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Recent studies have proposed that pyruvate dehydrogenase E1 component

subunit alpha (PDHA1), a cuproptosis-key gene, is crucial to the glucose

metabolism reprogram of tumor cells. However, the functional roles and

regulated mechanisms of PDHA1 in multiple cancers are largely unknown.

The Cancer Genome Atlas (TCGA), GEPIA2, and cBioPortal databases were

utilized to elucidate the function of PDHA1 in 33 tumor types. We found that

PDHA1 was aberrantly expressed in most cancer types. Lung adenocarcinoma

(LUAD) patients with high PDHA1 levels were significantly correlated with poor

prognosis of overall survival (OS) and first progression (FP). Kidney renal clear

cell carcinoma (KIRC) patients with low PDHA1 levels displayed poor OS and

disease-free survival (DFS). However, for stomach adenocarcinoma (STAD), the

downregulated PDHA1 expression predicted a good prognosis in patients.

Moreover, we evaluated the mutation diversity of PDHA1 in cancers and

their association with prognosis. We also analyzed the protein

phosphorylation and DNA methylation of PDHA1 in various tumors. The

PDHA1 expression was negatively correlated with tumor-infiltrating immune

cells, such as myeloid dendritic cells (DCs), B cells, and T cells in pan-cancers.

Mechanically, we used single-cell sequencing to discover that the

PDHA1 expression had a close link with several cancer-associated signaling

pathways, such as DNA damage, cell invasion, and angiogenesis. At last, we

conducted a co-expressed enrichment analysis and showed that aberrantly

expressed PDHA1 participated in the regulation of mitochondrial signaling

pathways, including oxidative phosphorylation, cellular respiration, and

electron transfer activity. In summary, PDHA1 could be a prognostic and

immune-associated biomarker in multiple cancers.
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Introduction

The incidence and mortality of cancers are growing

rapidly worldwide. The extremely complex process of

tumorigenesis and poor prognosis is still a great challenge

for cancer treatment (Zhang et al., 2017; Li C et al., 2020; Bray

et al., 2020). Thus, it is urgent to explore novel candidate genes

for making early diagnosis and predicting the prognosis in

various malignancies. Pan-cancer analysis is highly significant

and realizable for the evaluation of novel cancer-associated

genes (ICGC/TCGA Pan-Cancer Analysis of Whole Genomes

Consortium, 2020).

Pyruvate dehydrogenase E1 component subunit alpha

(PDHA1), a critical component of a pyruvate dehydrogenase

(PDH) complex (PDC), is indispensable in glucose metabolism

and participates in oxidative phosphorylation and tricarboxylic

acid cycle in mitochondria (Patel et al., 2014). The PDC activity

was regulated by PDH kinases 4 (PDK1-4) at three independent

serine (Ser, S) residues, S293, S300, and S232 (Kolobova et al.,

2001). The inactivation of PDHA1 promotes tumor glycolysis by

downregulating the PDC activity (Yu et al., 2017). In head and

neck squamous cell carcinoma (HNSC) patients, high expression

of PDK1 significantly promoted the phosphorylation of

PDHA1 at Ser-232, resulting in the poor outcome (Golias

et al., 2016). In gastric cancer, downregulated

PDHA1 promoted cancer progression by increasing glycolysis

(Liu et al., 2018). In addition, PDHA1 also played a critical role in

cancer chemoresistance. In esophageal cancer KYSE450 cells,

PDHA1 knockout could promote the resistance of docetaxel and

paclitaxel through enhancing glycolysis (Liu et al., 2019). In

prostate cancer, silencing PDHA1 significantly enhanced

resistance to chemotherapy by inducing anaerobic glycolysis

and enhancing migration ability (Li et al., 2016). Nevertheless,

the detailed roles of PDHA1 in various cancers remain largely

unclear.

In our study, a pan-cancer analysis was performed to explore

the role and mechanism of PDHA1 in 33 human cancer types. By

utilizing multiple bioinformatics tools, we carried out a

systematic analysis of the prevalence and predictive values of

PDHA1 in multiple tumor types. The altered characteristics of

PDHA1 mainly contained its expression levels, mutation status,

protein phosphorylation, and methylations. Furthermore, we

explored the associations between PDHA1 expression and

immunotherapy-associated signatures.

Materials and methods

Identification of PDHA1 expression based
on bioinformatics databases

We compared the PDHA1 expression in tumor tissue and

normal tissues by performing Tumor Immune Estimation

Resource (TIMER2) (Li T et al., 2020) and Gene Expression

Profiling Interactive Analysis (GEPIA2) (Tang et al., 2019). In

GEPIA2, the p-value cutoff was 0.05, and the log2 (fold change)

cutoff was 1. Next, we utilized the GEPIA2 database to analyze

the association between PDHA1 expression and pathological

stages in 33 cancer types. Using the Clinical Proteomic Tumor

Analysis Consortium (CPTAC) (Edwards et al., 2015), we

analyzed the protein expression, protein and phosphoprotein

levels, and DNA methylation of PDHA1. Z-values represent

standard deviations from the median across samples for the

given cancer type. Log2 spectral count ratio values from CPTAC

were first normalized within each sample profile and then

normalized across samples. The information and the

characteristics of the samples and cohorts from GEPIA2 are

displayed in Supplementary Table S1.

Survival prognosis analysis

Across 33 tumor types, the prognostic values of PDHA1,

including overall survival (OS), first progression (FP), disease-

free survival (DFS), and progression-free survival (PFS), were

performed in the GEPIA2 database, The Cancer Genome Atlas

(TCGA) (Wang et al., 2016), and the Kaplan–Meier plotter (Hou

et al., 2017). The heatmap data and survival plots of PDHA1 were

displayed. In addition, by using the cBioPortal tool (Gao et al.,

2013), we explored the mutation frequency, mutation type, and

site information of PDHA1 across 33 tumors. Also, we assessed

the survival values of PDHA1 genetic alteration, including OS

and DFS, across 33 cancers. The patients’ alteration information

is displayed in Supplementary Table S2. The characteristics of

PDHA1 mutation in samples and cohorts are displayed in

Supplementary Table S3. The clinical information on

PDHA1 alterations is displayed in Supplementary Table S4.

Analysis of immune infiltration

We analyzed the relationship between PDHA1 expression

and immune infiltrates across all tumors by using the

TIMER2 tool. We selected B cell, natural killer cell (NK cell),

macrophage cell, dendritic cell (DC), CD8+ T cell, neutrophil,

monocyte cell, cancer-associated fibroblast (CAF), and

regulatory T cells (Tregs) for detailed analysis. Seven

algorithms, namely, TIMER, EPIC, MCPCOUNTER,

CIBERSORT, CIBERSORT-ABS, QUANTISEQ, and XCELL,

were applied for the analysis of immune infiltration.

Analysis of single-cell sequencing data

At the single-cell level, we explored correlation data between

PDHA1 expression and different tumor functional statuses by
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searching CancerSEA (Yuan et al., 2019). We drew a heatmap to

indicate the significant correlation. The top four significantly

different functional states (p < 0.0001) and the T-SNE diagram

in tumors were obtained based on the CancerSEA database. The

correlation and p-value of the cancer category and tumor functional

status are displayed in Supplementary Table S5. The correlation

matrix data are displayed in Supplementary Table S6.

Enrichment analysis of PDHA1-related
genes

The STRING website was utilized for the molecule

interaction network analysis (Franceschini et al., 2013).

Furthermore, GEPIA2 was used to download the top

100 similar genes of PDHA1 in pan-cancer (Supplementary

FIGURE 1
Aberrant expression of PDHA1 in pan-cancer. (A)mRNA level of PDHA1 performed by the TIMER2 database. (B)Box plot of PDHA1mRNA level in
DLBC, LAML, and THYM performed by the GEPIA2 database. (C) Total protein level of PDHA1 in normal tissue and COAD, BRCA, KIRC, GBM, HNSC,
PAAD, and LIHC performed by CPTAC. (D) Relationship between PDHA1 expression and tumor pathological stage performed in GEPIA2. *p < 0.05;
**p < 0.01; ***p < 0.001.
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Table S7). Next, using the Xiantao bioinformatics toolbox

(https://www.xiantao.love/products), we explored the Pearson

correlation between PDHA1 and the selected genes. In

addition, a heatmap of the expression profile for the

selected genes was obtained. GO and KEGG enrichment

analyses about PDHA1 similar genes were performed by

the Xiantao bioinformatics toolbox.

Statistical analysis

In TIMER2, the statistical significance computed by the

Wilcoxon test is annotated by the number of stars. In GEPIA2,

we used the ANOVA method to compare tumor vs. all normal

samples. We utilized Spearman’s rank correlation coefficient

to evaluate the correlation between two groups. We used the

Kaplan–Meier method to assess the association between

prognosis of patients and PDHA1 expression or mutation

levels. p < 0.05 was considered a statistically significant

difference (Yang et al., 2020).

Results

Aberrant expression of PDHA1 in pan-
cancer

In this study, TIMER2 was used to research the differential

expression of PDHA1 by comparing tumors and normal tissues.

As shown in Figure 1A, the PDHA1 expression in seven tumor

tissues, namely, cervical squamous cell carcinoma and

endocervical adenocarcinoma (CESC), cholangiocarcinoma

(CHOL), liver hepatocellular carcinoma (LIHC), lung

adenocarcinoma (LUAD), lung squamous cell carcinoma

(LUSC), stomach adenocarcinoma (STAD), and uterine

corpus endometrial carcinoma (UCEC), was significantly

upregulated. In contrast, PDHA1 was significantly

downregulated in six tumors, namely, breast invasive

carcinoma (BRCA), glioblastoma multiforme (GBM), kidney

renal clear cell carcinoma (KIRC), kidney renal papillary cell

carcinoma (KIRP), pheochromocytoma and paraganglioma

(PCPG), and thyroid carcinoma (THCA). We further assessed

FIGURE 2
Survival analysis of PDHA1 expression in pan-cancer. (A,B) GEPIA2 indicated the roles of PDHA1 expression in patients’ prognosis, including OS
(A) and DFS (B). High cutoff (50%) and low cutoff (50%) values were used as the expression thresholds for splitting the high-expression and low-
expression cohorts. The cutoff value was as follows: p-value < 0.01 and | logFC| > 1.
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the differential expression of PDHA1 between tumor and normal

tissues by matching TCGA and GTEx in several cancers. We

found the upregulated expression of PDHA1 in lymphoid

neoplasm diffuse large B-cell lymphoma (DLBC) and

thymoma (THYM) and the downregulated expression of

PDHA1 in acute myeloid leukemia (LAML) (Figure 1B). For

other tumors, there were no significant differences in the

expression of PDHA1 (Supplementary Figure S1A).

To better understand the differential expression, the CPTAC

dataset was used to assess the PDHA1 protein level in large-scale

proteome data from the National Cancer Institute. As shown in

Figure 1C, the total protein expression of PDHA1 was

significantly decreased in colon adenocarcinoma (COAD),

BRCA, KIRC, GBM, HNSC, and pancreatic adenocarcinoma

(PAAD) and elevated in LIHC. The total protein expression

of PDHA1 in LUAD, ovarian serous (OV), and UCEC showed no

differential expression (Supplementary Figure S1B).

The GEPIA2 tool was also used to analyze the relationship

between the PDHA1 expression and tumor pathological stage.

Figure 1D showed stage-specific change of PDHA1 in eight

FIGURE 3
Genetic alteration of PDHA1 in pan-cancer. (A) Mutation status of PDHA1 in pan-cancers was performed by the cBioPortal tool. (B) Main
mutation types of PDHA1. (C) A212S/Dmutation site was visualized in the 3D structure of PDHA1 protein. (D) Roles of PDHA1 alteration in the patients’
prognosis, including OS, DFS, and PFS.
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tumor types, including KIRC, KIRP, BRCA, THCA, PAAD,

testicular germ cell tumors (TGCTs), and esophageal

carcinoma (ESCA). In other cancers, there was no clear

association between the PDHA1 expression and patients’ stage

(Supplementary Figure S1C).

Survival analysis of PDHA1 expression in
pan-cancer

Next, we used GEPIA2 to explore the role of PDHA1 in

patients’ prognosis, including OS and DFS. High expression of

PDHA1 was associated with poor prognosis in patients with

LUAD (p = 0.019). Inversely, high expression of PDHA1 was

associated with good prognosis in patients with KIRC (Figures

2A,B). Furthermore, we used the Kaplan–Meier plotter tool to

identify the survival values of PDHA1. As shown in

Supplementary Figure S2, we found that a high

PDHA1 expression level was associated with poor prognosis

in patients with lung cancer and STAD. These results indicated

the promising roles of PDHA1 in the patients’ prognosis of lung

cancer.

Genetic alteration of PDHA1 in pan-cancer

Genetic alterations have been proved to affect tumorigenesis

and treatment (Yang Z et al., 2021). Thus, we explored the

PDHA1 genetic alterations in human tumor samples.

According to our analysis, the frequency of PDHA1 alteration

(7.69%) is the highest in undifferentiated STAD with “deep

deletion” as the primary type. Endometrial carcinoma had the

highest incidence of the “mutation” type with a frequency of 4.1%

(Figure 3A). As shown in Figure 3B, there were 92 mutations in

the full sequence of PDHA1. Also, “mutation” seemed to be the

main type of genetic alteration, which is mainly located within

FIGURE 4
Protein phosphorylation and DNA methylation of PDHA1 in pan-cancer. (A,B) CPTAC indicated the phosphorylation levels of PDHA1 at S232,
S293, and S295. (C) DNA methylation of PDHA1 between normal and primary tumor tissues was performed by the UALCAN database.
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the dehydrogenase E1 component (E1_dh) domain (67–361).

For instance, a missense mutation with potential clinical

significance, A212S/D alteration, was only detected in three

cases of uterine endometrioid carcinoma. Also, the A212S/D

site was visualized in the 3D structure of PDHA1 protein

(Figure 3C). After this, we systematically explored the

relationship between genetic alterations of PDHA1 and the

clinical survival prognosis of patients. As shown in Figure 3D,

the genetic alteration of PDHA1 showed a poor prognosis in

adrenocortical carcinoma (ACC) and KIRC patients and a good

prognosis in LUAD patients.

Protein phosphorylation and DNA
methylation of PDHA1 in pan-cancer

Recent studies have demonstrated that

PDHA1 phosphorylation could promote tumor migration

ability and therapeutic resistance by suppressing its PDH

activity (Zimmer et al., 2016; Jin et al., 2021). We further

explored the phosphorylation of PDHA1 between normal and

primary tumor tissues. Using the CPTAC dataset, we found the

decreased phosphorylation level of S232 for BRCA, decreased

phosphorylation level of S293 for KIRC and HNSC, increased

phosphorylation level of S293 for LUAD and PAAD, decreased

phosphorylation level of S295 for GBM, and increased

phosphorylation level of S295 for LIHC (Figures 4A,B).

In addition, in multiple cancers, DNA methylation throughout

the genome is an epigenetic modification contributing to the

regulation of cancer-associated genes (Liu D et al., 2021; Rogozin

et al., 2021). Research studies have verified that PDK4 methylation

could display the oncogenic roles in colon cancer (Leclerc et al.,

2017). However, the underlying roles of PDHA1 methylation in

various cancers remain largely unclear. In our study, we

demonstrated the decreased promoter methylation level of

PDHA1 for BLCA, LIHC, and TGCT and increased promoter

methylation level of PDHA1 for UCEC (Figure 4C). No obvious

changes in methylation values of PDHA1 could be found in other

cancers (Supplementary Figure S3).

The roles of PDHA1 in the immune
infiltration in pan-cancer

Here, we explored the potential correlation between

PDHA1 expression and tumor-infiltrating immune cells by

performing comprehensive research. Seven algorithms,

namely, TIMER, EPIC, MCPCOUNTER, CIBERSORT,

CIBERSORT-ABS, QUANTISEQ, and XCELL, were applied

for the estimation of immune infiltration cells in all TCGA

FIGURE 5
Roles of PDHA1 in the immune infiltration in all TCGA tumor types. (A–D) Correlation heatmap between PDHA1 expression and tumor-
infiltrating immune cells across 33 cancer typeswas displayed, including DC (A), B cell (B), CAF (C), and Tregs (D). A positive correlationwasmarked as
red color, while a negative correlation was marked as blue color. Nonsignificant correlations values were marked with a cross.

Frontiers in Pharmacology frontiersin.org07

Deng et al. 10.3389/fphar.2022.947372

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.947372


tumor types. As shown in Figures 5A–D, we discovered a

negative correlation between the PDHA1 expression and the

estimated infiltration value of myeloid DC for COAD, B cell

for TGCT, T cell for THCA, and CAF for BRCA, COAD,

KIRC, KIRP, LUSC, STAD, and THCA. There was no

significant correlation between PDHA1 levels and other

tumor-infiltrating immune cells, such as NK cell,

macrophage, neutrophil, monocyte cell, and Tregs

(Supplementary Figure S4).

Expression pattern of PDHA1 in a single
cell and its relationship with the cancer
functional status

The recently developed single-cell sequencing

technologies could be used to overcome the cell

heterogeneity in tumors (Liu J et al., 2021). We searched

the CancerSEA website to verify the expression of

PDHA1 at the single-cell level in different cancers and its

relationship with the tumor functional status. As shown in

Figure 6A, the heatmap showed that PDHA1 had a strong

correlation with fourteen tumor functional statuses in most

cancer types. Figure 6B showed the positive relationship

between the PDHA1 expression and DNA repair in uveal

melanoma (UM), DNA damage in retinoblastoma (RB),

invasion in acute lymphoblastic leukemia (ALL), and

angiogenesis in LUAD. PDHA1 expression profiles were

shown at single-cell levels of UM, RB, ALL, and LUAD by

a T-SNE diagram (Figure 6C). The scatter plot describing the

correlations between the gene expression and tumor

functional status was added as a supplement

(Supplementary Figure S5). These results suggested that

PDHA1 might play a crucial role in the biological processes

of cancer progression.

Co-expression network of PDHA1 and
enrichment pathway analysis

Finally, to better understand the molecular mechanism of

PDHA1 in tumorigenesis and development, we used the

STRING tool to construct the PDHA1-interacted molecule

network. A total of 20 experimentally identified PDHA1-

binding molecules were acquired (Figure 7A). Then, we used

the GEPIA2 tool to acquire the top 100 similar genes correlated

FIGURE 6
Expression pattern of PDHA1 at the single-cell level and its relationship with the cancer functional status. (A) Correlation between
PDHA1 expression and different tumor functional status was displayed as a heatmap performed by the CancerSEA database. (B)Correlation between
PDHA1 expression and four significantly different functional states. (C) PDHA1 expression profiles at single-cell levels of UM, RB, ALL, and LUAD by
the T-SNE diagram. *p < 0.05; **p < 0.01; ***p < 0.001.
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with PDHA1 expression. The expression of PDHA1 was

positively associated with apoptosis-inducing factor

mitochondria associated 1 (AIFM1, R = 0.48), ATP synthase

membrane subunit C locus 3 (ATP5G3, R = 0.48), coenzyme Q9

(COQ9, R = 0.47), estrogen-related receptor alpha (ESRRA, R =

0.49), succinate-CoA ligase GDP/ADP-forming subunit alpha

FIGURE 7
Co-expression network and enrichment pathway analysis of PDHA1. (A) In total, 20 experimentally identified PDHA1-binding molecules were
acquired by STRING. (B) Top six PDHA1-correlated genes analyzed by GEPIA2, including AIFM1, ATP5G3, COQ9, ESRRA, SUCLG1, and UQCRC1. (C)
Heatmap representation of the expression correlation between PDHA1 and the top six PDHA1-correlated genes, AIFM1, ATP5G3, COQ9, ESRRA,
SUCLG1, and UQCRC1, in 33 tumors. (D) Roles of PDHA1 in the metabolism signaling pathway by performing GSEA.
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(SUCLG1, R = 0.5), and ubiquinol-cytochrome C reductase

core protein 1 (UQCRC1, R = 0.48) (Figure 7B and

Supplementary Table S8). The heatmap demonstrated that

PDHA1 had a strong positive correlation with the six

aforementioned genes in most cancer types (Figure 7C). By

performing GSEA, we further verified the potential roles of

PDHA1-associated molecules in the regulation of metabolism

signaling pathways, including pyruvate metabolism,

metabolism of carbohydrates, oxidative phosphorylation,

and citric acid cycle (Figure 7D). In

addition,Supplementary Figure S6A and Supplementary

Table S9 showed that PDHA1 was involved in

tumorigenesis through the regulation of oxidative

phosphorylation, Parkinson’s disease, nonalcoholic fatty

liver disease, and thermogenesis by performing KEGG

analysis. GO enrichment also indicated that PDHA1-

associated molecules were significantly related to cellular

respiration, electron transfer activity, and mitochondrial

inner membrane (Supplementary Figures S6B–D;

Supplementary Table S9).

Discussion

PDHA1, a key component of PDH, is a rate-limiting

enzyme complex for maintaining the tricarboxylic acid

cycle (TCA cycle). Emerging studies have demonstrated

that cancer metabolism regulated by PDHA1 plays a key

role in cancer progression and metastasis (Yetkin-Arik

et al., 2019). Tsvetkov et al. (2022) demonstrated that

copper-induced cell death is a novel cell death involved in

human tumors. Using a whole-genome CRIPSR-Cas9 positive

selection screen, they found that PDHA1 may play a pivotal

role in malignancies by regulating cuproptosis. Nevertheless,

the detailed role of PDHA1 in cancers and the underlying

mechanism driving tumor pathogenesis are still largely

unclear. Thus, we performed a pan-cancer analysis for

PDHA1.

In our result, augmented levels of PDHA1 were observed

in the tumor tissues of CESC, CHOL, LIHC, LUAD, LUSC,

STAD, and UCEC, whereas low expression of PDHA1 was

observed in BRCA, GBM, KIRC, KIRP, PCPG, and THCA.

These results indicated that PDHA1 may play different roles

in different types of cancers. In addition, we verified that

upregulated PDHA1 predicted poor OS for patients in LUAD,

good OS and DFS for patients in KIRC, and poor DFS for

patients in KIRC. The Kaplan–Meier plotter identified that a

high PDHA1 expression level was associated with poor

prognosis of OS and PPS for STAD. This suggested that

PDHA1 may be a potential biomarker for predicting the

prognosis of tumor patients.

In lung cancer, the study of Cevatemre et al. (2021)

showed that knockdown of PDHA1 expression confers

chemoresistance in A549 cells by inducing the

epithelial–mesenchymal transition process. The study of Ma

et al. (2018) demonstrated that dichloroacetate acid (DCA), a

pyruvate dehydrogenase kinase inhibitor, could produce a

therapeutic benefit in A549 and H1299 cells by activating

PDHA1. Here, in LUAD, we demonstrated that patients with

PDHA1 genetic alteration have a better prognosis in OS. Also,

the phosphorylation level of PDHA1 S293 increased in LUAD.

The single-cell transcriptomic sequencing study suggested

that PDHA1 expression was significantly associated with

several cancer-associated signaling in LUAD, including cell

cycle, DNA damage, and DNA repair.

Previous research has demonstrated that decreased

SIRT5 expression in KIRC accelerated the Warburg effect

through PDHA1 hypersuccinylation, resulting in

tumorigenesis and progression (Yihan et al., 2021). Here, in

KIRC, we found a negative correlation between the expression

of PDHA1 and clinical staging by exploring TCGA-KIRC

datasets. Furthermore, the phosphorylation level of

PDHA1 S293 significantly decreased in KIRC. Patients with

PDHA1 genetic alteration displayed a poor prognosis in DFS

and PFS. These results indicated that aberrant alterations of

PDHA1 might participate in the KIRC progression and

prognosis.

Currently, the tumor microenvironment (TME) makes a

significant impact on malignancies (Bi et al., 2020; Jia et al.,

2021; Li et al., 2021). As a major component of TME, CAF has

multiple pro-tumorigenic functions during tumorigenesis

(Yang W et al., 2021). Sun et al. (2019) demonstrated that

IL-6 was increased in the supernatant of isolated CAFs,

which could promote BRCA cell proliferation. In recent

years, emerging studies have proved the well-established

role of B cells in shaping antitumor immunity. Song et al.

(2022) found that B-cell marker genes could effectively

indicate the patients’ survival and provide targets for

immunotherapy in lung cancer. Our study showed that the

PDHA1 expression was negatively correlated with CAFs,

DCs, B cells, and T cells in many cancers. However, the

potential mechanism of PDHA1 in regulating TME requires

further study.

Nevertheless, this study still has some limitations. First,

the specific molecular mechanisms of PDHA1 on

cuproptosis in multiple cancers have not been explored in

this study, especially the roles of PDHA1 expression, genetic

alterations, protein phosphorylation, and DNA methylation

in the regulation of cuproptosis in tumor progression need to

be further identified. Second, more in vivo and in vitro

studies about the underlying mechanisms of PDHA1 in

cancer progression require further investigation. Third, we

found the double-edged roles of PDHA1 as oncogenes or

tumor suppressors in different cancers, which might be due

to the different origins of cancer cells and the tumor

heterogeneity.
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In summary, by performing a comprehensive pan-cancer

analysis of PDHA1, we displayed the abnormal expression

profiles of PDHA1 and its correlation with clinical prognosis

and immune response. In addition, we also analyzed the protein

phosphorylation and methylation values of PDHA1 in a variety

of human cancers. These results could help to clarify the

underlying functions of PDHA1 in tumorigenesis.
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