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Image analysis in digital pathology has proven to be one of themost challengingfields inmedical imaging for AI-driven
classification and search tasks. Due to their gigapixel dimensions, whole slide images (WSIs) are difficult to represent
for computational pathology. Self-supervised learning (SSL) has recently demonstrated excellent performance in learn-
ing effective representations on pretext objectives, which may improve the generalizations of downstream tasks. Pre-
vious self-supervised representation methods rely on patch selection and classification such that the effect of SSL on
end-to-end WSI representation is not investigated. In contrast to existing augmentation-based SSL methods, this
paper proposes a novel self-supervised learning scheme based on the available primary site information. We also de-
sign a fully supervised contrastive learning setup to increase the robustness of the representations forWSI classification
and search for both pretext and downstream tasks. We trained and evaluated themodel onmore than 6000WSIs from
The Cancer Genome Atlas (TCGA) repository provided by the National Cancer Institute. The proposed architecture
achieved excellent results on most primary sites and cancer subtypes. We also achieved the best result on validation
on a lung cancer classification task.
Introduction

The emergence of digital pathology has opened new horizons in medi-
cal image analysis for diagnostic purposes. Histopathology images, also
known aswhole slide images (WSIs), are generally accompaniedwith infor-
mation about the site and type of diseases andmalignancies. The recent ad-
vances in digital technology enable the fast digital scanning of tissue slides
to generate high-quality WSIs. As a result, the volume of WSI archives in
hospitals and clinics has been drastically increasing. Consequently, the ne-
cessity of timely analysis of WSIs has become apparent to address urgent
needs in daily workflow of modern pathology. Hence, the digital scan-
ning of slides, alongside the other benefits of pathology, has made com-
puterized techniques a favorite approach for image analysis and
diagnosis. The field of digital pathology has been drastically changing
due to the recent success of artificial neural networks in the field of
AI. Deep learning can facilitate various pathology tasks such as segmen-
tation, classification of regions and nuclei, and searching amongWSIs to
find similar morphology. However, the representation of digitized pa-
thology slides has proven to be rather challenging due to the large
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data size of WSIs (generally larger than 50 000 × 50 000 pixels).
Besides, the morphological characteristics that discriminate different
diagnoses may be microscopically small which causes a fundamental
challenge for WSI representation. Creating a single vector representa-
tion directly from a WSI is subject to research with current con-
volutional neural networks (CNNs). A common approach is to break a
WSI into many small patches, feed each patch to a CNN, and aggregate
the output features to develop a single WSI representation for search
and classification. Nonetheless, developing patch-based feature extrac-
tion may not be efficient due to its multi-stage architecture. Also, in ag-
gregation stage, information about patch importance and spatial patch
knowledge is often ignored. In this paper, we propose an end-to-end ar-
chitecture that has two main contributions. Firstly, an end-to-end self-
supervised, attention-based multiple instance learning (SS-CAMIL)
method, that exploits the primary site information of each WSI, which
is almost always available during the tissue preparation and subsequent
digitization. Furthermore, we show that employing a supervised con-
trastive learning approach can improve the quality of model embed-
dings both in WSI classification and search tasks.
2022
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Related work

Patch-level WSI representation

Early representation approaches primarily investigated patch-level
classification. In Hou et al,1 the authors extracted and classified patch-
level features with a CNN in an iterative fashion. Then, they implemented
a multi-label SVM to create a singleWSI vector representation. The authors
in Coudray et al,2 extracted multi-magnification features from 20x and 5x
magnification and aggregated the features with an average of the probabil-
ities of the corresponding patches. Kalra et al. first cluster the entire tissue
with color clustering, then select patches based on the cluster.3 They
employed patch-level embeddings for WSI search.

Multiple instance learning

Multiple instance learning (MIL) is a specific learning scheme where a
label is assigned to bag of instances.4 Considering the bag of patches repre-
sentation for each WSI, the MIL framework takes into account multiple in-
stances of a slide, to represent WSIs. Recently, authors in Zaheer et al5

proposed deep MIL where they demonstrated different pooling layers fol-
lowing a specific form can obtain permutation invariant representations.
Following this paper, many MIL-based WSI representation schemes have
been proposed. The authors of Ilse et al6 proposed attention-based multiple
instance learning to perform weighted pooling over each instance feature.
Another example of attention-based pooling in MIL are memory networks
(MEM) for learning permutation invariant representations.7 In Adnan et
al,8 the authors used graph CNNs to consider each instance as a node in a
graph and then learned an adjacencymatrix to build a graph representation
ofWSIs. Just recently, Hemati et al9 have exploited deep sets5 for MIL train-
ing in histopathology. They employed a conditional prediction layer where
predictions of primary site labels guide the primary diagnosis predictions.

Self-supervised learning

Self-supervised learning (SSL) refers to a category of deep learning
methods in which a model is trained on a set of well-defined pre-text
tasks before being applied to a primary (or downstream) task. Pre-text
tasks are trained on purposefully generated “pseudo-labels” from the data,
in order to acquire visual representations for utilizing the acquired model
weights for the main task. Gidaris et al10 is among the first works in
vision-based SSL, where authors define rotation classification as a self-
supervised task and show that various computer vision tasks such as classi-
fication, detection, or segmentation generalize better with self-supervision.
There have also been some patch-level self-supervision in histopathology
literature. In a recent publication, Koohbanani et al11 proposed
pathology-specific tasks such as magnification classification, JigMag
(predicting the magnification order in a shuffled vector of different magni-
fication), and hematoxylin channel prediction.

Contrastive learning

Contrastive learning (CL) is another active field of research where the
goal is to pull similar instances together and push the non-related samples
away. Training amodel with a contrastive loss can help produce amore dis-
tinct feature vector for an input. The first usage of a contrastive loss ap-
peared in Chopra et al.12 The authors proposed a similarity loss function
that maps training data into a target space such that the L1 norm of the tar-
get space imitates the semantic distance of the input space. They considered
pairwise input and chose to either push away or pull the samples based on
similarity. InHoffer andAilon,13 instead of two samples for comparison, au-
thors used one instance as an anchor, one negative and one positive sample
for metric learning. Khosla et al14 recently suggested a fully supervised con-
trastive loss that draws all clusters of points belonging to the same class to-
gether while pushing clusters of samples from other classes apart. In most
recent papers, CL is implemented in a self-supervised fashion. Authors of
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Chen et al15 propose SimCLR (a simple framework for contrastive learning
of visual representations) that uses different augmentations as positive sam-
ples. As a pathology example, in Ciga et al16 authors employed SimCLR and
achieved excellent results for multiple histopathology downstream tasks,
including classification, regression, and segmentation compared to baseline
training methods. Another recent pathology example is introduced in Li
et al.17 The authors perform contrastive learning on different magnification
levels separately to create hierarchical representation based on combined
magnifications for downstream tasks.
Proposed methodology

In this paper, we propose a novel end-to-end WSI level self-supervised
approach based on the primary site information as the pretext task. The pri-
mary site information corresponds to the organ type of each digital slide
and is always available for most WSIs. Many papers have used the primary
site as a “soft label”.18 We show that using the primary site information for
the pre-text task helps the model generalize better on the diagnosis classifi-
cation. Using the primary site can also be helpful in cytologyfieldwhere the
architectural information of a tissue is not always available.19,20 A motiva-
tion for exploitation of anatomic site for self-supervision is to enhance and
encourage unsupervised learning in pathology, since the annotations are
expensive to acquire.21We have also utilized a supervised contrastive learn-
ing loss to create a more robust representation at theWSI level. The follow-
ing section provides the step-by-step explanation of the proposed method.
The complete methodology is depicted in Fig. 1.
Patch selection

For selection of the histopathology patches, we employed the patch se-
lection method in Kalra et al.3 The authors utilized a two-step k-mean clus-
tering. The tissue is grouped in the first step using the color histogram. The
patch location is then subjected to a second k-means clustering to select spa-
tially varied patches from each color segment. Each patch represents a dif-
ferentWSI location and color. As a result,more regions of aWSI are likely to
be considered during training.
Feature extraction

We first modify the patch order in this phase to be fed into the feature
extractor block. Suppose we have b batches, each WSI has n distinct
patches, and each patch has a width w and height h. The re-shape layer
changes each input from the shape (b, n, w, h) to (b× n, w, h). The patches
are now inputted to an EfficientNet B022 model for feature extraction. The
features from the final convolutional block are then fed to a global max-
pooling layer and a fully connected layer to extract vectors of size 1024
for each patch. Another reshape layer is then utilized to convert the output
shape to (b, n, 1024).
Attention-based pooling

As displayed in Fig. 1, the feature vectors serve as the input to an atten-
tion block. Two fully connected layers plus an extension layer make up the
attention block. The two dense layers produce amask of size (b, n), which is
then duplicated to get a size of (b, n, 1024). This is then multiplied with the
attention block input and averaged to generate a 1024 vector representa-
tion of eachWSI. Instead of a simple average pooling layer, the mask learns
the weight of each patch (importance factor) and lets the model pick which
patch is more representative of the WSI. The authors of Ilse et al6 showed
that the representation of attention-based pooling is permutation-invariant,
meaning that the output does not change when the input patches are
reordered, hence establishing a large degree of freedom for patch selection.



Fig. 1. SS-CAMIL concept. The blocks that the transferred knowledge of pretext task (e.g., for label “kidney” as the primary site) is used for the downstream task (e.g., for label
“KIRP”, kidney renal papillary cell carcinoma, as the primary diagnosis) are outlinedwith a gray line. For the LUAD/LUSC classification task, only the blocks on the right side of
the dashed red line are used for we will be using pre-trained features.
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Self-supervision and contrastive learning based on primary site information

The main contribution of this paper is to introduce the exploitation of
primary site information as pseudo-labels in self-supervised learning
setup (the first training stage). To our knowledge, previous SSL methods
in pathology used data augmentation-based self-supervision as pre-text
tasks. Primary site information of a WSI is an information that is almost al-
ways available and can be used as a pseudo-label (in rare cases, the meta-
data on an slide may be lost, but in most of these cases, this is not an
issue). This is in contrary to tumor labels that requires pathologist annota-
tions, and thus cannot be exploited as a self-supervision pretext label. We
have shown in our experiments that transferring the primary site informa-
tion improves the performance of our model. To evaluate the impact of
self-supervision, we conducted the experiments in two phases. First, the
results of basic attention-based MIL without self-supervision (CAMIL) are
reported. Then, we compare the result of primary site self-supervision on
CAMIL (SS-CAMIL). Also, compared to all previous patch-based SSL
methods, our self-supervision approach is performed in an end-to-end fash-
ion on WSI-level. The second contribution is the utilization of supervised
contrastive learning14 for both pre-text and downstream tasks. After
extracting WSI feature vectors, the features are passed to a projection
head and a contrastive loss based on the primary site labels. However,
using CL for a MIL setup has a bottleneck. One of the necessities of CL is
large batch sizes (commonly more than 256), which may be infeasible
due to the extensive set size of each WSI. To overcome this challenge, we
added a cross-entropy loss to the contrastive loss function. This is because,
CL cannot find enough positive samples within small batch sizes. Adding
cross-entropy loss helps the positive instances to be close to a specific
point in the embedding space. After the training with the above setting,
the model is trained on the downstream task with diagnostic labels
(i.e., primary diagnosis). After the training, the features extracted from
the last fully connected layer before the projection head are utilized for
WSI search and classification.
Experiments and results

Dataset and setup

We exploited 6746 diagnosticWSIs from The Cancer Genome Atlas Pro-
gram (TCGA) and used 85, 5, and 10 percent (imposed by the ratios pub-
lished in benchmarking literature) of the dataset for training, validation,
and testing, respectively. The dataset consisted of WSIs of 24 primary
sites with 30 distinct primary diagnoses. In the training stage, we set the
batch size to 16 and the WSI set size (number of patches per WSI) to 40.
It should be mentioned that number of slides per primary site and diagnos-
tic is variable, but the number of patches per slide is fixed. We extracted
3

patches of sizes 1000 × 1000 and resized them to 224 × 224 mainly due
to memory limits (downsampling patches is quite common in
literature23,24). For data augmentation, we applied horizontal and vertical
flip, 90 degree rotation, shifting, and scaling to the data from the
Albumentations library.25 We used an exponential decay learning rate
scheduler with a base of 0.96 and a coefficient of 0.0001. We trained
each of the presented results with 150 epochs trained on three Tesla V
100 GPUs in parallel mode. We set the temperature to 0.1 for contrastive
learning in both pre-text and downstream tasks. For testing, we established
horizontal (site identification) and vertical (subtype identification) WSI-
search tasks. The precision with which we can locate a tumor type across
the full test database is referred to as horizontal search. Vertical search,
on the other hand, measures how well we can identify the proper cancer
subtype of a tumor type from a set of slides from a single primary site,
whichmay have a variety of initial diagnoses. For both search tasks, we em-
ploy k-NN algorithm with k = 3 to find the three instances closest to each
test sample. We use the leave-one-out technique and provide the average
scores due to the limited size of the test set. We also omitted the results
for tumor types with only one subtype, since it will always have the perfect
accuracy of 100%.

In another experiment, we employed our model on a classification task
of Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma
(LUSC). The dataset had 2574 lung tissues, which is distinct from the previ-
ous dataset. LUAD/LUSC classification is a challenging classification task
that requires visual inspection of the tissue by expert pathologist.2 We use
1800 slides for training, and 774 slides for test.7 We freeze the
convolutional feature extraction block to demonstrate the learned features
from the previous setup. The batch and set sizes are the same as in the
above setup. In thefinal experimetn setup, we test ourmodel’s performance
on Liver, Kidney, and Stomach (LKS) Immunofluorescence dataset intro-
duced by Maskoud et al. in 2020.26 It should be mentioned that in this
paper, we did not address the imbalanced classes.

WSI search results

Tables 1 and 2 show the horizontal and vertical search results, respec-
tively. We compare our performance with Kalra et al3 and Hemati et al.9

In both tables, CAMIL is the baseline attention-basedMILwith CL andwith-
out self-supervision, and SS-CAMIL is the same as CAMIL setup but uses the
weights of self-supervision of primary sites (See Table 3).

For horizontal search, we can observe that the SS-CAMIL model has the
best results among the four setups in 10 out of 13 cases. In one of remaining
three cases (Prostate/Testis), CAMIL is the dominant model. In the rest of
tumor types, SS-CAMIL has shown competitive results. One of the interest-
ing observations is that although CNN-DS utilizes primary site information
as prior information for the classification of tumor subtypes, the result of
CAMIL is better in most cases. This observation demonstrates the effect of



Table 1
Horizontal search results. F1-scores of majority-3 (in %) are re-
ported.

Tumor type nslides Yottixel CNN-DS CAMIL SS-CAMIL
Brain 46 73 91 100 100

Breast 77 45 77 91 91

Endocrine 71 61 66 86 89

Gastro. 69 50 75 84 86

Gynaec. 18 16 33 56 62

Head/neck 23 17 69 74 92

Liver 44 43 56 77 84

Melanocytic 18 16 50 61 78

Mesenchymal 12 8 100 92 92

Prostate/testis 44 47 81 91 89

Pulmonary 68 58 91 81 87

Urinary tract 112 67 76 92 95

Haematopoietic 42 0 24 50 50

Table 3
LUAD/LUSC classification.

Method Accuracy

MEM7 84%
CNN-DS9 86%
CAMIL 88%
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attention-based pooling compared to simple average pooling. Another ob-
servation is the improvement in performance with self-supervision on the
primary sites. It can be observed that in most tumor types, SSCAMIL has
performed better than CAMIL. This observation indicates that the primary
site, within the self-supervision framework, can help the model generalize
better when deciding on the subtypes.

For the case of vertical search, SS-CAMIL achieves the best, comparable,
and worst F1-score in 11, 3, and 10 subtypes out of 24 in comparison to
other baselines (the subtypes BLCA, THYM, HNSC, SARC, SKCM, and
UVM are not included in the table since they are the only subtype in their
tumor types). For five subtypes, CAMIL has performed better. Small sample
sizes seem to be a recurrent pattern when our model does not performwell,
meaning that the model did not have the chance to learn distinct features
from these subtypes. Again, here we can see that in 15 subtypes, self-
supervision has helped the model perform better than CAMIL. To show
the effect of CL, we show the 2D t-SNE plot of Hemati et al9 and SS-
CAMIL in Fig. 2. We observe that SS-CAMIL clusters are tighter and more
separable than CNN-DS.
LUAD/LUSC classification

The results of LUAD/LUSC classification are shown in 3. In this section,
we use the features extracted from a DenseNet model,27 as per Hemati
et al.9 We can observe that our suggested strategy outperformed earlier ap-
proaches for LUAD/LUSC classification by 2% (delivering 88 %), that un-
derlines the performance of attention-pooling and constrastive learning.
Table 2
Vertical search results. F1-scores of majority-3 (in %) are reported.

Tumor Type Subtype nslides Yottixel CNN-DS CAMIL SS-CAMIL
Gastrointestinal

tract

COAD

STAD 

ESCA 

READ

22

27

10

10

62

61

12

69

64

44

72

79

55

73

92

89

30 55 26 0

Pulmonary LUAD

LUSC 

MESO

30

35

3

62 61 71 76

69 60 76 75

330 50 50

Liver,

pancreaticobiliary

LIHC

PAAD 

CHOL

32

8

4

82 95 95 95

94 94 94 94

26 0 0 0

Endocrine THCA

PCPG 

ACC

50

15

6

92

61

25

98

81

28

99

86

50

100

90

77

Urinary tract KIRP

KIRC 

BLCA 

KICH

25

47

31

9

75 84 84 88

91 87 92 92

89 95 94 98

70 53 88 80

Brain LGG

GBM

23

23

78

82

89

89

91

91

89

90

Prostate/testis PRAD

TGCT

31

13

98

96

97

93

94

96

100

100

Gynaecological OV

CESC 

UCS

9

6

3

80 82 76 80

92 66 44 44

75 80 100 50
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We have also, employed the SS-CAMIL blocks in this task and it improved
the performance to 89%, but since we are not sure whether it has seen
the data in the search task (both datasets are from TCGA repository), we
did not report those numbers in the table.

Lung–kidney–stomach immunofluorescence

In this experiment setup, we test our model’s performance on a different
dataset than before. We exploit the Liver, Kidney, and Stomach (LKS) Immu-
nofluorescence dataset introduced byMaskoud et al. in 2020.26 The data con-
tains immunofluorescence WSIs of the liver, kidney, and stomach that are
widely utilized in studying autoimmune liver disease. The dataset consists of
684 immunofluorescence slides split into 479 train and 205 test WSIs. Each
WSI in the dataset contains a low-resolution thumbnail image and 1600
high-resolution patches extracted from the slide. Each slide falls into one of
the following four classes: Negative (Neg), Anti-Mitochondrial Antibodies
(AMA), Vessel-Type Anti-Smooth Muscle Antibodies (SMA-V), and Tubule-
Type Anti-Smooth Muscle Antibodies (SMA-T).

To be more memory efficient, we select 40 patches from the 1600
patches of each slide. First, we sort the patches based on their entropy
which measures the information or uncertainty of a specific signal.

Therefore, wemeasure howmuch information each patch contains so that
we exclude background and unnecessary patches. We set the batch size to 16
and exploited the samemodel we used for image search training. We used the
trainedweights from the image search task. The comparison between reported
numbers of Maksoud et al26 and our model can be seen in Table 4.

The numbers from 4 are taken from Maksoud et al26 paper directly.
Image-level results are related to classification using only the low-level
image. Patch-level accuracy is the classification result using high-
resolution patches. Multiscale is a conventional classification method
using both high- and low-resolution images. RDMS is the abbreviation for
Reinforced DynamicMulti-Scale and is a derivative of Dong et al28 method.
Finally, SOS is the original paper’s method that stands for Selective Objec-
tive Switch and switches to high-resolution images, if only the prediction
confidence of the low-resolution is low.26

As observed, our method produces comparable results with regard to
the mentioned method. However, some notes should be stated. First, in
our model, we only use high-resolution patches. Second, we only use 40
patches among 1600 patches available for each dataset. Therefore, we
have produced this result with only 2.5% of the available. Finally, we use
an end-to-end classification method compared to SOS, which is a multi-
stages classification scheme. With all these notes, our method performed
excellently compared to these mentioned methods.

Attention pooling effectiveness

We have also investigated the effectiveness of the attention-pooling
layer. As we mentioned, we have used yottixel method3 for extracting
patches to ensure diversity of patches for each slide.We chose nine random
WSIs from Lung, Kidney, and Brain organs. A pathology expert scored the
effectiveness of the 40 patches from eachWSI with labels 1, 2, and 3, mean-
ing “not useful”, “somewhat useful”, and “very useful”, respectively. We
multiplied the normalized scores and the output of attention block for
each WSI and compared the results with uniform importance (with all
patches having the same weight). We then divide the scores by the optimal
importance (weights of patches are proportional to effectiveness label)
scores to get normalized numbers. The results are shown in Table 5. This
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Fig. 2. t-SNE of CNN-DS9 (left) and SS-CAMIL (right).

Table 4
LKS classification results.

Method F1-Score

Image-Level 81.95

Patch-Level 69.27

Multi-Scale 85.37

RDMS 88.78

SOS 90.73

SS-CAMIL 88.89

Table 5
Attention pooling scores of 9 different WSIs.

Weighting Lung Kidney Brain Avg

1 2 3 1 2 3 1 2 3

Uniform

SS-CAMIL
0.97 0.89  0.80

0.98 0.90  0.83

0.89 0.70  0.89

0.91 0.79  0.91

0.94 0.87 0.88 0.87

0.96 0.86 0.90 0.89
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suggests that our model has learned the relative importance of patches in
the attention block.

Conclusions

In this paper, we proposed a self-supervised multiple instance learning
model based on primary site information. We showed that our WSI-level
representation model generalizes better on tumor subtypes comparing to
two previous approaches. We demonstrated our performance on two
tasks; WSI search and classification and showed that our model has a dom-
inant performance on both tasks.
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Appendix A. Cancer subtype abbreviations

Table A.6
TCGA cancer subtype abbreviations.
Abbreviation
 Primary diagnosis
CC
 Adrenocortical Carcinoma

LCA
 Bladder Urothelial Carcinoma

ESC
 Cervical Squamous Cell Carcinoma and Endocervical Adenoc.

HOL
 Cholangiocarcinoma

OAD
 Colon Adenocarcinoma

SCA
 Esophageal Carcinoma

BM
 Glioblastoma Multiforme

ICH
 Kidney Chromophobe

IRC
 Kidney Renal Clear Cell Carcinoma

IRP
 Kidney Renal Papillary Cell Carcinoma

GG
 Brain Lower Grade Glioma

IHC
 Liver Hepatocellular Carcinoma

UAD
 Lung Adenocarcinoma

USC
 Lung Squamous Cell Carcinoma

ESO
 Mesothelioma

V
 Ovarian Serous Cystadenocarcinoma

AAD
 Pancreatic Adenocarcinoma

CPG
 Pheochromocytoma and Paraganglioma

RAD
 Prostate Adenocarcinoma

EAD
 Rectum Adenocarcinoma

TAD
 Stomach Adenocarcinoma

GCT
 Testicular Germ Cell Tumors

HCA
 Thyroid Carcinoma

CS
 Uterine Carcinosarcoma
U
References

1. Hou L, Samaras D, Kurc TM, Gao Y, Davis JE, Saltz JH. Patch-based convolutional neural
network for whole slide tissue image classification. Proceedings of the IEEE conference
on computer vision and pattern recognition; 2016. p. 2424–2433.

2. Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction
from non–small cell lung cancer histopathology images using deep learning. Nat Med
2018;24(10):1559–1567.

3. Kalra S, Tizhoosh HR, Choi C, et al. Yottixel–an image search engine for large archives of
histopathology whole slide images. Med Image Anal 2020;65, 101757.

4. Dietterich TG, Lathrop RH, Lozano-Perez T. Solving the multiple instance problem with
axis-parallel rectangles. Artif Intel 1997;89(1–2):31–71.

5. Zaheer M, Kottur S, Ravanbakhsh S, Poczos B, Salakhutdinov RR, Smola AJ. Deep sets.
Adv Neural Inform Process Syst 2017;30.

http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0005
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0005
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0005
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0010
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0010
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0010
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0015
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0015
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0020
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0020
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0025
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0025


P.A. Fashi et al. Journal of Pathology Informatics 13 (2022) 100133
6. Ilse M, Tomczak J, Welling M. Attention-based deep multiple instance learning. Interna-
tional conference on machine learning. PMLR; 2018. p. 2127–2136.

7. Kalra S, Adnan M, Taylor G, Tizhoosh HR. Learning permutation invariant representa-
tions using memory networks. European Conference on Computer Vision. Springer;
2020. p. 677–693.

8. Adnan M, Kalra S, Tizhoosh HR. Representation learning of histopathology images using
graph neural networks. Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops; 2020. p. 988–989.

9. Hemati S, Kalra S, Meaney C, Babaie M, Ghodsi A, Tizhoosh H. Cnn and deep sets for
end-to-endwhole slide image representation learning. Medical Imagingwith Deep Learn-
ing; 2021.

10. Gidaris S, Singh P, Komodakis N. Unsupervised representation learning by predicting
image rotations. International Conference on Learning Representations; 2018.

11. Koohbanani NA, Unnikrishnan B, Khurram SA, Krishnaswamy P, Rajpoot N. Self-path:
self-supervision for classification of pathology images with limited annotations. IEEE
Trans Med Imaging 2021;40(10):2845–2856.

12. Chopra S, Hadsell R, LeCun Y. Learning a similarity metric discriminatively, with appli-
cation to face verification. 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), Vol. 1. IEEE; 2005. p. 539–546.

13. Hoffer E, Ailon N. Deep metric learning using triplet network. International workshop on
similarity-based pattern recognition. Springer; 2015. p. 84–92.

14. Khosla P, Teterwak P, Wang C, et al. Supervised contrastive learning. Adv Neural Inform
Process Syst 2020;33.

15. Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive learning
of visual representations. International conference on machine learning. PMLR; 2020.
p. 1597–1607.

16. Ciga O, Xu T, Martel AL. Self supervised contrastive learning for digital histopathology.
Mach Learn Appl 15 March 2022;7, 100198.

17. Li B, Li Y, Eliceiri KW. Dual-stream multiple instance learning network for whole slide
image classification with self-supervised contrastive learning. Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition; 2021. p. 14318–14328.
6

18. Riasatian A, Babaie M, Maleki D, et al. Fine-tuning and training of densenet for histopa-
thology image representation using tcga diagnostic slides. Med Image Anal 2021;70,
102032.

19. Girolami I, Marletta S, Pantanowitz L, et al. Impact of image analysis and artificial intel-
ligence in thyroid pathology, with particular reference to cytological aspects. Cytopathol-
ogy 2020;31(5):432–444.

20. Eccher A, Girolami I. Current state of whole slide imaging use in cytopathology: pros and
pitfalls. Cytopathology 2020;31(5):372–378.

21. Nam S, Chong Y, Jung CK, et al. Introduction to digital pathology and computer-aided
pathology. J Pathol Transl Med 2020;54(2):125–134.

22. Tan M, Le Q. Efficientnet: rethinking model scaling for convolutional neural networks.
International Conference on Machine Learning. PMLR; 2019. p. 6105–6114.

23. Tizhoosh HR, Pantanowitz L. Artificial intelligence and digital pathology: challenges and
opportunities. J Pathol inform 2018;9.

24. Marini N, Otalora S, Muller H, Atzori M. Semi-supervised training of deep convolutional
neural networks with heterogeneous data and few local annotations: an experiment on
prostate histopathology image classification. Med Image Anal 2021;73, 102165.

25. Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA.
Albumentations: fast and flexible image augmentations. Information 2020;11(2):125.

26. Maksoud S, Zhao K, Hobson P, Jennings A, Lovell BC. Sos: selective objective switch for
rapid immunofluorescence whole slide image classification. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition; 2020. p. 3862–3871.

27. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional
networks. Proceedings of the IEEE conference on computer vision and pattern recogni-
tion; 2017. p. 4700–4708.

28. Dong N, Kampffmeyer M, Liang X, Wang Z, Dai W, Xing E. Reinforced auto-zoom net: to-
wards accurate and fast breast cancer segmentation in whole-slide images. Deep Learning
in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.
Springer; 2018. p. 317–325.

http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0030
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0030
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0035
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0035
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0035
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0040
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0040
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0040
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0045
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0045
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0045
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0050
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0050
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0055
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0055
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0055
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0060
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0060
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0060
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0065
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0065
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0070
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0070
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0075
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0075
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0075
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0080
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0080
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0085
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0085
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0085
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0090
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0090
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0090
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0095
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0095
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0095
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0100
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0100
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0105
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0105
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0110
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0110
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0115
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0115
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0120
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0120
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0120
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0125
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0125
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0130
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0130
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0130
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0135
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0135
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0135
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0140
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0140
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0140
http://refhub.elsevier.com/S2153-3539(22)00727-1/rf0140

	A self-�supervised contrastive learning approach for whole slide image representation in digital pathology
	Introduction
	Related work
	Patch-level WSI representation
	Multiple instance learning
	Self-supervised learning
	Contrastive learning

	Proposed methodology
	Patch selection
	Feature extraction
	Attention-based pooling
	Self-supervision and contrastive learning based on primary site information

	Experiments and results
	Dataset and setup
	WSI search results
	LUAD/LUSC classification
	Lung–kidney–stomach immunofluorescence
	Attention pooling effectiveness

	Conclusions
	Declaration of Competing Interest
	Appendix A. Cancer subtype abbreviations
	References




