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Spillover of lipoprotein lipase-generated fatty acids from chylo-
microns into the plasma free fatty acid (FFA) pool is an important
source of FFA and reflects inefficiency in dietary fat storage. We
measured spillover in 13 people with type 2 diabetes using in-
fusions of a [3H]triolein-labeled lipid emulsion and [U-13C]oleate
during continuous feeding, before and after weight loss. Body fat
was measured with dual energy X-ray absorptiometry and com-
puted tomography. Participants lost ;14% of body weight. There
was an ;38% decrease in meal-suppressed FFA concentration
(P , 0.0001) and an ;23% decrease in oleate flux (P = 0.007).
Fractional spillover did not change (P = NS). At baseline, there
was a strong negative correlation between spillover and leg fat
(r = 20.79, P = 0.001) and a positive correlation with the trunk-to-
leg fat ratio (R = 0.56, P = 0.047). These correlations disappeared
after weight loss. Baseline leg fat (R = 20.61, P = 0.027) but not
trunk fat (R = 20.27, P = 0.38) negatively predicted decreases in
spillover with weight loss. These results indicate that spillover,
a measure of inefficiency in dietary fat storage, is inversely associ-
ated with lower body fat in type 2 diabetes. Diabetes 62:1897–
1903, 2013

F
ree fatty acids (FFAs) mediate insulin resistance
(1,2), drive VLDL triglyceride synthesis in the
liver (3), and play an important role in the path-
ogenesis of hypertension (4,5) and diabetes (6).

Spillover of lipoprotein lipase (LPL)-generated fatty acids
from chylomicrons into the plasma FFA pool is an im-
portant source of FFA (7–10) and reflects inefficiency in
dietary fat storage. Previous work has shown that the
amount of fat taken up in leg fat per gram of tissue
increases as a function of leg fat mass, whereas it actually
decreases as a function of visceral fat mass and does not
change in upper body subcutaneous fat (11). However, it is
not clear whether these findings reflect changes in rates of
LPL-mediated meal fat hydrolysis, changes in fractional

spillover, or both. We therefore undertook a study in
people with type 2 diabetes to determine the effects of
weight loss on spillover and to investigate potential asso-
ciations between spillover and body fat depots.

RESEARCH DESIGN AND METHODS

Subjects. Written, informed consent was obtained from 13 overweight and
obese volunteers with type 2 diabetes and dyslipidemia who were studied
according to a protocol approved by the Mayo Institutional Review Board.
Enrollment was open to subjects aged between 35 and 60 years who were not
receiving insulin therapy or glucagon-like peptide 1 analogs and had suboptimal
glycemic control (HbA1c 7–12%). Participants were required to have elevated
triglycerides (150–400 mg/dL) and a BMI between 25 and 40 kg/m2. All had
a history and physical examination together with screening laboratory testing
before participation.
Protocol. At study entry, participants underwent a 7-point oral glucose tol-
erance test (OGTT) to determine insulin sensitivity (12). Body composition,
including total, trunk, and leg fat mass, was determined by dual energy X-ray
absorptiometry (13), and single-slice computed tomography was used to
measure visceral and subcutaneous abdominal fat (14).

At baseline, participants were admitted to the Clinical Research Unit for an
acute study to measure spillover. The study was preceded by a 5-day iso-
energetic controlled diet (15% protein, 35% fat, and 50% carbohydrate) prepared
by the Clinical Research Unit metabolic kitchen. On the morning of the study,
an infusion catheter was placed in a forearm vein and a second catheter was
placed in a contralateral hand vein for sampling of arterialized venous blood
(15). At 0800 h (0 min), participants drank a priming dose of a liquid meal,
followed by an aliquot every 15 min until 390 min, as previously described
(16,17). The liquid meal was made from Ensure Plus to which canola oil was
added to achieve the macronutrient distribution described above. The feeding
regimen provided ;6% of calculated daily basal energy requirements per hour
as estimated by the Harris-Benedict equation.

After 270 min of continuous feeding, intravenous infusions of [U-13C]oleate
(;0.5 nmol $ kg21 $min21) and a lipid emulsion labeled with [9,10-3H(N)oleyl]
triolein (18) (;0.4 mCi $ min21) were started and continued to the end of the
study (390 min). Blood samples were taken at 330, 345, 360, 375, and 390 min
for concentrations of FFA, triglycerides, glucose, insulin, [U-13C]oleate en-
richment, and [3H]oleate-specific activity.

Participants then participated in a multidisciplinary 5-month weight loss
intervention that included group cognitive behavioral therapy, regular nutri-
tional counseling, use of an online food journal, and a physical activity monitor.
They were encouraged to maintain a daily energy deficit to facilitate weight
loss. Participants met with a study physician every 2 weeks to be weighed,
download their activity monitor data, and troubleshoot if weight loss goals were
not met. At 5 months, the study was repeated in its entirety, including the OGTT
and body composition measurements.
Analyses. Blood samples were collected in chilled 5-mL EDTA tubes con-
taining 2.0 mg paraoxon to inhibit LPL (19) and kept on ice until centrifugation
at 4°C. Chylomicrons were isolated using a triple-spin ultracentrifugation
method (18). Plasma FFA concentration and specific activity were determined
by high-performance liquid chromatography (20), using [2H31]palmitate as an
internal standard (21). The same method was used to determine the meal’s
fatty acid content. Plasma triglyceride concentrations were measured using
a commercial enzymatic method (COBAS Integra Autoanalyzer). [U-13C]oleate
atoms percent enrichment (APE) was determined by liquid chromatography-
mass spectrometry (22).
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Calculations. Mean values from the 300- to 390-min sampling interval were
used to calculate kinetic data. Rate of appearance (Ra) of oleate was de-
termined using Steele’s equation for steady-state conditions, as previously
described (20,21). FFA clearance was calculated as the FFA tracer infusion
rate divided by plasma tracer concentration (23); this calculation assumes that
at steady state, the rate of disappearance of the tracer equals the infusion rate.
The Ra of [

3H]oleate was calculated from the following formula:

Ra ½3H�oleate ¼
�
U-13C

�
oleate infusion rate

½U-13C�  enrichment=½3H�specific activity

Fractional spillover (%) is then derived from the formula:

Spillover ¼ Ra½3H�oleate
Rd½3H�triolein3100;

where the rate of disappearance (Rd) of [
3H]triolein equals the infusion rate of

the triglyceride tracer (7).
The fractional contribution of meal fat to total oleate Ra was calculated from

the formula:

%  oleate Ra from meal ¼ spillover  ∗   oleate ingestion rate
oleate Ra

Statistical methods. Results are presented as mean 6 SEM. Data from the
two study days were compared using paired t tests to determine significance
(a , 0.05). Correlations were determined by regression analysis. Trunk fat-to-
leg fat ratio (analogous to waist-to-hip ratio and hereafter referred to as trunk-
to-leg ratio) was calculated for each subject.

RESULTS

Clinical characteristics of the participants at baseline and
at 5 months are summarized in Table 1. Sulfonylurea
therapy was discontinued in four of five participants dur-
ing the weight loss intervention, whereas all remained on
metformin. There was a marked decrease in weight, av-
eraging 13.9 6 2.0%. Significant improvements were ob-
served in hemoglobin A1c, insulin sensitivity index, and
fasting triglyceride levels. Changes in body composition
are reported in Table 2. There was a small but significant
decrease in lean body mass at 5 months. Highly significant
decreases in total, trunk, leg, visceral, and abdominal
subcutaneous fat were observed. The trunk-to-leg ratio
also decreased significantly. Fractional loss of fat was
greater from the trunk depot than from the leg (30 6 5%
vs. 24 6 3%, P , 0.01).

Figure 1 shows plasma triglyceride (upper panel) and
total FFA (lower panel) concentrations during continuous
feeding. Triglyceride and FFA concentrations both de-
creased after weight loss (366 6 35 to 232 6 30 mg/dL and
186 6 17 to 115 6 10 mmol/L, respectively; both P ,
0.001). There were also significant decreases in plasma
glucose and insulin levels during continuous feeding
(206 6 11 to 155 6 12 mg/dL and 51 6 4 to 33 6 4 mU/mL,
respectively; both P , 0.005; Fig. 2).

Table 3 reports plasma [U-13C]oleate APE and [3H]oleate-
specific activities during the 330- to 390-min sampling
interval. These data show that steady-state conditions
were achieved with respect to both tracers. There was

TABLE 1
Subject characteristics at baseline and at 5 months

Baseline 5 months

Age (y) 52 6 2 —

Sex (n) —

Male 9
Female 4

Weight (kg) 104.8 6 4.3 90.5 6 4.7**
BMI (kg/m2) 33.8 6 1.0 29.2 6 1.1**
HbA1c (%) 7.9 6 0.3 6.3 6 0.2**
Triglycerides (mg/dL) 230 6 21 134 6 20**
Insulin sensitivity index 2.0 6 0.3 5.7 6 0.8**

**P , 0.001 vs. baseline.

TABLE 2
Body composition at baseline and at 5 months

Baseline 5 months
Mean 6 SEM Mean 6 SEM

Lean body mass (kg) 60.7 6 3.2 57.3 6 3.1**
TBF (kg) 40.1 6 2.1 29.2 6 2.6**
Trunk fat (kg) 25.4 6 1.2 17.8 6 1.6**
Leg fat (kg) 10.0 6 0.9 7.7 6 0.9**
Trunk fat (% TBF) 64 6 1 61 6 1†
Leg fat (% TBF) 24 6 1 26 6 1†
Trunk-to-leg ratio 2.7 6 0.2 2.5 6 0.2†
Abdominal SQ fat (cm2) 264 6 31 187 6 25**
Visceral fat (cm2) 328 6 18 208 6 22**

SQ, subcutaneous; TBF, total body fat. **P , 0.001 vs. baseline; †P ,
0.05 vs. baseline.

FIG. 1. Plasma triglyceride (upper panel) and total FFA (lower panel)
concentrations during continuous feeding, before and after weight loss.
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a significant decrease in oleate Ra and a borderline sig-
nificant increase in oleate clearance after weight loss,
whereas there was no change in fractional spillover (Table
4). The contribution of spillover to total oleate Ra in-
creased after weight loss from 63 6 6% to 83 6 5% (P ,
0.02).

The relationships between body fat depots and spillover
at baseline are shown in Fig. 3. There was a strong nega-
tive correlation between leg fat and spillover (r = 20.79,
P = 0.001). There was a lesser but still significant negative
correlation between trunk fat and spillover (r = 20.66, P =
0.015), and a positive correlation between trunk-to-leg ra-
tio and spillover (r = 0.56, P = 0.047). Total body fat mass
correlated negatively with spillover (Supplementary Fig.
1), but there was no relationship between visceral fat or
abdominal subcutaneous fat and spillover (data not
shown). Multivariate analysis revealed that leg fat was
a stronger negative predictor of spillover than truncal fat
(b = 20.8 vs. 20.3). The significant correlations between
body fat depots and spillover shown in Fig. 3 disappeared
after weight loss (Supplementary Fig. 2).

A significant positive correlation was found between D
spillover and leg fat, both at baseline and at 5 months (Fig.
4). There were no significant correlations among trunk fat,
the trunk-to-leg ratio, or visceral fat, and D spillover, be-
fore or after weight loss. No significant correlations were
found between D leg fat or D trunk fat and D spillover.
There was a borderline positive correlation between D
visceral fat and D spillover (P = 0.07). The proportion of
total body fat loss that was due to leg fat loss was calcu-
lated, dividing the subjects arbitrarily into a group with
baseline leg fat ,10 kg (6.9 6 0.4 kg, n = 5) and a group
with baseline leg fat .10 kg (11.9 6 0.9 kg, n = 8). The
individuals with higher baseline leg fat lost more leg fat as
a percentage of total fat loss than those with low baseline
leg fat (24 6 2% vs. 17 6 1%, P , 0.005). There was
a borderline significant correlation between the percent-
age of fat loss represented by leg fat and D spillover (R =
0.54, P = 0.057; data not shown).

DISCUSSION

In our study, a 5-month lifestyle intervention in obese
individuals with type 2 diabetes led to an average weight
loss of almost 14%. The change in body weight was ac-
companied by improvements in glycemic control, insulin
sensitivity, triglyceride concentrations, and meal-related
suppression of adipose tissue lipolysis. However, frac-
tional spillover, a reflection of the efficiency of dietary fat
storage, did not change. At baseline, there was a significant
negative correlation between spillover and body fat mass,
especially leg fat. Spillover correlated positively with the
trunk-to-leg ratio. These correlations disappeared after
weight loss, but baseline leg fat was a significant positive
predictor of the change in spillover occurring during
weight loss.

The continuous feeding paradigm used in our study was
successful in achieving steady-state concentrations of
glucose, insulin, FFA, and triglycerides, as previously

FIG. 2. Plasma glucose (upper panel) and insulin (lower panel) con-
centrations during continuous feeding, before and after weight loss.

TABLE 3
Plasma [U-13C]oleate APE and [3H]oleate SA during continuous feeding at baseline and at 5 months

Time (min)

330 345 360 375 390

[U-13C]oleate APE (%)
Baseline 0.079 6 0.007 0.080 6 0.006 0.080 6 0.007 0.074 6 0.005 0.077 6 0.006
5 months 0.098 6 0.007 0.091 6 0.008 0.090 6 0.007 0.090 6 0.007 0.089 6 0.007

[3H]oleate-specific activity (dpm/nmol)
Baseline 2.96 6 0.34 3.30 6 0.35 3.24 6 0.41 3.31 6 0.41 3.17 6 0.39
5 months 5.33 6 0.39 5.12 6 0.38 5.10 6 0.40 5.02 6 0.39 5.18 6 0.47
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described (16,17). We also achieved steady-state con-
ditions with respect to [U-13C]oleate enrichment and
[3H]oleate-specific activity, fulfilling the requirements for
calculation of precursor-product relationships (24). The im-
provement in glucose concentrations after weight loss,
occurring despite lower insulin concentrations in our sub-
jects, was due to improved whole-body insulin sensitivity,
as indicated by the higher insulin sensitivity index. These
changes reflect the effects of both negative energy balance
and weight loss (25). The improvement in insulin sensitivity
was also apparent at the level of adipose tissue lipolysis;
there was a decrease in FFA concentration and Ra after
weight loss despite a decrease in plasma insulin concen-
trations, consistent with previous studies (26). Triglyceride
concentrations also decreased, likely because of a decrease
in VLDL production (27).

Fractional spillover represents the portion of LPL-
generated fatty acids that are released into the plasma
FFA pool rather than transported locally into tissues.
Spillover can be determined by labeling endogenous chy-
lomicrons (8,9,28) or with the use of a labeled lipid emul-
sion (7), as was done in the current study. The labeled lipid
emulsion has proven to be an excellent surrogate for the
study of chylomicron triglyceride metabolism at the level
of LPL action. We have previously validated the method in
humans (18,29) and have shown that the tissue distribution
and spillover of the lipid emulsion (30) is similar to results
obtained when chylomicrons are labeled and infused in
animals (31).

Despite marked weight loss, there was no change in
spillover in our subjects. Most systemic spillover in
humans occurs in the splanchnic bed, at least in people
who are overweight and obese (32). Spillover in visceral
adipose tissue, in turn, correlates strongly with in-
tracellular lipolysis (30). We recently reported that insulin
infusion suppressed plasma FFA by ;40% during meal
absorption but did not reduce spillover in overweight and
obese subjects (16). Assuming that suppression of lipolysis
in visceral fat is required to decrease the high rates of
spillover in that tissue, and considering 1) the large con-
tribution of the splanchnic bed to systemic spillover (32)
and 2) the well-known resistance to the antilipolytic effect
of insulin in that tissue (33), the failure of weight loss to
reduce systemic spillover may reflect dysregulation of
visceral lipolysis that persists after weight loss. The
amount of visceral fat in our diabetic subjects after weight
loss remained markedly higher than that in healthy lean
volunteers and nearly fourfold greater than we have
reported in obese individuals after successful bariatric
surgery (34). We have recently found that nicotinic acid
infusion, which caused a reduction in plasma FFA similar
to that induced by insulin infusion (16), resulted in a sig-
nificant decrease in systemic spillover in lean and obese
volunteers (17). Considering that visceral fat contains

nicotinic acid receptors (35), these observations are con-
sistent with the idea that visceral fat is a major site of
spillover and that suppression of intracellular lipolysis is
required to reduce spillover in that tissue.

TABLE 4
Oleate Ra, clearance, and spillover during continuous feeding at
baseline and at 5 months

Baseline 5 months

Ra (mmol/min) 64.7 6 8.9 49.7 6 6.7*
Clearance (mL/min) 948 6 68 1,032 6 81†
Fractional spillover (%) 28.2 6 2.9 31.4 6 3.7

*P , 0.01 vs. baseline; †P = 0.07 vs. baseline.

FIG. 3. Relationship among systemic fractional spillover (y axis) and
leg fat (upper panel), trunk fat (middle panel), and trunk-to-leg ratio
(lower panel) at baseline.
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Abnormalities in lipid metabolism tend to be associated
with increases in upper body but not lower body fat (36).
Multivariate analysis revealed that leg fat was a stronger
negative predictor of spillover than trunk fat in our study,
although this finding should be interpreted cautiously in
view of the small number of participants. The strong neg-
ative correlation between leg fat and systemic fractional
spillover in our subjects indicates that systemic fat storage
is more efficient in individuals with larger amounts of leg
fat. This suggests that spillover in leg fat is lower than in
upper body fat. Votruba et al. (11) found that the amount
of dietary fat taken up in leg fat per gram of tissue
increases as a function of leg fat mass in nondiabetic
individuals, consistent with the idea that accumulation of
lower body fat is associated with a shift away from fat
storage in the upper body, where fractional spillover is
high (32), and toward fat storage in the lower body. If this
is the case, systemic fractional spillover could be relatively
low in an individual with high splanchnic fractional spill-
over, provided that the contribution of the splanchnic bed
to systemic uptake of meal fat was low. The explanation
for the disappearance of the correlations between fat
depots and spillover after weight loss is not apparent. It is
noteworthy that baseline fractional spillover in our di-
abetic subjects is similar to that in nondiabetic people
(16,17). This is consistent with a complex role for the
relative size of body fat depots in determining the overall
efficiency of meal fat uptake in adipose tissue. We ana-
lyzed data from a number of studies in aggregate (n = 64)
and found a positive correlation between systemic frac-
tional spillover and plasma FFA concentration (P ,
0.0001; unpublished results).

The trunk-to-leg ratio in this group of people with type 2
diabetes is nearly double that of obese nondiabetic indi-
viduals (unpublished results). Others have found that
people with type 2 diabetes have higher waist-to-hip ratios
(37) and more visceral fat (38) than nondiabetic control
subjects at the same BMI. Whether there is an association
between leg fat and spillover in obese nondiabetic people
or in lean individuals is not known.

We found that baseline leg fat was a significant predictor
of changes in spillover with weight loss; that is, spillover
tended to increase in individuals with high amounts of leg
fat and tended to decrease in those with small leg fat

depots. This is somewhat difficult to reconcile with the
association between a large leg fat depot and low rates of
spillover before weight loss. We found that the relative
contribution of leg fat to total fat loss was lower in indi-
viduals with a small leg fat depot at baseline than in people
who had larger amounts of leg fat and that there was
a borderline correlation between the percentage of fat loss
represented by leg fat and D spillover. This may indicate
that the leg assumes a greater role in meal fat disposal as
the amount of leg fat in relation to trunk fat increases. If fat
storage is inherently more efficient (i.e., lower fractional
spillover) in the leg than in the trunk, then systemic spill-
over would decrease as the contribution of the leg to
whole-body meal fat disposal increased, even if fractional
spillover in visceral and abdominal subcutaneous fat did
not change. It is possible that weight loss produces a shift
in the distribution of fat uptake such that a reduction in the
size of the leg fat depot reduces lower body fat uptake. The
reciprocal appears to hold true, at least in nondiabetic
men: with short-term supervised overfeeding, weight gain
was associated with an increase in lower body fat uptake
(39). In a recent study where healthy men were overfed, an
increase in the concentration of dietary fatty acids in FFA
was positively correlated with D visceral fat (40). The
investigators did not use an FFA tracer in that study, and
the relationship between dietary fatty acids in FFA and leg
fat was not reported. Nonetheless, the findings are con-
sistent with the observation in the current study of a bor-
derline correlation between D spillover and D visceral fat
resulting from weight loss and are also consistent with
a role for visceral fat in systemic spillover, as we reported
previously (32).

During positive energy balance, accumulation of addi-
tional fat in adipose tissue requires transport of fatty acids
from the circulation into that tissue. High rates of spillover,
such as appear to prevail in visceral fat, could represent
a mechanism for limiting gain of body fat. The concept that
human adipose tissue might also have limited storage ca-
pacity is not new (41), but evidence for this is lacking. An
overfeeding study (42) would be an ideal way to address
the question of limited fat storage but would be difficult to
justify on ethical grounds in people with diabetes. Tchou-
kalova et al. (43) found that overfeeding in lean individuals
resulted in increased abdominal fat cell size but not

FIG. 4. The relationship between D spillover and leg fat at baseline (left) and at 5 months (right).
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number but that fat cell number but not size increased in
leg fat. This suggests that lower body fat has greater
plasticity than upper body fat.

It has been estimated that anywhere from 20–25% (7) to
50% (10) of circulating FFAs derive from spillover, a con-
tribution that would be expected to increase with in-
creased intake of dietary fat. Although the mechanisms
that regulate spillover are poorly understood (44), the
current study suggests that body fat distribution and/or the
size of body fat depots is a determining factor. Increased
FFA availability plays a role in ectopic fat accumulation
(45), insulin resistance (2), hypertension (4), and dyslipi-
demia (3). It may also exert effects on energy expenditure
via sympathetic nervous system (5,46,47), uncoupling
protein-3 (48), or peroxisome proliferator–activated re-
ceptor-d (49) activation.

In summary, our study demonstrates that weight loss in
people with type 2 diabetes improves insulin sensitivity but
does not change mean systemic fractional FFA spillover.
At baseline, the size of the leg fat depot was associated
negatively with spillover and positively with D spillover
resulting from weight loss. Additional studies of regional
spillover in adipose tissue are needed to clarify these
results.
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