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To the Editor,
Mutations affecting the genes DNMT3A, TET2, and ASXL1—

commonly referred to as DTA mutations—belong to the founding
mutations in acute myeloid leukemia (AML) but usually are not
capable to initiate the disease by themselves [1]. While TET2
mutations do not have a common hotspot, mutations in DNMT3A
and ASXL1 frequently occur at specific positions (DNMT3A in R882
and ASXL1 as G646fs*12, henceforward referred to as “canonical”).
DTA mutations seem to grant a proliferation advantage to
hematopoietic progenitor cells, leading to their expansion in
otherwise healthy individuals over time and also to a rapid bone
marrow repopulation after chemotherapy in AML patients [2].
Thus, their detection in complete remission can be attributed to
either measurable residual disease (MRD) with associated higher
relapse risk or a pre-leukemic clone with a much lower risk of AML
reoccurrence. Analyses that studied the dynamic mutation burden
during AML disease course described a lower probability of DTA
mutations clearance after chemotherapy compared to mutations
in genes reflecting secondary genetic events, such as FLT3 or NRAS
[3, 4]. Furthermore, while DTA mutations often persisted at high
variant allele frequencies (VAFs) in AML remission, these aberra-
tions mostly do not lead to increased relapse rates within the
follow-up time of the respective studies [4, 5]. On the other hand,
when mutation burden and clinical course were correlated in
single individuals, at least in some patients, DNMT3A mutations
paralleled the dynamics of the NPM1 mutation and clinical disease
burden [6]. However, in studies not considering the specific
mutation type of DTA mutations, a clinical utility for MRD
detection could not be shown after induction therapy [4, 7] or
at the end of treatment [4]. Subsequently, a limited relevance as
MRD markers in AML patients was suggested which led to the
exclusion of DTA mutations from most MRD studies [7, 8].
Although randomized trials are lacking, there is evidence that

allogeneic hematopoietic stem cell transplantation (HSCT) may
improve outcomes in patients who remain MRD positive after
intensive chemotherapies [3, 9], with the caveat of inferior
outcomes for MRD- positive compared to MRD-negative patients
after HSCT [8, 10, 11]. Two studies impressively pointed out that
the detection of persisting gene mutations at HSCT associates
with adverse clinical outcomes [8, 10]. However, DNMT3A
mutations were excluded in one analysis [8] and both studies
did not report on ASXL1 mutations—most likely due to the
difficulties to detect insertions at codon 646 by NGS technology.
Due to restricted patient numbers, the remaining data on TET2

and DNMT3A were not sufficient to draw clinical conclusions prior
to HSCT [8, 10]. Thus, the possibilities to define risk stratification
prior to allogeneic HSCT in patients harboring DTA mutations have
not yet been evaluated. One study analyzed the impact of
detectable DTA mutations after HSCT but could not draw explicit
conclusions [12], and none of the aforementioned studies
analyzed canonical and non-canonical DTA mutations separately.
We analyzed 68 AML patients who harbored at least one DTA

mutation at diagnosis and received an allogeneic HSCT at a
median age of 64.1 (range 34.7–75.3) years. Patients’ character-
istics are given in Supplementary Table S1. Written informed
consent was obtained from all patients in accordance with the
Declaration of Helsinki. Sixty-three patients had one mutated DTA
gene (37 affecting DNMT3A, 13 affecting TET2, and 13 affecting
ASXL1), four patients had two mutated DTA genes (three with
mutated DNMT3A and mutated TET2, and one with mutated TET2
and ASXL1) and one patient harbored mutations in all three genes.
Of the detected mutations in ASXL1 and DNMT3A, 3/15 and 16/41
were non-canonical, not affecting the respective G646 or R882
hotspot regions. Frequent co-mutations and the distribution of
DTA mutated patients within the ELN2017 risk groups are shown
in Fig. 1A, B. There were no outcome differences between patients
harboring a DNMT3A, TET2, or ASXL1 mutation at diagnosis
(Fig. S1).
Analyzing patients with available paired samples at diagnosis

and HSCT (for applied assays and assay sensitivity see Table S2
and Figs. S2, S3), the majority of patients (84%) had persisting DTA
mutations. DNMT3A mutations persisted in 25/29, TET2 in 13/14,
and ASXL1 in 6/10 patients in remission at HSCT. Of the patients
with multiple DTA mutations, mutations at HSCT concordantly
persisted in 2 of 3 patients. In one patient an ASXL1 mutation was
not detectable while a TET2mutation persisted at a VAF of 1.1%. In
DNMT3A and ASXL1 mutated patients, there was no difference
regarding the frequency of persisting canonical vs non-canonical
mutations (17/19 vs 8/10, P= 1 and 4/7 vs 2/3, P= 1, respectively).
Of the analyzed non-canonical mutations in DNMT3A 10% were
frameshift, 60% were missense, and 30% were nonsense, while in
ASXL1 all non-canonical mutations were nonsense (Table S3).
Overall, DTA mutations persisted at HSCT at highly variable VAFs
with a median of 11.7% (range 0.4–42.5) for DNMT3A, 15.2%
(range 0.3–64.5) for TET2 and 5.1% (range 0.4–16.1) for ASXL1
mutations. Non-canonical DNMT3A and ASXL1 mutations tended
to persist at lower VAFs compared to canonical mutations (P= .08,
Fig. 1C). Characteristics of canonical compared to non-canonical
DNMT3A and ASXL1 mutations at HSCT are given in Table S4.
In line with the general opinion in the field, we did not observe an

association of persisting DTA mutations at HSCT with a distinct
cumulative incidence of relapse (CIR, P= .37) or overall survival (OS,
P= 0.30, Fig. 1D). However, in DNMT3A or ASXL1 mutated patients,
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the persistence of a non-canonical mutation associated with
significantly higher CIR (P= 0.01) and shorter OS (P= 0.04) compared
to the persistence of canonical mutations (Fig. 1E) suggesting that
they—in contrast to canonical mutations—might have a different
clinical value as they seem to be able to detect AML MRD.
As studies regarding the utility of MRD markers at HSCT for DTA

mutated patients have not been published, we correlated available
MRD data at HSCT for our patient cohort with outcome adapting
established MRD assays in our institution (Supplementary Material)
[11]. Including non-canonical DNMT3A and ASXL1 mutations MRD to
the MRD information derived from NPM1 mutation and BAALC/ABL1
and MN1/ABL1 copy numbers MRD led to improved Bayesian
Information Criterion (BIC) models for CIR and OS prediction
(Table S5). Combining all five MRD markers, DTA mutated patients
with at least one positive MRD marker at HSCT had a higher CIR (P=
0.002) and shorter OS (P= 0.001, Fig. S4). MRD positivity retained its
prognostic power in multivariate analyses for CIR and OS, (Table S6)
while also the number of positive MRD markers (no vs one vs ≥ two
positive MRD markers) correlated with stepwise worse outcomes
after HSCT (Fig. S4).
With a median age at HSCT of 64.7 years our study reflects a

common AML patient population. Median follow up was 5.0 years
from HSCT, a time interval in which the majority of AML patients
suffer their relapse. However, the study’s limitations are its’
restricted patient numbers, as well as its retrospective nature with
the need for confirmation in larger clinical trials.
In conclusion, our data demonstrate that overall, the

detection of DTA mutations at diagnosis and prior to allogeneic
HSCT does not associate with adverse outcomes, including late

events after HSCT. However, non-canonical DNMT3A and ASXL1
mutations seem to persist at lower VAF levels and associate with
worse outcomes compared to the persistence of canonical
mutations, challenging the current paradigm that all DTA
mutations are unsuitable for MRD evaluation. Including non-
canonical DNMT3A and ASXL1 mutations in the armory of useful
MRD markers may help to improve the risk stratification of DTA
mutated patients.
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Fig. 1 Analysis of DTA mutations at diagnosis and as MRD markers prior to allogeneic HSCT. A Co-mutational pattern and (B) Distribution
of the three ELN2017 risk groups within DNMT3A, TET2, and ASXL1 mutated AML patients at diagnosis. C Overview of VAF levels of persisting
DNMT3A, TET2, and ASXL1 mutations and comparison of persisting non-canonical vs canonical DNMT3A or ASXL1 mutations at HSCT.
D Cumulative Incidence of Relapse and Overall Survival according to persisting vs non-persisting DTA mutations at HSCT (n= 50).
E Cumulative Incidence of Relapse and Overall Survival according to the presence of a non-canonical vs a canonical mutation in patients with
persisting DNMT3 or ASXL1 mutations.
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