Reviewed by:

Hirofumi Amano,

Juntendo University, Japan

Björn L. Frendéus,

BioInvent, Sweden

*Correspondence:

J. Sjef Verbeek

j.s.verbeek@toin.ac.jp

Specialty section:

This article was submitted to

Molecular Innate Immunity,

a section of the journal

Frontiers in Immunology

Received: 06 January 2019

Accepted: 15 August 2019

Published: 15 October 2019

Citation:

Verbeek JS, Hirose S and Nishimura H

(2019) The Complex Association of

FcγRIIb With

Autoimmune Susceptibility.

Front. Immunol. 10:2061.

doi: 10.3389/fimmu.2019.02061

The Complex Association of FcγRIIb
With Autoimmune Susceptibility
J. Sjef Verbeek*, Sachiko Hirose and Hiroyuki Nishimura

Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan

FcγRIIb is the only inhibitory Fc receptor and controls many aspects of immune and

inflammatory responses. The observation 19 years ago that FcγRIIb−/− mice generated

by gene targeting in 129 derived ES cells developed severe lupus like disease when

backcrossed more than 7 generations into C57BL/6 background initiated extensive

research on the functional understanding of this strong autoimmune phenotype. The

genomic region in the distal part of Chr1 both in human and mice in which the FcγR gene

cluster is located shows a high level of complexity in relation to the susceptibility to SLE.

Specific haplotypes of closely linked genes including the FcγRIIb and Slamf genes are

associated with increased susceptibility to SLE both in mice and human. Using forward

and reverse genetic approaches including in human GWAS and in mice congenic strains,

KO mice (germline and cell type specific, on different genetic background), knockin mice,

overexpressing transgenic mice combined with immunological models such as adoptive

transfer of B cells from Ig transgenic mice the involved genes and the causal mutations

and their associated functional alterations were analyzed. In this review the results of

this 19 years extensive research are discussed with a focus on (genetically modified)

mouse models.

Keywords: SLE, systemic lupus erythematosus, autoimmue disease,mousemodel, Fcgamma receptor IIB, reverse

genetics

INTRODUCTION

Antibodies (Ab) form immune complexes (IC) with their cognate antigen (Ag). IgG-ICs are potent
activators of the immune system via cross-linking of receptors for the Fc part of IgG, FcγR, mainly
expressed on the surface of cells of the innate immune system.

FcγRs belong to the Ig supergene family of leukocyte FcR and are transmembrane glycoproteins
containing a ligand-binding α subunit with two or three extracellular Ig-like domains, a
transmembrane and a cytoplasmic domain. In mice, the high-affinity FcγRI, binding monomeric
IgG, and the low-affinity receptors for complexed IgG, FcγRIII, and FcγRIV are activating
receptors. The α subunits of the activating receptors form a multi-subunit complex with a dimer
of the common γ-chain (FcRγ) (1, 2) with an immunoreceptor tyrosine-based activation motif
(ITAM). Cross-linking activating FcRs by IC initiates signal transduction via recruitment and
subsequent activation of intracellular tyrosine kinases (3), switching on a large variety of effector
mechanisms activating inflammatory cascades.

In humans, there are four activating FCGRs. The high-affinity FCGR1 (CD64) and the
low-affinity FCGR3A (CD16A) are associated with the common γ chain whereas the low-affinity
FCGR2A (CD32A), containing an ITAM in its cytoplasmic domain, and the low-affinity FCGR3B
(CD16B), with a glycosylphosphatidylinositol (GPI) anchor, are single-chain receptors. All human
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FCGR genes are clustered at the distal end of Chr1, a region
associated with susceptibility to autoimmune diseases such as
Systemic Lupus Erythematosus (SLE) (4). In mice the FcγRII,
-III, and -IV genes are clustered at the distal end of Chr1, a region
orthologous with SLE associated genomic intervals on human
Chr1 and associated also with susceptibility to autoimmune
disease (Lupus-like disease). FcγRI is located on Chr3 due
to a translocation during evolution after mouse and human
had diverged.

In both humans and mice, the activating FcγRs are
counterbalanced by one inhibitory single-chain low-affinity
receptor FcγRIIb (FCGR2B or CD32B) with an inhibitory motif
named immunoreceptor tyrosine-based inhibition motif (ITIM)
within its cytoplasmic domain. In addition, co-engagement of
FcγRIIb and the ITAM containing B-cell receptor (BCR) on B
cells forms an important negative feedbackmechanism to control
antibody production. This regulatory mechanism of cellular
activation by the ITAM-ITIM motif pair, observed originally
with FcγR, has been described for many other receptors in
the immune system e.g., T cell receptors and B cell receptors
(5, 6). This review focuses on the important but still puzzling
immune regulatory role of the inhibitory FcγRIIb and the
complex association of its impaired function with autoimmunity
as studied extensively in mice.

GENERAL CHARACTERISTICS OF FcγRIIb

Isoforms
In humans andmice, there are twomembrane-bound isoforms of
FcγRIIb identified: FcγRIIb1 and b2 (7) resulting from alternative
splicing. The cytoplasmic domain is encoded by three exons
whose 5′ exon encodes a 47 amino acidmotif that prevents coated
pit localization, which inhibits FcγRIIb mediated endocytosis of
soluble immune complexes. This exon is present in the mRNA
that encodes the b1 isoform, the only isoform expressed on B
cells, but absent in the mRNA that encodes the b2 isoform (8, 9)
expressed on most innate immune cells. The ITIM dependent
inhibition of cell activation is the same for both isoforms.
Therefore, the name FcγRIIb is used in this review without
making a distinction between the b1 and the b2 isoform.

Expression
In mice FcγRIIb is expressed on all innate immune cells and
is the only FcγR expressed on B cells, including pre-, pro-,
and mature B cells, memory B cells, plasma cells (10, 11)
and B1 cells (12). Unlike many other B cell surface receptors,
expression of FcgRIIb is not downregulated during plasma cell
differentiation (10). FcγRIIb expression is modulated on different
B cell subsets (11) and increases when the B cells become
activated (11, 13). T cells do not intrinsically express FcγRs (14).
However, it has been reported that expression of FcγRIIb but
not any other FcγR, is upregulated in memory CD8+ T cells
after Listeria monocytogenes infection and tempers the function
of these cells in vivo (15). Guilliams et al. showed that according
to the microarray expression values extracted from public data
sets the mRNA expression of FcγRIIb in mice is from high
to low as follows: Inflammatory macrophages (Mϕ), Ly6Chi

classical monocyte, inflammatory monocyte-derived dendritic
cell (moDC), lung CD11b+ conventional or classical DC (cDC),
Ly6Clo patrolling monocyte, alveolar Mϕ, follicular B cell,
GC B cell, skin-draining lymph node CD11b+ cDC, spleen
CD8+XCR1+ cDC, spleen plasmacytoid DC (pDC), spleen
CD11b+ cDC, neutrophils, spleen Mϕ, and NK cells (16). The
overall FcγRIIb expression pattern is similar in mouse and
human. In mouse cDCs the relatively low expression of FcγRIIb
is higher than that of any activating FcγR.

FcγRIIb expression, relative to that of activating FcγRs, is
tightly regulated. In mice, C5a rapidly down-regulates FcγRIIb
on alveolar Mϕ and upregulates FcγRIII on these cells (17, 18).
IL-4 downregulates FcγRIIb expression on mouse activated B
cells (13, 19). IFNγ increases FcγRIIb expression on B cells
(19) and increases the expression of activating FcγR on myeloid
effector cells in mice. In humans the Th2 cytokines IL-4,
IL-10, and TGF-β increase FCGR2B expression and decrease
activating FCGR expression on myeloid cells (20–22) whereas
IFNγ decreases FCGR2B expression on these cells and increases
activating FCGR expression (23).

FcγRIIb is also expressed on non-hematopoietic cells. Its
expression is induced on FDC upon antigen stimulation (24).
It has been calculated that almost 70% of total mouse body
FcγRIIb is expressed on liver sinusoidal endothelial cells (LSEC)
(25, 26). On mouse glomerular mesangial cells, TNFα/IL-1β
upregulates FcγRIIb expression whereas IFNγ downregulates
FcγRIIb expression and upregulates the activating FcγR (27).

Cellular Function
Co-aggregation of the inhibiting ITIM containing FcγRIIb with
activating ITAM containing FcRs results in the recruitment of the
inositol polyphosphate-5-phosphatase SHIP1 that counteracts
the signals mediated by activating FcRs (3, 28). Therefore,
FcγRIIb has a strong regulatory role in all the processes in
which activating FcγR are involved. The ratio between activating
and inhibiting signals determines the outcome of the cellular
response to IgG-ICs. This ratio depends mainly on the following
factors: (a) the relative affinities of the different antibody isotypes
involved for the different FcγR, (b) the level of opsonization,
and (c) the relative expression level of inhibitory and activating
FcγR, which is partially determined by the cytokine milieu. The
binding of FcγRIIb for IgG-IC is strongest for IgG1 and weakest
for IgG2a. So, FcγRIIb expression has the highest impact on
IgG1-IC. In addition, FcγRIIb can inhibit complement-mediated
inflammation when co-engaged with Dectin-1 by galactosylated
IgG1-ICs (29) indicating that its immune-modulatory function
in the efferent response is not restricted to the regulation of
activating FcγRs.

In B cells co-crosslinking of the BCR and FcγRIIb results
in the inhibition of activation, proliferation, Ag internalization
and Ab secretion (30–32). Moreover, in vitro studies have shown
that FcγRIIb on B cells can induce apoptosis upon clustering
(10, 12, 28, 33, 34).

FcγRIIb can also function as an endocytic receptor of small
ICs. The endocytic properties of FcγRIIb depend on the presence
of a di-leucine motif in the intracellular domain (8) and are
independent of the ITIM.
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Role in Different Tissues and Cell Types
Myeloid Effector Cells
In the efferent phase, FcγRIIb sets a threshold for the activation
by IgG-IC of myeloid effector cells, e.g., monocytes, Mϕs, and
neutrophils. Crosslinking of activating FcγR by IgG-ICs induces
effector mechanisms of these cells e.g., soluble IC clearance,
antibody-dependent cell-mediated cytotoxicity (ADCC),
antibody-dependent cellular phagocytosis (ADCP), the release of
inflammatory mediators, degranulation, superoxide production,
enhancement of Ag presentation, and cell maturation and
proliferation. This includes also the regulation of high-affinity
IgE receptor-mediated mast cell activation (35).

Lupus-prone (NZBxNZW)F1 mice deficient for the FcR
γ chain, lacking functional activating FcγR, do not develop
IC-mediated severe glomerulonephritis (GN), despite high
autoantibody titers (36). This suggests that FcγR play a dominant
role in the efferent phase of Ab-driven diseases including lupus-
like disease and therefore FcγRIIb might have a strong protective
role in such a disease. In addition, FcγRIIb might also inhibit
an ongoing auto-Ab response by suppressing the activating
FcγR dependent, IgG-IC-triggered release of inflammatory
mediators and other immune regulatory molecules by myeloid
effector cells.

Dendritic Cells
DCs are central regulators of immunity determining whether
tolerance is induced, or an effective adaptive immune response
is generated, bridging innate and adaptive immunity (37–39).
DCs have the unique capacity to take up exogenous Ag via a
variety of mechanisms and surface molecules, including FcγR,
and subsequently process and present the Ag-derived peptides in
their MHC molecules to prime naïve T cells. Three main subsets
of DCs can be recognized, cDC, moDC and pDC. Their ontogeny
and functions have been reviewed extensively (40, 41).

A series of observations suggest that FcγR on cDCs and
moDCs can play a role in priming and regulation of adaptive
immunity (16). Ag-specific IgG enhances Ab responses to
soluble protein Ag via activating FcγRs, probably by increasing
Ag presentation by dendritic cells to Th cells (42). Many
laboratories have shown that soluble IgG-ICs strongly enhance
cross-presentation by using either in vitro assays (43–45), or in
vivo assays with in vitro loaded DCs from WT and FcγR KO
mice (46–50). Signaling through the activating FcγRs results in
lysosomal targeting of the Ag and importantly activation and
maturation of the DCs (44), required for their migration to the
lymph node and their presentation of Ag-derived peptides in
MHC class I to CD8+ T cells (49, 51). In mouse bone marrow-
derivedDCs (BMDCs), activating FcγRsmodulate the expression
of many genes, associated with T cell response induction,
upon crosslinking by IgG-ICs. This is strongly regulated by
FcγRIIb, setting a threshold for DC activation and maturation
(52). FcγRIIb−/− mice showed an increased upregulation of
costimulatory molecules, resulting in an enhanced capacity to
generate antigen-specific T cell responses upon injection of IgG-
ICs (52–54). However, in vivo, in mice, the role of FcγR in the
presentation of soluble IgG-IC derived Ag is redundant (55, 56).

In mice, cDCs consist of two main subsets, type 1 cDC or
cDC1 and Type 2 cDC or cDC2 (41). In vivo IgG-IC improve
strongly cross-presentation of the cDC2 but not the cDC1 DCs.
Only cDC2 mediated cross-presentation is FcγR dependent (57).
Moreover, FcγRs are dispensable for the in vivo uptake of IgG-
IC by cDC1 and cDC2 (56, 57). The in vivo cross-presentation of
IgG-IC derived Ag by cDC1 is completely and by cDC2 partially
dependent on C1q (56).

Because it has been shown that treatment with FCGR2B
blocking antibodies results in spontaneous maturation of human
DCs (58) it has been hypothesized that FCGR2B does not
only regulate DC activation but also actively prevents unwanted
spontaneous DC maturation by small amounts of circulating
IC present in serum under non-inflammatory steady-state
conditions (2).

IgG-ICs endocytosed by activating FcγR on DCs ends up in
a degradative Lamp-1 positive compartment where it is slowly
degraded into peptides (59). In contrast, antigen, endocytosed
in the periphery via FcγRIIb on DCs, enters preferentially
in a non-degradative Lamp-1 negative intracellular vesicular
compartment, that recycles to the cell surface to transfer the
native antigen via interaction with the BCR to B cells in
the lymphoid organs. This indicates that DCs, migrating into
extrafollicular areas (60) and the splenic marginal zones (MZ)
(61), are not only important for the production of B cell activating
components but also for the delivery of Ag to the BCR (62).

The question is whether in an autoimmune disease self-
antigen containing IgG-IC can trigger DCs to promote
autoreactive immune responses by presenting autoantigens
or to release B and T cell activating cytokines and other
stimulating factors breaking tolerance and whether FcγRIIb
on DCs negatively regulates these processes. That is any
way at a stage of the disease that some autoantibodies are
already produced.

pDCs produce type I IFN in response to viral nucleic acids
sensed through TLR7 and TLR9 (63, 64). Their main function
is to control tolerance in the steady state (65, 66). Mouse pDCs
express exclusively FcγRIIb (67). Conflicting results have been
published regarding FcγRIIb facilitated T cell priming by mouse
pDCs (56, 67, 68). In vitro uptake of IgG-ICs by mouse pDC
is FcγRIIb dependent but does not promote Ag presentation
to T cells (67), similarly to what has been shown with FcγRIIb
mediated IC uptake in cDCs (62). In contrast, it has been
reported that subcutaneous (s.c.) injection of in vitro IgG1-
IC loaded pDCs induces strong Ag-specific CD4+ and CD8+

T cell responses although with lower efficiency than cDCs.
The IgG1-IC-loaded pDC mainly promoted a Th2/tolerogenic
environment in vivo (68). Human pDCs express besides low
levels of FCGR2B, the activating FCGR2A and FCGR3B (16) and
show FCGR2A dependent IgG enhanced Ag presentation to T
cells (69). SLE patients have circulating ICs, containing small
nuclear RNA and anti-small nuclear RNA IgG. pDCs can acquire
such IC via FCGR mediated uptake resulting in stimulation of
TLR7 and 8 and production of IFNα (70), a cytokine that is
believed to play a central role in SLE pathogenesis (71). However,
this requires FCGR2A and not FCGR2B (72). Therefore, it is
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unlikely that such a pathogenic process plays a role in lupus-like
disease in mice.

B Cells and FDC
Primary B cells, developed and selected in the bone marrow, are
recruited into GCs within the spleen and lymph nodes to undergo
affinity maturation by Somatic Hypermutation (SHM). Three
main mechanisms maintain self-tolerance in the primary B cell
repertoire: central clonal deletion, receptor editing, clonal anergy
induction (73). The first two effectively remove autoreactive B
cells from the system. Clonal anergy occurs when self-reactive
B cells interact with a self-Ag with relatively low avidity. The
result is that BCR signaling is desensitized because of chronic
exposure to self-antigens (74, 75) and differentiation into plasma
cells is suppressed (76) resulting in the maintenance of anergic
B cells with the potential to produce auto-Abs which can be
recruited into GC (77). Anergic B cells can get T help if their
BCR cross-reacts with foreign Ag but because of impaired
BCR signaling FAS-mediated apoptosis is induced. However,
extensive cross-linking by a foreign antigen can overcome the
attenuated BCR signaling in anergic B cells inhibiting apoptosis
(74). Autoreactive primary B cells can escape negative selection
because of “clonal ignorance” when self-reactive B cells cannot
encounter their self-Ag because it is hidden inside the cell.
Development, responsiveness, and lifespan of ignorant cells
is normal (76, 78, 79). The lack of T cell help after Ag
contact induces apoptosis in ignorant self-reactive B cells in the
periphery. However, it is striking that many auto-Abs are directed
against intracellular Ags such as DNA. Therefore, it has been
suggested that ignorant self-reactive B cells might be important
for the development of SLE (77). So, the GC has to deal with three
types of potential autoreactive B cells: anergic and ignorant, both
recruited, and newly generated by somatic hypermutation in the
GC reaction. Several mechanisms are in place in the GC to avoid
the development of auto-Ab producing plasma cells. A very high
concentration of self-Ag in the GC either overrules the binding
of the BCR to foreign Ag presented by the FDC and apoptosis
is induced, because of the lack of additional signals provided
by the FDC (80), or/and blocks presentation of foreign Ag to
follicular helper T cells (TFH), whose survival signals are required.
Alternatively, self-reactive B cells can be maintained temporarily
until their self-reactivity is abrogated by somatic hypermutation
(SHM) (81). Ignorant self-reactive primary B cells, activated by
cross-reactive foreign Ag, can enter the GC to get TFH help (82)
and subsequently, receptor editing by SHM can destroy self-
recognition and improve specificity for foreign antigen. However,
this appears not sufficient to prevent that autoreactive B cells
escape negative selection in the GC and enter the AFC (antibody-
forming cell) pathway. More downstream tolerance checkpoints
are required.

In the GC Ag is presented to B cells on the cell surface
of FDC, mainly in the form of CR1/2 bound C3d-coated ICs.
FcγRIIb is expressed on both the GC B cell and the FDC.
Although FcγRIIb is upregulated on FDC in GC compared to
non-GC FDC, its expression is relatively low compared to CR2
expression. Therefore, it is unlikely that FcγRIIb plays a role in
the capture and presentation of Ag early on in the GC response

(83). It is unclear how a GC B cell becomes activated, because
binding of its BCR to the Ag, within the FDC bound ICs, will
also crosslink FcγRIIb on that B cell. It has been suggested that
FcγRIIb expression on FDC competes with FcγRIIb expression
on GC B cells by binding most of the Fc domains in the ICs
(84). The outcome of co-engagement of BCR and FcγRIIb by
ICs bound to FDC in GC might be dependent on the balance
between concurrent activating and inhibiting signals, leading
to stimulatory, inhibitory, or apoptotic responses (33, 85, 86).
FcγRIIb might set a threshold for B-cell activation, that enables
the selection of B cells with a BCR with sufficiently high affinity,
to become activated. B cells with BCRs that have lost their affinity
for the presented Ag during the process of affinity maturation
by SHM will get only signals via crosslinking of FcγRIIb, which
could result in induction of apoptosis as has been demonstrated
in vitro (28, 33, 87, 88). In conclusion, the inhibitory FcγRIIb
would be an important checkpoint for the deletion of potentially
autoreactive B cells in the GC.

An additional apoptosis inducing mechanism in the bone
marrow might also contribute to the control of autoreactive B
cells (10). Long-lived plasma cells persist in the bone marrow.
To provide room to newly generated plasma cells that migrate to
the bone marrow after a new infection has occurred, a restricted
number of plasma cells in the bone marrow has to be eliminated.
Based on observations in vitro and in vivo in mice it has been
hypothesized that plasma cells (which intrinsically lack BCR
expression) are killed by apoptosis, induced by cross-linking of
FcγRIIb highly expressed on these cells (10).

Non-immune Cells
On LSEC FcγRIIb might function as an endocytic scavenger
receptor removing small IgG-IC from circulation to prevent
systemic IC triggered inflammation (25). FcγRIIb on renal
mesangial cells might protect against IgG-IC induced
inflammation in the kidney (89). Both mechanisms might
protect against the pathogenesis of IC-driven autoimmune
diseases such as glomerulonephritis in SLE in the efferent
phase. Because of the lack of an endothelial cell-specific Cre
expressing strain that is not transcriptionally active during
early hematopoiesis, required to generate endothelium-specific
FcγRIIb deficient mice, the specific role of FcγRIIb on LSEC
should be studied by applying transplantation of bone marrow
fromWTmice into lethally irradiated FcγRIIb KOmice.

FORWARD GENETICS: ASSOCIATION OF
AUTOIMMUNITY AND FcγRIIb
POLYMORPHISM

In Mice
The association between autoimmunity and FcγRIIb
polymorphism is extensively studied in NZW and NZB inbred
stains. NZB mice show limited autoimmunity (90) while NZW
mice are not autoimmune although their B cells have intrinsic
defects sufficient to break tolerance to nuclear antigens (91, 92).
However, the (NZBxNZW)F1 offspring of an accidental cross
between NZW and NZB mice (93) showed a severe lupus-like
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FIGURE 1 | Physical map of the sub-telomeric region of mouse chromosome 1. The upper horizontal line represents a 40Mb genomic region including the 129

derived FcγRIIb flanking region present in the original FγRIIB
−/−

129 mouse, backcrossed more than 7 generations into C57BL/6 background. This FcγRIIb flanking

region spans at a minimum the distance between the microsatellite markers D1Mit34 and D1Mit150 [horizontal black bar; (98)]. The lower horizontal line represents a

magnification of the 3.8Mb subregion located between microsatellite markers D1Mit36 and D1Mit206 showing a detailed map of the FcγR and Slam family gene

clusters within this region. In addition, below the line, the location of all other coding genes in this region is shown according to the NCBI database. At the bottom, the

congenic fragments present in the different FcγRIIb−/− and Slamf129 C57BL/6 congenic strains, described in the text, are depicted as horizontal bars.

phenotype characterized by a gender-bias, expansion of activated
B and CD4+ T cells, splenomegaly, elevated serum ANA and IC-
mediated GN causing renal failure and premature death at 10–12
months of age (94). By backcrossing (NZBxNZW)F1xNZW
followed by brother-sister mating the NZM2410 recombinant
inbred strain with a homozygous genome was generated (95–97).
In this mouse four SLE susceptibility loci, Sle1-4, have been
identified on different chromosomes. Sle1 is located on the
telomeric region of Chr1 syntenic to human 1q23 that has shown
strong linkage to SLE susceptibility in all human studies. The
FcγR gene cluster maps in this region (Figure 1) and is from
NZW origin in NZM2410 mice. From the NZM2410 strain,
C57BL/6 strains have been developed congenic for a single
SLE susceptibility locus. The presence of Sle1 appeared to be
sufficient to break tolerance in C57BL/6 mice and to drive the
production of high titers of anti-chromatin ANAs with a selective
Ab reactivity to H2A/H2B/DNA sub-nucleosomes (99, 100).

Importantly, this step appears to be necessary for the induction
of disease (100) making Sle1 a key locus in the initiation of SLE.
Transplantation of hematopoietic stem cells from C57BL/6 Sle1
congenic mice into C57BL/6 recipient mice showed that Sle1
causes independent B and T cell-intrinsic effects on the B cell
response (101, 102).

Three FcγRIIb haplotypes [numbered I-III according to Jiang
et al. (103), Table 1] have been recognized in inbred strains of
mice and wild mice with variation in the promoter region and
intron 3 (Table 1). Haplotype I with 2 deletions in the promoter
region and one in intron 3 is found in autoimmune-prone strains
and most wild mice and is associated with decreased expression
of FcγRIIb on Mϕ, activated B cells and GC B cells (11, 103–
105). By using C7BL/6 congenic strains with the NZW (106) and
NZB (107) allelic variants of FcγRIIb the effect of the deletions
in haplotype I and II on B cell expression was studied. When
immunized with KLH, FcγRIIb expression on splenic non-GC B
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TABLE 1 | Allelic variants of mouse FcγRIIb gene and their association with

impaired expression and autoimmune disease susceptibility.

Haplotype Mouse strain Genetic

variation

Phenotype

I NZB, BXSB, MRL,

NOD, Wild mice

129

13 bp 5′ deletion

in promoter

3 bp 3′ deletion

in promoter

4 bp 5′ deletion

in intron 3

Decreased

expression on Mϕ

and activated and

GC B cells.

Autoimmune-prone

(except 129)

II NZW, SWR, SJL 4 bp 5′ deletion

in intron 3

24 b 3′ deletion

in intron 3

Decreased

expression on GC

B cells. Potential to

accelerate

autoimmunity

III C57BL/6, BALB/c,

DBA

No deletions Not autoimmune

cells was high and similar in C7BL/6 and C57BL/6 FcγRIIbNZB
congenic mice. In contrast, the expression on activated GC
B cells was markedly down-regulated in C57BL/6 congenic
FcγRIIbNZB mice and up-regulated in control C57BL/6 mice,
in comparison with the expression levels on non-GC B cells.
The downregulation of FcγRIIb expression on activated GC B
cells was associated with an increase of IgG anti-KLH Ab titers.
C57BL/6 FcgRIIbNZB congenic mice also showed lower FcγRIIb
expression on Mϕ compared with WT C57BL/6 mice (107). In
a C57BL/6 knockin (KI) mouse model of the 5’ region of the
haplotype I FcγRIIb gene (FcγRIIbNZB), FcγRIIb failed to be
upregulated on activated and GC B cells resulting in enhanced
early GC responses and low auto-Ab production without kidney
disease as discussed later in more detail (11).

As mentioned earlier, in vitro cross-linking of FcγRIIb on B
cells from C57BL/6 mice can induce apoptosis. However, plasma
cells from autoimmune-prone NZB or MRL mice could not
be killed in vitro by FcγRIIb cross-linking because of too little
expression of the receptor (10). This might partially explain why
these autoimmune-prone mice have larger numbers of plasma
cells and might contribute to the autoimmune phenotype of
these mice.

Similarly, to the FcγRIIbNZB allele, the FcγRIIbNZW allele
in the C57BL/6 Sle1 congenic strain did not upregulate its
expression on GC B cells and plasma cells, as did the C57BL/6
allele, when immunized with SRBCs. However, in the absence
of its Sle1 flanking regions, FcγRIIbNZW did not induce an
autoimmune phenotype but was associated with an increased
number of class-switched plasma cells (108). This might indicate
that the decreased expression of the FcγRIIbNZW allele is not
sufficient for the development of autoreactive B cells but can
result in the increase of the number of autoreactive B cells,
induced by other lupus-susceptibility loci, by enhancing the
production of class-switched plasma cells. This suggests that
the FcγRIIbNZB (haplotype I) allele has a stronger impact on
susceptibility to autoimmunity than the FcγRIIbNZW (haplotype
II) allele (Figure 2). However, in one study comparing the
phenotypes of C57BL/6 strains congenic for different intervals of
the Nba2 locus, a region on Chr1 of NZB mice corresponding to

the Sle1NZW locus, FcγRIIbNZB was identified as an autoimmune
susceptibility gene (114), in another it was not (115). Sle1
can be divided in four non-overlapping sub-loci: Sle1a, -b, -c,
and -d. Sle1b is far the most potent autoimmune susceptibility
locus causing almost the same phenotype as the whole Sle1
locus: gender-biased spontaneous loss of immune tolerance to
chromatin, the production of high titers of IgG auto-Abs with
a penetrance of 90% at 9 months of age and increase of total
IgM and B7-2 expression on B cells (116). This suggests that
Sle1b mainly affects B cells. The genomic location of Sle1b was
determined by phenotypic analysis (e.g., ANA production) of
a series of C57BL/6 congenic strains carrying truncated Sle1
intervals. C57BL/6 congenic mice with an NZWderived genomic
fragment, containing the FcγR cluster, did not develop ANA
whereas C57BL/6 mice, containing an adjacent 900 kb congenic
NZW fragment expressing 24 genes including seven members
of the highly polymorphic signaling lymphocytic activation
molecules (Slam) cluster, did. This positions the FcγR cluster just
outside the Sle1b locus (117) and confirms previous observations
that FcγRIIb is located in between the Sle1a and Sle1b loci
(113) (Figure 1). Together these data suggest that in C57BL/6
Sle1 congenic mice the FcγRIIbNZW allele is not required for
the development of an autoimmune phenotype, whereas the
adjacent Slam cluster is. Because of these puzzling results, the
questions remain why FcγRIIb is upregulated on GC B cells in
non-autoimmune inbred strains such as C57BL/6 and BALB/c
and why this is impaired in autoimmune-prone mouse strains
and how does that contribute to the autoimmune phenotype of
these mice.

Slam family (Slamf ) member genes encode cell surface
glycoproteins with extracellular binding domains that mediate
stimulatory and/or inhibitory signaling via associations with
members of the Slam-associated protein (SAP) family of
signaling adaptors during cell-cell interactions between many
hematopoietic cell types (118–120). They are the only genes
within the Sle1b interval with obvious immunological functions
(117). Most Slamf members act as self-ligand and are expressed
on many lymphoid and myeloid cell subsets, platelets, and
hematopoietic stem and progenitor cells. Slamf plays a role in
the interaction of CD4+ T cells with cognate B cells, recruitment
and retention of T cells within the emerging GCs (121–123),
long-lasting T cell:B-cell contact, optimal TFH function, T cell
activation (124, 125), stabilization of B–T cell conjugates and
sustaining effective delivery of T cell help required for GC
formation (126, 127).

The Slamf genes show extensive polymorphisms (117) but
only two haplotypes of the Slamf locus have been identified
in laboratory mouse strains. Haplotype 1 is represented by
C57BL/6 and related strains and haplotype 2 by all autoimmune-
prone mouse strains, as well as many non-autoimmune mouse
strains including BALB/c and 129. The polymorphism in Slamf
member Ly108 affects the expression of two alternatively spliced
isoforms, Ly108-1 and, Ly108-2, which differ exclusively in their
cytoplasmic region (117). Ly108-1 is dominantly expressed in T
and B lymphocytes of mice with haplotype 2, whereas Ly108-2 is
dominantly expressed in T and B cells of mice with haplotype
1. Modulation of the BCR signaling by Ly108-1 results in the
impaired negative selection of B cells (128). Overexpression of
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FIGURE 2 | Epistasis between the FcγRIIb KO alleles and the Sle16 (Slam129) and Yaa autoimmune susceptibility loci resulting in lupus-like disease in C57BL/6 mice.

Epistatic interactions are indicated as dotted arrows. The FcγRIIb flanking Sle16 genomic region contains the autoimmunity associated Slamf129 haplotype 2 gene

cluster (see Figure 1). (1) Rahman et al. (108); (2) Espéli et al. (11); (3) Boross et al. (109); (4) Li et al. (110); (5) Bygrave et al. (111); (6) Bolland and Ravetch (112); (7)

Bolland et al. (113); (8) Kanari et al. (98). The increasing severity of autoimmune disease in the different mouse models is depicted on top.

both C57BL/6 derived non-autoimmune Ly108 and CD84 Slamf
members was required to restore tolerance in autoimmune-prone
C57BL/6 Sle1 congenicmice (129), indicating that polymorphism
in both Slamf genes contributes to the autoimmune phenotype of
C57BL/6 Sle1 congenic mice.

In the NZM2410 model four NZW-derived SLE suppressor
loci have been identified (130). The presence of such suppressor
loci might explain why NZW and also129 and BALB/c mice do
not develop autoimmune disease, although they carry the type 2
Slamf haplotype.

In Humans
The reported copy number variation (CNV) in human FCGR
genes does not involve FCGR2B (131–134). A series of single
nucleotide polymorphisms (SNPs) have been reported to be
located both in the promoter and the encoding region of

the human FCGR2B gene (135). Two SNPs are located in
the promoter region at nucleotide positions−386 and −120
(−386G>C; rs3219018 and −120A>T; rs34701572) (136)
resulting in four haplotypes:−386G−120T (named FCGR2B.1),

−386C−120T (FCGR2B.2),−386G−120A (FCGR2B.3), and
−386C−120A (FCGR2B.4). The rare FCGR2B.4 haplotype

increased the transcription of FCGR2B in vitro and resulted in
increased FCGR2B expression on EBV transformed B cells and
primary B cells (137) and myeloid cells (138), compared to the

more frequent FCGR2B.1 haplotype. However, independently,

others have shown that homozygosity of the −386C genotype

decreases the transcription and surface expression of FCGR2B
in peripheral B cells compared to the −386G homozygote

genotype (139). Up till now, there is no explanation for these

contradictory results.
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In the transmembrane encoding fifth exon a non-synonymous
C to T transition was identified, rs1050501, resulting in the
substitution of isoleucine with threonine at position 232 (140),
excluding the receptor from lipid rafts. This prevents interaction
of FCGR2B with ITAM containing receptors such as the
activating FCGR and the BCR (141, 142). Mϕs from individuals
homozygous for FCGR2BT232 showed a stronger phagocytic
capacity of IgG-IC while the B cells of these individuals
showed reduced FCGR2B-mediated inhibition of BCR-triggered
proliferation (142).

GWAS analyses have shown an association between rs1050501
and SLE (140, 143–147). Three meta-analyses confirmed these
associations (147–149). The FCGR2BT232 homozygosity is
associated with an odds ratio of 1.73, one of the strongest
associations in SLE (147). Association of rs1050501 with
Rheumatoid Arthritis (RA) has been reported for a Taiwanese
cohort (150).

The frequency of homozygosity of the FCGR2BT232 allele
is only 1% in Caucasians and in contrast 5–11% in African
and South-East Asian populations (151). This might be one of
the explanations for the ethnic differences in SLE susceptibility.
Malaria is endemic in Africa and South-East Asia. An association
was found between decreased susceptibility for severe malaria
and homozygosity for the FCGR2BT232 allele (135). So, increased
protection against malaria by down-regulation of FCGR2B
expression goes along with increased risk to develop SLE.

A significant but weak association has been observed
between SLAMF and susceptibility to SLE. The weakness of
the association might be explained by the limited size of the
cohorts studied (152). An association study of UK and Canadian
families with SLE has revealed multiple polymorphisms in
several SLAMF genes (153). However, the strongest association
with a non-synonymous SNP could not be replicated in
independent Japanese and European cohorts of SLE patients
(154, 155). Instead, another SNP was significantly associated
with the susceptibility to SLE in another Japanese cohort
(156). One large-scale case-control association study showed an
association of two SNPs with increased susceptibility to RA, in
two independent Japanese cohorts (155). In conclusion, these
observations indicate that also in human’s polymorphisms of
SLAMF contribute to the susceptibility to autoimmune disease.

Overall, a model emerges from both studies with C57BL/6
Sle congenic mouse strains and human SLE (157), in which
disease susceptibility arises through the co-expression of
multiple genetic variants that have weak individual effects
(152, 158). According to the “threshold liability” model, the
severity of the autoimmune phenotype increases with the
increasing number of autoimmunity associated allelic variants
of autoimmune susceptibility genes in the genome. However,
epistatic interactions might result in a more complex non-
additive inheritance of the autoimmune phenotype (Figure 2).
According to this “multiplicative model” the interactions of all
susceptibility and suppressor alleles in the genome determine the
susceptibility for autoimmune diseases of an individual (159).
Importantly this means that the contribution of an individual
gene to the autoimmune phenotype can vary depending on
the presence of other susceptibility and suppressor genes

in the genome (the genomic context). This might explain
the puzzling and contradictory results with the FcγRIIbNZW
and FcγRIIBNZB haplotypes. To uncover the polygenic effects
associated with a complex disease such as SLE not a single
gene association approach but gene set analysis (GSA) is
required (160). However, a reverse genetic approach might offer
the opportunity to reconstruct an autoimmune phenotype by
modifying a combination of a limited number of candidate genes
in a well-defined genetic background.

REVERSE GENETICS

So far three FcγRIIb KO mouse models have been published.
The first published KO was generated by gene targeting in
129 derived ES cells (161) and subsequently backcrossed into

the C57BL/6 background, here called FcγRIIb
−/−
129 mouse. This

mouse on a not well-defined mixed genetic background was
during 15 years (between 1996 and 2011) the only FcγRIIb
KO model available and has been extensively used resulting
in an overwhelming amount of literature concerning the role
of FcγRIIb in immune tolerance. Subsequently, independently,
in two different laboratories FcγRIIb KO mice were generated
by gene targeting in C57BL/6 derived ES cells, here called

FcγRIIb
−/−
B6 mice (109, 110). The published data regarding ANA

titers of one of these mouse strains are inconsistent (162, 163)
as are the autoimmune phenotypes of both C57BL/6 strains
(109, 110). Moreover, it is still under debate to what extent the
autoimmune phenotypes of the FcγRIIb

−/−
B6 mice differ from the

autoimmune phenotype of the FcγRIIb
−/−
129 mice. Therefore, we

discuss in chronological order these different models.

The FcγRIIb KO Mouse on Mixed
129/C57BL/6 Background
The FcγRIIb

−/−
129 mouse develops elevated immunoglobulin

levels in response to both T cell-dependent and T cell-
independent Ags (161), have more plasma cells (10), and show
an enhanced passive cutaneous anaphylaxis compared to WT
controls (161). They develop arthritis (164) and Good pasture’s
syndrome-like disease (165) upon immunization with bovine
collagen type II and type IV, respectively when backcrossed
into the non-permissive (H-2b haplotype) C57BL/6 background.
When backcrossed more than 7 generations into C57BL/6,

but not BALB/c background, the FcγRIIb
−/−
129 mice started to

develop spontaneously with high penetrance lupus-like disease.
This autoimmune disease is characterized by gender bias,
splenomegaly, increase of the proportion of different subsets of
activated lymphocytes with age, high titers of ANA, IC-mediated
GN and vasculitis in different organs resulting in proteinuria
and premature death (112) very similar to the phenotype of the
NZM2410mouse we discussed earlier. This is surprising because,
as we have seen, genetic studies revealed that lupus susceptibility
is a multigenic phenotype. Monogenic autoimmune diseases
are rare (158). However, the strong autoimmune phenotype of

the FcγRIIb
−/−
129 mouse cannot be attributed exclusively to the

deletion of the FcgRIIb alleles. This mouse has been generated
by gene targeting in 129 derived ES cells and subsequently
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backcrossed into C57BL/6 background. Such a mouse is, even
after 10–12 generations, not fully C57BL/6 but congenic for the
129 derived flanking regions of the targeted allele, containing
still hundreds of genes of 129 origin (Figure 1). The 129 genome
contains more than 1,000 non-synonymous mutations compared
to the C57BL/6 genome (166). This is only one part of the
problem. Epistasis between 129 derived loci and the C57BL/6
genome also occurs. It has been shown that mice without targeted
alleles but congenic for the 129 derived distal-region of Chr1
(Sle16), a lupus-associated region including the autoimmune-
prone haplotype 2 of the Slamf genes and the haplotype I of
the FcγRIIb gene, develop a similar autoimmune phenotype
as C57BL/6 Sle1 congenic mice (111). That might explain
why several mouse strains generated by targeting genes in the
proximity of the Slamf locus in 129 derived ES cells, and
backcrossed into C57BL/6 background, develop autoimmunity.

Strikingly, the FcγRIIb
−/−
129 mouse backcrossed more than

seven generations into C57BL/6 background develops ANA with
similar selective reactivity to H2A/H2B/DNA sub-nucleosomes
as C57BL/6 Sle1 congenic mice, however, with earlier onset,
stronger penetrance, and higher titers. Irradiated Rag−/−

C57BL/6 or IgH−/− C57BL/6 mice adoptively transferred with

bone marrow from FcγRIIb
−/−
129 mice backcrossed more than

seven generations into C57BL/6 background developed anti-
chromatin antibodies and proteinuria, indicating that the disease
is fully transferable, dependent on B cells. Myeloid FcγRIIb −/−

cells are not required (112). This is in keeping with experiments,
mentioned earlier, that show that the autoimmune phenotype
of C57BL/6 Sle1 congenic mice is completely reconstituted
in C57BL/6 irradiated mice that received bone marrow from
C57BL/6 Sle1 congenic mice but not by the reciprocal
reconstitution. This demonstrates that Sle1 is functionally
expressed in B cells (101) although impaired FcγRIIb expression
seems to play a minor role in that model (113, 117). Taken
together these data all point in the same direction: the strong

lupus-like phenotype of the FcγRIIb
−/−
129 mice backcrossed

more than seven generations into C57BL/6 background is
caused by epistatic interaction between the Slamf129 locus,
the C57BL/6 genome, and FcγRIIb−/− (Figure 2), similar
to the epistatic interactions between FcγRIIbNZB (haplotype
I), SlamfNZB (haplotype 2) and the C57BL/6 genome in
C57BL/6 Nba2 congenic mice (114). As a consequence, the

FcγRIIb
−/−
129 mouse suffers from the confounding effect that

the FcγRIIb129KO alleles are closely linked to the Slamf129
locus associated with autoimmunity. This means that in most
experimental conditions, no distinction can be made between
FcγRIIb−/− and Slamf129 mediated effects in these mice.

Ig gene analysis of ANA suggests that ANA develop in

GCs (167–172). Therefore, analysis of the loss of tolerance in

FcγRIIb
−/−
129 mice focused on GC (173). The role of FcγRIIb

as an immune tolerance checkpoint has been studied in a
transgenic mouse model in which the variable heavy chain (VH)
3H9H-56R, derived from a dsDNA specific hybridoma, or its
variant 56RVH , with higher affinity binding to dsDNA, were
inserted in the Igh locus (IgMa allele) (174). Receptor editing,
based on the use of specific light chains that abrogates the

dsDNA binding, is the main mechanism to maintain tolerance
in these mice (175–177). The Ab selection process was compared

between WT C57BL/6 and FcγRIIb
−/−
129 mice carrying the VH

transgenes (178). C57BL/6 mice expressing the high-affinity 56R
allele (B6.56R) developed low but significant anti-DNA titers,
indicating that tolerance was broken, whereas C57BL/6 mice
with the low-affinity 3H9 allele (B6.3H9) did not. Tolerance was

also maintained in FcγRIIb
−/−
129 mice carrying the low-affinity

3H9 allele (FcγRIIb
−/−
129 .3H9). The development of IgM-positive

autoreactive B cells was similar in FcγRIIb
−/−
129 mice carrying

the high-affinity 56R allele (FcγRIIb
−/−
129 .56R) and B6.56R mice.

Moreover, FcγRIIb
−/−
129 .3H9 mice and FcγRIIb

−/−
129 .56R mice did

not show differences in the populations of activated and GC
B cells or T cells compared to B6.3H9 and B6.56R control

mice. However, FcγRIIb
−/−
129 .56R mice developed higher IgG

anti-DNA titers compared to B6.56Rmice. Taking together these
observations suggest that the function of FcγRIIb in B6.56R
mice is limiting the production of serum IgG anti-dsDNA.
Analysis of hybridomas derived from these different mouse
strains showed that a much higher percentage of hybridomas

from FcγRIIb
−/−
129 .56Rmice secreted IgG antibodies compared to

the hybridomas from B6.56R mice. Moreover, FcγRIIb
−/−
129 .56R

mice had a higher percentage of splenocytes with a plasma
cell phenotype compared to B6.56R mice. The cross of the

FcγRIIb
−/−
129 mice with autoimmune B cell receptor transgenic

mice most likely bypasses the involvement of Slamf129 (which
is mainly responsible for the spontaneous development of
autoreactive B cells in a C57BL/6 Slamf129 congenic strain, as we

will see later). So, in this case, the phenotype of the FcγRIIb
−/−
129 .

56R mouse can be completely attributed to the absence of
FcγRIIb. From these results, it was concluded that the main
function of FcγRIIb in the GC reaction is to control, as one of the
latest checkpoints, the development of autoreactive IgG-secreting
plasma cells and that most likely FcγRIIb deficiency modifies
autoimmunity rather than initiates loss of tolerance (178). This
was confirmed independently, in an experimental model with
two VH chain knockin strains, HKI65 and HKIR, with specificity
for the hapten arsonate and aweak and strong specificity for DNA
respectively (179). No indications for a role of FcγRIIb in primary
or GC tolerance checkpoints were found. Only an increased
number of plasma cells was detected in mice that received

C57BL/6 HKIR/FcγRIIb
−/−
129 B cells. FcγRIIb seems to prevent

autoimmunity by suppressing the production of autoreactive IgG
from B cells that escaped negative selection in GC and enter the
AFC pathway (179). This is also in agreement with observations
in C57BL/6 FcγRIIBNZW congenic mice mentioned earlier (108).
However, more recently it has been shown that the number of
spontaneous (Spt) GC B cells is increased in 6–7 months old
FcγRIIb−/− mice on a pure C57BL/6 background, suggesting
that FcγRIIb deficiency dysregulates the Spt-GC B cell response
[(163); Table 3] as will be discussed later.

The view that FcγRIIb acts as a suppressor of autoimmunity
caused by other loci is supported by the observed synergism
between FcγRIIb−/− and several autoimmune susceptibility loci.
Just like the Sle1 locus (100), FcγRIIb−/− interacts synergistically
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with the autoimmune susceptibility Yaa locus from BXSB
autoimmune-prone mice, containing the Tlr7 gene translocated
from the X chromosome to the Y chromosome, resulting in

strong acceleration of lupus-like disease in Yaa+FcγRIIb
−/−
129

male mice (113) (Figure 2). MRL/Faslpr/lpr mice develop
lupus-like disease whereas C57BL/6 Faslpr/lpr mice do not,
likely due to suppressor activity of the C57BL/6 genome.

However, C57BL/6 Faslpr/lprFcγRIIb
−/−
129 mice develop systemic

autoimmune disease (180). This is consistent with the presence
of the haplotype I allelic variant of FcγRIIb in MRL mice
with an impaired expression on B cell subsets. Mice deficient
for both, deoxyribonuclease 1 like 3 (DNASE1L3) and FcγRIIb
exhibit at the age of 10 weeks an IgG anti-dsDNA production
higher than in 9 months old (NZBxNZW)F1 mice (181). The
presence of either the Yaa locus or homozygosity for the Faslpr

orDnase1l3 KO alleles is most likely sufficient to break tolerance.
However, FcγRIIb prevents strong autoimmunity by suppressing
the production of autoreactive IgG from B cells that have
escaped negative selection and enter the AFC pathway. Because

FcγRIIb
−/−
129 mice were used in the crosses mentioned a role

for Slamf129 cannot be excluded in these models as indicated
by the much milder phenotype of the Yaa+ FcγRIIb

−/−
B6 mouse

on pure C57BL/6 background discussed later (109) compared

to the severe lupus phenotype of the Yaa+FcγRIIb
−/−
129 mouse

(Figure 2). Nevertheless, these observations underscore the
crucial role of FcγRIIb in the protection against the development
of spontaneous autoimmunity determined by other autoimmune
susceptibility loci.

Because of allelic exclusion, Ig transgenic mice do not have
a normal B cell repertoire. Therefore, the development of self-

reactive GC B cells and plasma cells was studied in FcγRIIb
−/−
129

mice by large scale Ig cloning from single isolated B cells to
determine how loss of FcγRIIb influences the frequency at which
autoreactive ANA-expressing B cells participate in GC reactions
and develop in plasma cells under physiological conditions (173).
In comparison with WT controls the following was observed

in FcγRIIb
−/−
129 mice: (a) No skewing of Ig gene repertoire

but enrichment for IgGs with highly positively charged IgH
CDR3s which is associated with antibody autoreactivity; (b)
lower numbers of somatic mutation; (c) increased numbers of
polyreactive IgG+ GC B cells and bone marrow plasma cells
and (d) enrichment of nucleosome-reactive GC B cells and
plasma cells. The overall frequency of ANAs was high in GC
B cells but not in plasma cells. These results demonstrate that

in FcγRIIb
−/−
129 mice IgG autoantibodies including ANAs are

expressed by GC B cells and that somatic mutations contribute
to the generation of high-affinity IgG antibodies suggesting that
the FcγRIIb−/−/Slamf129 combination plays an important role
in the regulation of autoreactive IgG+ B cells which develop
from non-self-reactive or low-self-reactive precursors by affinity
maturation (173). It would be of great interest to repeat this

analysis in FcγRIIb
−/−
B6 mice on pure C57BL6 background

and C57BL/6 Slamf129 congenic mice to define the individual
contribution of the Slamf129 locus and the FcγRIIb KO alleles
in the loss of immune tolerance in the C57BL/6 background.

Interestingly the frequency of high-affinity autoreactive IgG+

plasma cells was relatively low, given the high frequency of
autoreactive IgG+ GC B cells. This can be explained by the
existence of a tolerance checkpoint before GC B cells differentiate
into spleen or bone marrow plasma cells, downstream of FcγRIIb
and Slamf (173).

Complementation of the mutant phenotype of an organism
by expression of a transduced WT gene is considered as
the ultimate proof that the mutated gene is the cause of the
phenotype. Irradiated autoimmune-prone BXSB, NZM2410,

and FcγRIIb
−/−
129 mice transplanted with autologous bone

marrow transduced with a viral vector expressing FcγRIIb
showed reduced autoantibody levels and as a consequence
much milder disease symptoms compared to mice that received
autologous bone marrow transduced with an empty vector
(182). These results were confirmed by using a transgenic
mouse with a stable 2-fold B cell-specific overexpression of
FcγRIIb (183). These mice hardly developed a lupus-like disease
when backcrossed into autoimmune-prone MRL/Faslpr/lpr

background. The underlying mechanism of these strong effects
of overexpression of FcγRIIb is not known. These experiments
mainly demonstrate that overexpression of FcγRIIb on B
cells inactivates these cells resulting in a strong decrease
in autoantibody production. Although they confirm a role
of FcγRIIb in autoimmune disease they don’t answer the
intriguing question whether FcγRIIb deficiency is a modifier
of autoimmunity rather than a primary initiator of the loss
of tolerance.

FcγRIIb KO on a Pure C57BL/6
Background
To avoid the confounding effect of 129 derived flanking
sequences (Sle16), independently, in two different laboratories
FcγRIIb−/− mice were generated by gene targeting in C57BL/6
ES cells. To distinguish between these two models, one is

called here LeFcγRIIb
−/−
B6 (109) and the other NYFcγRIIb

−/−
B6

(110). LeFcγRIIb
−/−
B6 mice exhibit a hyperactive phenotype in

the effector phase, although somewhat milder than FcγRIIb
−/−
129

mice, suggesting a contribution of Sle16 to the phenotype of

the FcγRIIb
−/−
129 mouse in the effector phase (109). Both KO

mice develop very mild lupus-like disease (Table 2). Total IgG
ANA was not significantly increased in 10 months old female
LeFcγRIIb

−/−
B6 mice compared to C57BL/6 mice although serum

of 5% of these mice showed some total IgG anti-dsDNA and
anti-ssDNA antibody titers just above (C57BL/6) baseline. In

contrast, in 40% of 10 months old NYFcγRIIb
−/−
B6 mice total

IgG anti-nuclear Abs was significantly increased compared to

C57BL/6mice (110). But only five percent of NYFcγRIIb
−/−
B6 mice

showed premature death whereas mortality was not increased in
LeFcγRIIb

−/−
B6 mice although proteinuria and kidney pathology

were significantly higher in these mice compared to C57BL/6
mice. The kidney phenotype in the absence of detectable ANA in
LeFcγRIIb

−/−
B6 mice points to a protective role of FcγRIIb in the

kidney, in the efferent phase, as has also been shown in a model
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TABLE 2 | Disease phenotypes of FcγRIIb
−/−

B6 , C57BL/6 FcγRIIB
−/−

129 SlamfB6 congenic, C57BL/6 Slamf129 congenic and the original FcγRIIb
−/−

129 mice compared to WT

C57BL/6 control mice at the age of 6–8 months.

Phenotype

Mouse LeFcγRIIb
−/−

B6
c C57BL6 FcγRIIb

−/−

129

SlamfB6 Congenica

NYFcγRIIb
−/−

B6
b,d C57BL/6 Slamf129

Congenica,b

FcγRIIb
−/−

129
a,b,c,d

Increased IgM n.d. –a n.d. –a +
a

Increased IgGa n.d. +

(♀)a
n.d. –a +

(♀ ♂)a

α-DNA +

(♀) Total IgG

Incidence 5%c

+

(♀) IgG2ca
++

(♀) IgG2cb

Total IgGd

+++

IgG2c/2bb

(♀) IgG2ca

+++++++

(♀) IgG2ca,b

IgG2bb

Total IgGa,d

α-histone –

(♀) Total IgGc

n.d. ++

(♀) IgG2cb
+++

IgG2c/2bb

+++++++

IgG2c/2bb

Total IgGc

α-nuclear +

(♀) Total IgGc

+

(♀) IgG2ca
++

(♀) IgG2cb

Total IgG

Incidence 40%d

+++

IgG2ca,b

IgG2bb

+++++++

(♀) IgG2ca,b

IgG2bb

Total IgGa,d

Kidney pathology + (♀)c + (♀)a ++
b –a,b +++++

a,b,c

IgG-IC deposition in glomeruli + (♀)c + (♀)a ++

(♀)b
+ (♀)b

– (♀)a
++++

(♀ ♂)a,b,c

C3 deposition +
c n.d. –b +

b
++++

b,c

Spleen Slightly enlarged (♀)c Slightly enlarged (♀)a n.d. Slightly enlarged (♀)a Splenomegalya,b,c

Spt-GC formation n.d. Normal

(♀ ♂)a
Augmented

+ (♀)b
Augmented

++ (♀)a,b
Augmented

+++ (♀)a,b

% GC B cells of CD19+ splenic B cells n.d. No increase

(♀)a
Increase +

b Increase ++

(♀)a
Increase +++

(♀)a

Absolute numbers of splenic GC B cells n.d. No increase

(♀)a
n.d. Increase +

(♀)a
Increase ++

(♀)a

Increased Mortality –c –a +

5%d

–a,b Varies from 0%a (and

22%c) to 60%d

aKanari et al. (98).
bSoni et al. (163).
cBoross et al. (109).
dLi et al. (110).

n.d., not determined.

of antibody-induced nephrotoxic nephritis (NTN) that will be
discussed later (89).

The production of autoantibodies by C57BL/6 mice in
the absence of FcγRIIb suggests that FcγRIIb deficiency,
besides modifying autoimmunity caused by other autoimmune
susceptibility loci (e.g., Slamf129, Yaa), as discussed earlier, can
result in loss of tolerance in the GC. However, it is tempting
to speculate that the low titers of autoantibodies, that develop
with low penetrance in FcγRIIb KO mice on a pure C57BL/6
background, reflect the natural occurring autoreactive B cells
in the GC of a WT C57BL/6 mouse, as described earlier, that
are prevented to enter the AFC pathway in the presence of
FcγRIIb (178). There are indications that C57BL/6 mice are
more autoimmune prone than BALB/c mice. For example,
B cell receptor editing as a mechanism to maintain B cell
tolerance is less effective in these mice compared to BALB/c
mice (178).

The NYFcγRIIb
−/−
B6 mouse seems to exhibit a stronger disease

phenotype than the LeFcγRIIb
−/−
B6 mouse (Table 2). There are

several explanations for this discrepancy:

a. The strains are generated with different ES cell lines. There
might be relevant genomic differences between the C57BL/6
derived ES cell lines used. This question can be answered
by sequencing the FcγRIIb flanking genomic regions in both
mouse strains.

b. The mice have been backcrossed several generations into
different C57BL/6 mouse strains. There are substantial genetic
variations between the different C57BL/6 strains used in
different laboratories (184).

c. Environmental factors (immune status, microbiome) play a

role. The incidence of lethal disease in FcγRIIb
−/−
129 mice varies

between different laboratories from 0% to more than 60%
(98, 109, 112, 173).

d. Differences in the methods used to measure ANA. In the
LeFcγRIIb

−/−
B6 mouse ANAhave beenmeasured only by ELISA

of total IgG (109), whereas in the NYFcγRIIb
−/−
B6 mouse IgG2a

and IgG2b have been measured combined with Hep-2 cell
staining (163). However, a significant increase in total IgG
anti-nuclear Abs compared to C57BL/6 has also been reported

with the NYFcγRIIb
−/−
B6 mouse (110).
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TABLE 3 | Characteristics of GC B and T cells in NYFcγRIIb
−/−

B6 , C57BL/6 Slamf129 congenic, and the original FcγRIIb
−/−

129 mice compared with WT C57BL/6 control mice.

Phenotype
Mouse strain FcγRIIb

−/−

129 C57BL/6 Slamf129 congenic NYFcγRIIb
−/−

B6

Increase in frequency of B220+PNAhi CD95hi Spt-GC B cells ++++ ++ +

Increase in Splenic GC size +++ ++ +

Increase in frequency of CD4+CXCR5hiPD-1hi GC TFH cells +++ + –

Increase in frequency of CD4+CXCR5intPD-1int TFH cells +++ + –

Increase in CD4+GL7+ GC TFH cells ++ + –

IL-21 expression in GC TFH cells ++++ ++ –

PD-1 expression in GC TFH cells ++++ ++ ++

ICOS expression in GC TFH cells ++ – –

Increase in frequency of GC B cells upon antigenic stimulation n.d. + –

Increase in frequency of GC TFH cells upon antigenic stimulation n.d. + –

MHC class II upregulation on GC B cells upon antigenic stimulation n.d. + –

Decrease of caspase activity in DAPInegB220+FashiPNAhi GC B cells ++ +/– +/–

n.d., not determined (163).

The Individual Contribution of FcγRIIb
Deficiency and Slamf129 to the Phenotype
of the FcγRIIb KO Mouse on Mixed
129/C57BL/6 Background
Independently, in two different laboratories congenic
C57BL6 Slamf129 mice have been generated. One was
generated by intensive backcrossing of the original

FcγRIIb
−/−
129 mouse (161) into C57BL/6 background and

selection for offspring in which the Slamf locus and the
FcγRIIb KO allele had been segregated (98) resulting in
two congenic strains called here as C57BL/6 Slamf 129

congenic and C57BL/6 FcγRIIb
−/−
129 Slamf B6 congenic,

respectively. The other C57BL6 Slamf129 congenic mice
were generated by a marker-assisted speed congenic approach
(163) (Figure 1).

The development of autoimmunity was compared between

C57BL/6 FcγRIIb
−/−
129 SlamfB6 congenic, C57BL/6 Slamf129

congenic and the original FcγRIIb
−/−
129 mice (98) or between

C57BL/6 Slamf129 congenic, NYFcγRIIb
−/−
B6 and the original

FcγRIIb
−/−
129 mice (163). Both C57BL/6 FcγRIIb

−/−
129 SlamfB6

congenic and C57BL/6 Slamf 129 congenic mice developed very

mild disease symptoms whereas the original FcγRIIb
−/−
129 mice

developed severe disease compared to WT C57BL/6 mice.

Importantly, the phenotype of the C57BL/6 FcγRIIb
−/−
129 Slamf B6

congenic mouse strain confirmed mainly the phenotype of the
LeFcγRIIb

−/−
B6 mouse [(98); Table 2] showing very low ANA

titers and little kidney pathology compared to FcγRIIb
−/−
129 mice.

The development of Spt-GC B cell and TFH responses in

C57BL/6 Slamf129 congenic, NYFcγRIIb
−/−
B6 and FcγRIIb

−/−
129

mice were carefully compared [(163); Table 3]. C57Bl/6 Slamf129
congenic mice had significantly more GC B cells and TFH and
GC TFH cells 12 days after immunization with OVA compared
to WT C57BL/6 mice. B cells and DCs from Slamf129 congenic
mice exhibited stronger antigen presentation in in vitro assays
compared to B cells and DCs from WT C57BL/6 mice. By

using a variety of in vivo and in vitro assays with naïve B cells
it was found that B cell-intrinsic deficiency of FcγRIIb and
expression of Slamf129 has no effect on proliferation but promotes
differentiation of naïve B cells into GC B cells as indicated
by increased expression of Aicda and GL-7. The percentage

of apoptotic GC B cells was significantly lower in FcγRIIb
−/−
129

mice compared to WT C57BL/6 mice whereas in C57BL/6

Slamf129 congenic and NYFcγRIIb
−/−
B6 mice this decrease was

not significant. This suggests that FcγRIIb deficiency and
Slamf129 act synergistically to increase the survival of GC B

cells in FcγRIIb
−/−
129 mice. Naïve and activated B cells from

NYFcγRIIb
−/−
B6 and to a lower extent from C57BL/6 Slamf129

congenicmice showed an enhancedmetabolic capacity compared
to B cells from C57BL/6 mice. This enhancement was stronger in

FcγRIIb
−/−
129 mice.

Taken together these observations suggest that Slamf129
plays a predominant, and FcγRIIb deficiency a modest role
in modulating the Spt-GC B cell and TFH responses. Some
of their functions are synergistic others mutually exclusive.
GC TFH cell responses are mainly affected by Slamf129
[(163); Table 3]. By using the experimental model of the VH

chain knockin strain HKIR mentioned earlier (179) it was
demonstrated that B cell-specific expression of Slamf129 is
necessary for the autoreactive B cells to expand in the GC
confirming previous observations in C57BL/6 Sle1 congenic
mice (129).

The increased Spt-GC responses in NYFcγRIIb
−/−
B6 and

C57BL/6 Slamf129 congenic mice were associated with the
production of autoantibodies. However, the titers were much

lower than in FcγRIIb
−/−
129 mice which had also the strongest

increase in Spt-GC responses. C57BL/6 Slamf129 congenic mice

developed higher ANA titers than NYFcγRIIb
−/−
B6 mice, staining

both cytoplasm and nucleus of Hep-2 cells, whereas sera from
NYFcγRIIb

−/−
B6 mice show only cytoplasmic staining patterns

(163) confirming previous results with the C57BL/6 FcγRIIb
−/−
129

SlamfB6 congenic mouse strain (98). IgG2b and IgG2c ANA
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were significantly increased in C57BL/6 Slamf129 congenic
mice whereas only IgG2c ANA were significantly increased in
NYFcγRIIb

−/−
B6 mice. With an autoantigen array, it was shown

that FcγRIIb
−/−
129 mice develop high titers of IgG antibodies

against a large variety of autoantigens. Several of these antibodies

were also present in the serum of NYFcγRIIb
−/−
B6 mice but

their titers were much lower than in FcγRIIb
−/−
129 mice (163).

Unfortunately, sera from C57BL/6 Slamf129 congenic mice were
not tested in the autoantigen array.

Kidney pathology was absent (98) or very mild, with higher

complement deposition than NYFcγRIIb
−/−
B6 mice (163), in

C57BL/6 Slamf129 congenic mice, mild in NYFcγRIIb
−/−
B6 or

C57BL/6 FcγRIIb
−/−
129 SlamfB6 congenic mice with higher IgG

deposition than in C57BL/6 Slamf129 congenic mice, and severe,
with highest C3 and IgG deposition compared to the other

genotypes, in FcγRIIb
−/−
129 mice (98, 163). In conclusion, the

deficiency of FcγRIIb together with the presence of Slamf129

results in a phenotype of the FcγRIIb
−/−
129 mouse with increased

Spt-GC B cell responses characterized by an increase of the
following parameters: metabolic activity in B cells, differentiation
of B cells into a GC B cell phenotype and GC B cell survival.
This is associated with loss of immune tolerance resulting in
ANA production and the development of severe lupus-like
disease (163). However, the underlying cellular and molecular
mechanisms of these associations are not well-understood and
the subject of speculation and debate with respect to the role of
FcγRIIb in GC (185). This can be illustrated with the surprising
observation in the FcγRIIbNZB KI mouse model mentioned
earlier, in which FcγRIIb failed to be upregulated on activated and
GC B cells resulting in enhanced early GC responses (11). Upon
immunization, these KI mice showed an early and sustained
increased affinity maturation of Ag-specific GC B cells. Previous
models suggest that low expression of FcγRIIb reduces the
BCR activation threshold resulting in less affinity maturation.
However, an alternative explanation might be that low FcγRIIb
expression increases the survival of bystander Ag non-specific
GC B cells and, as a consequence, increases competition for
TFH help between Ag-specific and non-antigen specific B cells,
resulting in increased affinity maturation (11).

Cell-Type-Specific FcγRIIb KO Mouse
Models
To determine on what B cell subset(s) and on what myeloid
cells FcγRIIb might be involved in a checkpoint for immune
tolerance, cell-type-specific FcγRIIb−/− mice were generated,
independently, in two different laboratories. Both the
LeFcγRIIb

−/−
B6 and NYFcγRIIb

−/−
B6 mouse models, on a pure

C57BL/6 background, were originally generated as floxed

FcγRIIb mice (FcγRIIb
fl/fl
B6 ) and subsequently crossed with

a Cre deleter transgenic mouse to generate the germline

FcγRIIb
−/−
B6 mice discussed earlier. In addition, the FcγRIIb

fl/fl
B6

mice were also crossed with a variety of cell type-specific
Cre transgenic mice (Table 4) to generate cell-type-specific

FcγRIIb
−/−
B6 strains that were analyzed in the following

models of diseases for which germline FcγRIIb KOs are highly
susceptible: (a) the induced autoimmune diseases CIA, both
on permissive (immunization with chicken collagen type II)
and non-permissive (immunization with bovine collagen type
II) background and (b) anti-glomerular basement membrane
antibody (anti-GBM) disease, (c) the spontaneous autoimmune
disease lupus-like disease and (d) the non-autoimmune disease
antibody-induced NTN.

Deletion of FcγRIIb in all B cells of the LeFcγRIIb
fl/fl
B6 mouse

by CD19Cre did not increase the susceptibility of this mouse
for any of the mentioned disease models. Moreover, deletion of
FcγRIIb on a subset of monocytes (LysMCre) had no effect on
susceptibility for anti-GBM disease. Therefore, it was concluded
that FcγRIIb deficiency on B cells or a subset of myeloid
cells alone is not sufficient to increase susceptibility to anti-
GBM (186). Only pan-myeloid deletion (cEBPαCre) of FcγRIIb

increased the susceptibility of LeFcγRIIb
fl/fl
B6 mice for CIA on

the permissive background (187) and for the non-autoimmune
disease NTN (89). These results suggest that for the protection
against induced auto-Ab driven diseases, such as CIA, the role
of FcγRIIb on B cells, as a checkpoint for immune tolerance, is
less important than its role on myeloid effector cells, controlling
downstream antibody effector mechanisms (187). However, it
cannot be excluded that in the CIA model FcγRIIb on myeloid
cells also plays a role in controlling the afferent phase of the

disease, as was recently shown in Yaa+ LeFcγRIIb
−/−
B6 mice that

will be discussed later (188).

In contrast to the results with LeFcγ IIb
fl/fl
B6 mice, deletion

of FcγRIIb in all B cells (Mb1Cre) or in GC and post GC

B cells (Cg1Cre) in NYFcγRIIb
fl/fl
B6 mice resulted in increased

susceptibility for CIA on the non-permissive background and
permissive background, respectively. Moreover, susceptibility to

CIA was also increased in DC-specific CD11cCre/NYFcγRIIb
fl/fl
B6

mice indicating that FcγRIIb is involved in distinct immune
tolerance controlling mechanisms (110). The reason for the
discrepancy between the phenotypes of the B cell- and DC-

specific NYFcγRIIb
−/−
B6 and LeFcγ IIb

−/−
B6 mice is not known

but, given the weak phenotype of the germline LeFcγRIIb
−/−
B6

mouse, most likely the phenotype of a single cell-type-specific
LeFcγRIIb

−/−
B6 mouse is too weak to be detected with a small

cohort of mice. Another partial explanation might be that the

B-cell-specific Cre lines used are different. In addition, GC and

post GC B cell (Cg1Cre) specific NYFcγRIIb
−/−
B6 mice developed

spontaneously ANA, similar to ANA in germline NYFcγRIIb
−/−
B6

mice, whereas a deficiency in other cell types has no effect.
This confirms previous results with transplantation of bone

marrow from FcγRIIb
−/−
129 mice that the role of FcγRIIb in the

spontaneous development of ANA is B cell-specific (112) and
suggests that FcγRIIb on GC or post GC B cells is a checkpoint
for the maintenance of immune tolerance (110) (Table 4).

Upon immunization with the NP-CGG model antigen
NYFcγRIIb−B6

/− and Mb1Cre/NYFcγRIIb
fl/fl
B6 mice developed

similar increased primary IgG NP-specific Ab responses

compared to NYFcγRIIb
fl/fl
B6 mice and all other cell type-specific
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TABLE 4 | Disease susceptibility of cell-type-specific FcγRIIb KO mice.

Disease

Mouse strain CD19Cre:

All B cellsa,b,c
LysMCre:

Subset monocytesa,d
cEBPαCre:

pan-myeloidb,c

CD11cCre:

DCsc,d
Mb1Cre:

All B cellsd
Cg1Cre:

GC and post GC B cellsd

Non-permissive bCIAc,d No increase No increase NYFcγRIIb
fl/fl
B6

d

n.d. Increase
NYFcγRIIb

fl/fl
B6

d

Increase
NYFcγRIIb

fl/fl
B6

d

No increase
NYFcγRIIb

fl/fl
B6

d

Permissive cCIAc,d No increase
LeFcγRIIb

fl/fl
B6

c

n.d. Increase
LeFcγRIIb

fl/fl
B6

c

No increase
LeFcγRIIb

fl/fl
B6

c

n.d. Increase similar to
NYFcγRIIb

−/−

B6
d

KRN arthritisd n.d. Increase
NYFcγRIIb

fl/fl
B6

d

n.d. n.d. n.d. n.d.

Anti-GBM diseasea No increase
LeFcγRIIb

fl/fl
B6

a

No increase
LeFcγRIIb

fl/fl
B6

a

n.d. n.d. n.d. n.d.

Lupus-like diseased n.d. No ANA
NYFcγRIIb

fl/fl
B6

d

n.d. No ANA
NYFcγRIIb

fl/fl
B6

d

No ANA
NYFcγRIIb

fl/fl
B6

d

ANA

similar to NYFcγRIIb
−/−

B6
d

NTNb No increase
LeFcγRIIb

fl/fl
B6

b

n.d. Increase
LeFcγRIIb

fl/fl
B6

b

n.d. n.d. n.d.

Immunizationd n.d. No increase in IgG

response
NYFcγRIIb

fl/fl
B6

d

n.d. No increase in IgG

response
NYFcγRIIb

fl/fl
B6

d

Increased

primary/secondary

IgG response
NYFcγRIIb

fl/fl
B6

d

Increased secondary IgG

response
NYFcγRIIb

fl/fl
B6

d

Germline FcγRIIb KO mice showed increased susceptibility to all diseases listed in the table compared with C57BL/6 mice.
aSharp et al. (186).
bSharp et al. (89).
cYilmaz-Elis et al. (187).
dLi et al. (110).

n.d., not determined.

NYFcγRIIb
−/−
B6 mice. In contrast, secondary IgG Ab

responses were increased in both Mb1Cre/NYFcγRIIb
fl/fl
B6

and Cg1Cre/NYFcγRIIb
fl/fl
B6 mice compared with NYFcγRIIb

fl/fl
B6

mice. This suggests that FcγRIIb is a B cell-intrinsic negative
regulator of both primary and secondary IgG responses (110).

Although individually not sufficient to induce substantial

autoimmunity, epistasis between theYaa locus, the LeFcγRIIb
−/−
B6

alleles and the C57BL/6 genome results in severe lupus-
like disease (109) (Figure 1). The cell-type-specific role of
FcγRIIb in this genetic disease model was studied (188).

The Yaa+/CD19Cre/LeFcγRIIb
fl/fl
B6 mice developed milder

lupus-like disease than Yaa+/LeFcγRIIb
−/−
B6 mice similar to

the disease in Yaa+/C/EBPα Cre/LeFcγRIIb
fl/fl
B6 mice whereas

Yaa+/CD11cCre/LeFcγRIIb
fl/fl
B6 mice stayed disease free, like

Yaa+/LeFcγRIIb
fl/fl
B6 mice. This suggests that besides on B

cells FcγRIIb on myeloid cells, but surprisingly not on DCs,
contributes to the protection against spontaneous loss of immune
tolerance in this mouse model. This confirms the observation
with CIA in mice (110), discussed earlier, that FcγRIIb can be
involved in different immune tolerance controlling mechanisms.

Strikingly, in the two strains with FcγRIIb deficient myeloid

cells (Yaa+/LeFcγRIIb
−/−
B6 and Yaa+/C/EBPα Cre/LeFcγRIIb

fl/fl
B6 )

but not in the strain with B cell-specific FcγRIIb deficiency

(Yaa+/CD19Cre/LeFcγRIIb
fl/fl
B6 ) the frequency of peripheral

Ly6C−, but not Ly6C+ monocytes was increased. Monocytosis,
an FcRγ dependent expansion of the monocyte compartment
consisting mainly of Ly6C− monocytes, is associated with the
development of lupus nephritis in Yaa+ lupus-prone mice. It has
been reported that Ly6C+ monocytes mature in the circulation

and are the precursors for Ly6C− monocytes (189). Deficiency
of FcγRIIb most likely accelerates the maturation of monocytes

in Yaa+/LeFcγRIIb
−/−
B6 mice. Compared to Ly6C+ monocytes,

mature Ly6C− monocytes express significantly higher B cell-
stimulating cytokines such as BSF-3, IL-10, and IL-1β, DC
markers including CD11c, CD83, Adamdec1, and the anti-
apoptotic factors Bcl2 and Bcl6. This makes monocytes the
most promising FcγRIIb expressing candidate myeloid cells to
modulate B cell tolerance (188, 190). The transcriptome of Ly6C−

monocytes suggests that they are long-lived and committed to
developing into DCs.

Whether this monocyte-dependent tolerance breaking

mechanism is unique for Yaa+/FcγRIIb
−/−
B6 mice is not known

but it is striking that also in SLE patients the serum levels
of anti-dsDNA Abs highly correlate with the percentage of
non-classical monocytes (191). Like mouse Ly6C− monocytes,
the human counterpart CD14lowCD16+ monocytes secrete
high amounts of IL-1β in a TLR7-TLR8-MyD88–dependent
manner (192).

CONCLUDING REMARKS

Forward and reverse genetics have provided convincing evidence
that FcγRIIb is an important autoimmune susceptibility gene,
involved in the maintenance of peripheral tolerance both in
human and mice. In humans, a number of GWAS studies
showed an association between a SNP (rs1050501) in the FCGR2B
gene, causing a missense mutation (FCGR2BT232) resulting in
impaired FCGR2B function, and susceptibility to SLE. Meta-
analyses confirmed that FCGR2BT232 homozygosity is one of the
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strongest associations in SLE. Association of rs1050501with RA
has also been reported.

In mice, the situation is more diffuse. Analysis of a variety
of C57BL/6 mice congenic for the NZW and NZB haplotypes
of FcγRIIb, with decreased expression, did not reveal clear
unambiguous results with respect to the contribution of these
haplotypes to the autoimmune phenotypes of these mice. The
mechanism by which natural FcγRIIb variants contribute to
autoimmunity is not well-understood.

The first FcγRIIb−/− mouse, generated by gene targeting in
129 derived ES cells and backcrossed into C57BL/6 background

(FcγRIIb
−/−
129 mice), exhibited a surprisingly strong spontaneous

autoimmune phenotype suggesting that FcγRIIb deficiency
initiates loss of immune tolerance. However, independent studies

with FcγRIIb
−/−
129 autoimmune VH chain knockin mice pointed

to a central role of FcγRIIb in a late immune tolerance
checkpoint, that prevents autoimmunity by suppressing the
production of autoreactive IgG from B cells, that escape
negative selection in the GC and enter the AFC pathway. This
should mean that FcγRIIb deficiency is mainly an amplifier of
autoimmunity caused by other autoimmune susceptibility loci,
rather than a primary initiator of the loss of immune tolerance.
That was confirmed by the observation that FcγRIIb−/−

mice on a pure C57BL/6 background (FcγRIIb
−/−
B6 ) have a

much milder autoimmune phenotype than FcγRIIb
−/−
129 mice

but when backcrossed into a mouse strain carrying the
autoimmune susceptibility Yaa locus succumb to lupus-like

disease. The strong autoimmune phenotype of the FcγRIIb
−/−
129

mouse could be explained by epistatic interactions between
the C57BL/6 genome, the FcγRIIb KO allele and the 129
derived sequences (Sle16) flanking the FcγRIIb KO allele,
containing the autoimmunity associated Slamf129 (haplotype 2)
gene cluster.

Spt-GC B and TFH cells are activated, modestly (mainly B

cells) in FcγRIIb
−/−
B6 mice, moderately in C57BL/6 Slamf129

congenic mice and strongly in FcγRIIb
−/−
129 mice compared to

Spt-GCB and TFH cells inWTC57BL/6mice. This was associated
with a corresponding increase in ANA production, suggesting
that FcγRIIb deficiency, besides enhancing autoimmunity caused

by other autoimmune susceptibility loci, might play a modest
role in the induction of the loss of immune tolerance in the
GC, explaining the development with low penetrance of low

ANA titers in FcγRIIb
−/−
B6 mice. An alternative explanation is

that the low ANA titers in FcγRIIb
−/−
B6 mice reflect the natural

background of autoreactive B cells in the GC that are prevented
to enter the AFC pathway in the presence of FcγRIIb. The
analysis of the development of self-reactive GC B cells and
plasma cells by large scale Ig cloning from single isolated B

cells, as performed with FcγRIIb
−/−
129 mice, should be repeated

in FcγRIIb
−/−
B6 mice, to determine how FcγRIIb deficiency

influences the frequency at which autoreactive ANA-expressing
B cells participate in GC reactions, and develop in plasma cells,
under physiological conditions, without the confounding effect
of Slamf129 expression.

Studies with cell-type-specific FcγRIIb deficient mice revealed
that besides on B cells, FcγRIIb on DCs and monocytes
can also contribute to the maintenance of immune tolerance,
indicating that FcγRIIb is involved in different immune tolerance
maintaining mechanisms. Series of observations suggest that on
B cells impaired FcγRIIb function effects not only antibody titers
but also affinity maturation and memory responses of B cells
and plasma cell homeostasis associated with an increase in the
production of autoantibodies. However, the underlying cellular
and molecular mechanisms are not well-understood. Most likely
new model systems including adoptive cell transfer and tools
such as cell type-specific KO mice, to study the GC reaction, are
required to answer these questions.
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