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Intrachromosomal amplification of chromosome 21 (iAMP21) is well-described 

in pediatric B-cell precursor ALL (B-ALL). In this context, recurrent breakage-fusion-

breakage cycles lead to the amplification of chr21q in ~2% of B-ALL patients, an 

event associated with high-risk disease.1–3 The consensus chromothripsis landscape 

in iAMP21 also mirrors the CNA landscape across large cohorts of cancer samples, 10 

supporting a pivotal role of chromothripsis in fine tuning the CN landscape of 

chromosome 21.2  The chr21amp event we describe in BP-MPN shares some 

similarities with iAMP21 in B-ALL. A recent study of 124 iAMP21 pediatric ALL cases 

identified that iAMP21 is an early, clonal event, typically with breakage-fusion-bridge 

cycles as the initiating event, often followed by chromothripsis.4 In our BP-MPN 15 

cohort the boundaries of the amplified regions are similarly frequently demarcated by 

fold-back inversion rearrangements indicative of breakage-fusion-bridge cycles.4,5 

The MAR identified in iAMP21-ALL aligns closely with the smaller MAR seen in BP-

MPN, with DYRK1A at its center, with transcriptional upregulation of DYRK1A also 

observed in iAMP21-ALL.4 However, there are also important differences between 20 

iAMP21-ALL and chr21amp in BP-MPN. In the MPN context, chr21amp arises in 

HSC as opposed to B-cell progenitors and also occurs as a late event immediately 

prior to leukemic transformation, in the context of an antecedent MPN clone.  

DYRK1A has been studied in a range of disease contexts, most closely in 

Down syndrome (DS) where congenital DYRK1A upregulation occurs by trisomy and 25 

has been implicated in the cardiac, hematological and neurological features of DS.6–9 

Further diverse roles have been proposed for DYRK1A, including the 

phosphorylation of tau and amyloid proteins and in regulating pancreatic beta cell 

proliferation, leading to its investigation as a modulator of diseases ranging from 

Alzheimer’s to diabetes.7,10–12 Consequently, several DYRK1A inhibitors have been 30 

developed which show on-target efficacy and negligible toxicity in murine models 

and humans.13–15 Inhibition of DYRK1A has also recently been reported to alter 

splicing and increase sensitivity to BCL2 inhibition in non-DYRK1A amplified AML.16 



Here, we propose that two biological pathways activated by DYRK1A are 

crucial in its oncogenic activity in BP-MPN. First, we suggest that the chr21amp 35 

event causes downregulation of DNA repair pathways to promote genomic instability. 

A recent study in the context of Down Syndrome associated myeloid malignancies 

demonstrated that increased expression of DYRK1A, which lies in the centre of the 

Down Syndrome critical region, leads to impaired homology-directed DNA repair as 

a mechanism of elevated mutagenesis, providing additional support for our proposed 40 

model in BP-MPN.17,18 This is also in accordance with molecular events in Fanconi 

Anemia, where it is established that congenital loss of the Fanconi DNA repair 

pathway followed by TP53 downregulation drives a survival advantage and 

stem/progenitor cell survival in leukemia development.19,20 Notably, these events 

occur in a different order to our observations in BP-MPN, where TP53 mutation 45 

precedes DYRK1A mediated repression of DNA repair pathways. 

Second, we demonstrate that DYRK1A upregulation leads to amplification of 

JAK2V617F-driven upregulation of JAK/STAT signalling in BP-MPN, with clear 

parallels to the B-cell ALL iAMP21 clinical subgroup, which is characterized by an 

enrichment in JAK/STAT signalling mutations.2–4,21 Our interrogation of published de 50 

novo AML datasets for the chr21amp event confirms its co-occurrence with TP53 

and rarity outwith the JAK/STAT mutant setting, corroborating a small case series of 

chr21amp AML patients.22 Furthermore, myeloid leukemia in Down Syndrome shows 

a very high prevalence (48%) of mutations leading to activation of JAK family 

kinases as well as increased chromosomal CNAs, a finding recently linked to 55 

DYRK1A overexpression.17,23 We herein provide experimental evidence that the 

association between DYRK1A amplification and JAK/STAT mutation likely relates to 

enhanced JAK/STAT signalling mediated by DYRK1A overexpression. This further 

potentiation of an oncogenic pathway already activated by mutation by CNAs is 

documented in other cancer settings, such as in the case of BRAF mutant solid 60 

tumors.24 We propose chr21amp as a biomarker of adverse clinical outcome in BP-

MPN, where it synergizes with JAK/STAT pathway mutations and represents an 

example of “aneuploidy addiction”, akin to an oncogene addiction. This biological 

concept is supported by recent data demonstrating that genetically engineered loss 

of aneuploidy, in this instance generating disomic lines from trisomic 1q+ cancer cell 65 

lines, abrogates their oncogenic potential.24,25 

  



Supplementary Methods 
 
Single Nucleotide Polymorphism Array Copy Number Variant and Loss of 70 

Heterozygosity Analysis 

To call mosaic copy number events in primary patient samples, genotyping 

intensity data generated was analysed using the Illumina Infinium OmniExpress v1.3 

BeadChips platform. Haplotype phasing, calculation of log R ratio (LRR) and B-allele 

frequency (BAF) and calling of mosaic events was performed using Mocha (Mocha: A 75 

BCFtools extension to call mosaic chromosomal alterations starting from phased VCF 

files with either B Allele Frequency (BAF) and Log R Ratio (LRR) or allelic depth 

(AD)).26,27 In brief, Mocha comprizes the following steps: (1) filtering of constitutional 

duplications; (2) use of a parameterized hidden Markov model to evaluate the phased 

BAF for variants on a per-chromosome basis; (3) deploying a likelihood ratio test to 80 

call events; (4) defining event boundaries; (5) calling copy number; (6) estimating the 

cell fraction of mosaic events. A series of stringent filtering steps was applied to reduce 

the rate of false positive calls. To eliminate possible constitutional and germline 

duplications, excluding calls with lod_baf_phase <10, those with length <500kbp and 

rel_cov>2.5, and any gains with estimated cell fraction >80%, logR>0.5 or length 85 

<24Mb. Given that interstitial LOH are rare and likely artefactual, all LOH events <8Mb 

were filtered.26,27 Events on genomic regions reported to be prone to recurrent artefact 

(chr6<58Mb, chr7>61Mb, and chr2 >50Mb) were also filtered, and those where 

manual inspection demonstrated noise or sparsity in the array.  

To find common genomic lesions on a focal and arm level, Infinium 90 

OmniExpress arrays were initially processed with Illumina Genome Studio v2.0.4. 

Following this, Log R Ratio (LRR) data was extracted for all probes and array 

annotation obtained from Illumina (InfiniumOmniExpress-24v1-3_A1). LRR data was 

then smoothed and segmentation called using the CBS algorithm from the DNACopy 

v1.60.0 package in R.28,29 A minimum number of 5 probes was required to call a 95 

segment, and segments were analysed using GenomicRanges v1.38.0.30,31  

Definitions of amplification, gain, loss and deletion events are outlined in Bashton, et 

al.  Segmentation data was further analysed in GISTIC v2.023.32  Co-occurrence of 

CNAs and mutation status was calculated by Pearson correlation coefficient as 

implemented in the R package corrplot (v0.84). Chromothripsis was defined in cases 100 



meeting two standards (1) according to Korbel and Campbell’s criteria when three out 

of six criteria (those assessable by SNP array analyses) were satisfied, and (2) 

according to the criteria by Rausch et al, requiring 10 changes in segmental copy 

number involving 2 or 3 distinct copy number states on a single chromosome.33,34 

Analysis of external AML datasets 105 

Data retrieval and pre-processing 

Three publicly available AML cohorts with genetic mutation +/- copy number 

profiling +/- RNA-sequencing data available were used to validate findings from our 

single-cell analysis, namely BeatAML35, The Cancer Genome Atlas (TCGA)36 and a 

large de novo AML dataset from Tazi et al.37 For BeatAML and TCGA datasets, gene 110 

expression values in FPKM (fragments per kilobase of transcript per million mapped 

reads) were retrieved from the National Cancer Institute (NIH) Genomic Data 

Commons (GDC).38 Gene expression values were then offset by 1 and log2-

transformed. TP53 point mutation status was retrieved from the cBio Cancer 

Genomics Portal (cBioPortal).39 Clinical data including survival data for BeatAML and 115 

TCGA was retrieved from the BeatAML data viewer (Vizome) and NIH GDC, 

respectively.  

We selected samples from the BeatAML cohort with an AML diagnosis collected within 

1 month of the patient’s enrolment in the study, with RNA-sequencing and survival 

data available (360 de novo AML in total). The TCGA cohort consists of 200 de novo 120 

AML patients represented by one sample each, out of which 191 patients had copy 

number and survival data (9 chr21amp, 182 non-chr21amp), 119 had mTP53 status 

(108 TP53-WT and 11 TP53-mutant) and 127 had concomitant RNA-sequencing data 

available. 

Patients were first split by copy number status over chromosome 21. This 125 

resulted in two groups of patients, namely patients with high copy number (greater 

than or equal to 2.5) over the minimally amplified region on chr21, and patients with 

normal/low copy number (<2.5). Co-occurrence of mutation status and chr21amp was 

assessed using either the Chi-square or Fisher’s exact test. 

Survival analyses 130 



Overall survival was calculated according to the method of Kaplan and Meier, 

and a Cox proportional hazards regression model was fitted to estimate the hazard 

ratio, as implemented in the R package survival (v3.2-10). The log-rank test was 

performed to identify differences between curves. Kaplan-Meier curves were plotted 

using the survminer (v0.4.9) R package to visualize the probability of survival and 135 

sample size at a respective time interval. Multivariate analysis was performed using a 

Cox proportional hazards model to evaluate the effects of covariates on outcome, 

using the backwards Wald test to assess significance and implementing mTP53 status 

as an interaction term. Multivariable  analysis was performed in SPSS (v29.0.0) 

Whole genome sequencing analysis 140 

Unmatched tumor-only whole genome sequencing analysis was performed 

using the commercial Isabl platform pipeline and interface.40 All bioinformatic tools 

were launched using an in-house wrapper. 

Whole genome paired-end reads were aligned to human reference genome 

(GRCh37d5) using BWA-mem (v0.7.17) as a part of the pcap-core v2.18.2 wrapper 145 

(https://github.com/cancerit/PCAP-core).41 The wrapper includes marking of 

duplicates using Picard. Mosdepth 4 was deployed to calculate genome-wide 

median coverage.42 cgpBattenberg (v1.4.0) was used to estimate tumor purity/ploidy 

and allele-specific subclonal copy number changes 

(https://github.com/cancerit/cgpBattenberg).43 Single nucleotide variants (SNVs) 150 

were identified using Strelka2 (v2.9.1 with manta v1.3.1), 

(https://github.com/Illumina/strelka), MuTect2 (gatk:v4.0.1.2), 

(https://github.com/broadinstitute/gatk) and CaVEMan (cgpCavemanWrapper v1.7.5) 

(https://github.com/cancerit/cgpCaVEManWrapper).44–46 

Variant post-processing was done using default flags for Strelka2 and 155 

MuTect2 while for CaVEMan, cgpCavemanPostprocessing (v1.5.2) was used 

filtering for sequencing artefacts utilizing a panel of 100 unmatched normals 

(https://github.com/cancerit/cgpCaVEManPostProcessing). Small insertions and 

deletions (indels) were detected using Strelka2, MuTect2, and Pindel (cgpPindel 

v1.5.4) (https://github.com/cancerit/cgpPindel) and filtered against a panel of 160 

unmatched normals.47 SvABA (~v1.0.0 commit 47c7a88) 

(https://github.com/walaj/svaba), GRIDSS (v2.2.2) 

https://github.com/cancerit/PCAP-core
https://github.com/cancerit/cgpBattenberg


(https://github.com/PapenfussLab/gridss) and BRASS (v4.0.5 with GRASS v1.1.6) 

(https://github.com/cancerit/BRASS) were used to call structural variants against a 

panel of  unmatched normals.48,49 Merged VCFs were annotated with 165 

VAGrENT(v3.3.0, https://github.com/cancerit/VAGrENT) and VEP (v92, 

https://github.com/Ensembl/ensembl-vep).50,51 High-confidence substitutions and 

indels were designated as those that were passed by at least 2 callers. Variants 

were further filtered to exclude those present in a panel of 100 unmatched normals 

or in any of the germline variation databases in VEP. 170 

Chromosome 21 amplification timing analysis 

Timing analyses were restricted to segments with three or more SNVs passed by 

two or more variant callers. The multiplicity of each variant was derived from the 

variant allele frequency provided by Mutect2, or Strelka in cases where a variant was 

not passed by Mutect2, using version 1.0.8 of the dpclust3p R package.52,53 These 175 

data were combined with Battenberg copy number calls to calculate timing of the 

amplification with all available mutations using the AmplificationTimeR R package.54 

The algorithm uses copy number states in combination with information about the 

multiplicity of mutations within the copy number altered segment to work out the 

timing of individual gains in pseudotime. In the simplest scenario possible where only 180 

one chromosome copy is gained resulting in a copy number state of 2+1 (major 

allele + minor allele), mutations occurring on the major allele prior to the gain will be 

present on two chromosomes (multiplicity 2) at the time of sampling. Mutations 

occurring after the gain on the major allele, or at any time during the history of the 

tumour on the minor allele, will be present on only one chromosome (multiplicity 1). If 185 

one assumes that mutation rate is constant, one can tally the number of mutations at 

multiplicity 1 (n1) and multiplicity 2 (n2) and use these to calculate the time of the 

gain. This logic can be extended to higher copy number gains with higher multiplicity 

states, with the highest possible multiplicity state corresponding to the copy number 

of the major allele (nMaj). 190 

 

Breakpoint analysis 

Breakpoint junctions and associated discordant read pairs and soft-clipped reads were 

identified and classified as in Cortes-Ciriano et al55 (originally adapted from Kidd et 

https://github.com/cancerit/BRASS


al56), whereby the sequence was interrogated for features of transposable element 195 

insertion (TEI), variable number of tandem repeats (VNTR), nonhomologous end 

joining (NHEJ), alternative end joining (alt-EJ), nonallelic homologous recombination 

(NAHR), and fork stalling and template switching/microhomology-mediated break 

induced repair (FoSTeS/MMBIR). A median of 5 (range 5-11) chromosome 21 

breakpoints were examined per case. 200 

ecDNA enrichment and sequencing for ecDNA detection 
 
High molecular weight genomic DNA was isolated from the primary patient sample 

using the Qiagen MagAttract HMW DNA kit (Cat. No./ID: 67563) and amplified 

using the Qiagen REPLI-g Mini Kit (Cat. No. / ID: 150025). Amplified DNA was 205 

subjected to T7 endonuc lease digestion to reduce DNA branching, using the Endo-

T7 Nuclease from New England Biolabs (M0302S). The amplified and T7 

endonuclease digested DNA was cleaned up with AMPure XP Beads (Beckman 

Coulter A63881). The library was prepared using the Ligation Sequencing Kit SQK-

LSK110 from Oxford Nanopore Technologies Ltd, Oxford, UK, according to the 210 

manufacturer’s instructions. The library was sequenced on a MinION using R9.4.1 

Flowcell (FLO-MIN106, Oxford Nanopore Technologies Ltd, Oxford, UK) for more 

than 47 h. The raw FAST5 sequencing data was basecalled using Guppy (version 

6.4.6). Reads were quality-filtered using NanoFilt57(2.8.0) and aligned using 

ngmlr58(version 0.2.7) against the GRCh38/hg38 reference genome 215 

(https://github.com/henssen-lab/nano-wgs). For ecDNA detection and reconstruction 

Decoil59(version 1.1.2) was applied using the decoil-pipeline in sv-reconstruct mode, 

which calls SVs using Sniffles (version 1.0.12).58  

TARGET-seq  
Individual HSPCs were isolated by index flow cytometry, enriching for early stem cell 220 

populations (Lin-CD34+CD38- CD45RA-CD90+) followed by integrated single cell 

genotyping at allelic resolution for mTP53 and JAK2 and single cell RNA sequencing 

(sc-RNA-seq), leveraging the softwares inferCNV and numbat to call CNAs in single 

cells.60–62 The processed count matrix for 8 myelofibrosis (MF) patients,14 BP-MPN 

patients and 9 healthy donors profiled using TARGET-seq were downloaded from 225 

GSE226340, normalized by library size and log2-transformed.62 HSPCs were 

classified as MF (MF non-TP53 mutant controls) chr21amp_TP53_MT (chr21amp 

https://github.com/henssen-lab/nano-wgs
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE226340


tp53 mutant cells), TP53_MT _no_chr21amp (non-chr21amp, tp53 mutant cells), 

pre-LSC (WT cells from BP-MPN donors) or WT-normal (cells from normal donors). 

Differentially expressed genes were identified using a combination of the non-230 

parametric Wilcoxon test, to compare the expression values for each group, and 

Fisher’s exact test, to compare the frequency of expression for each group.63 p-

values were combined using Fisher’s method, and adjusted p-values derived using 

the Benjamini & Hochberg procedure. Significant genes were selected on the basis 

of a log2(fold change)>1 and adjusted p value < 0.05.64,65 235 

 
Bulk RNA-seq analysis 
Data pre-processing 

Illumina sequencing data in the binary base call (BCL) format was 

demultiplexed using bcl2fastq v2.20.0.422. Data quality was assessed using FastQC 240 

v0.11.5 (https://github.com/s-andrews/FastQC). Nextera adapters and 3’ bases with 

Phred quality score less than 20 were trimmed from the single-end reads using Trim 

Galore v0.6.5 (https://github.com/FelixKrueger/TrimGalore). Trimmed reads were 

subsequently mapped to the hg19 human reference genome using STAR v2.6.1d in 

2-pass mode.66 245 

 

Gene expression quantification 

Mapped reads were quantified using featureCounts (part of the Subread v2.0.0 

package suite)67, and the gene expression counts were summarized by gene 

identifiers based on GENCODE V10. For each sample, the raw counts were 250 

normalized by the corresponding sample’s library size (total raw counts) and then 

multiplied by 1,000,000 to obtain the gene expression values in counts per million 

(CPM) unit. 

 

Differential gene expression analysis 255 

Differential gene expression was carried out with the DESeq2 R package 

(v1.28.1).68 Differentially expressed genes were identified using Wald test pairwise 

analysis and P values were adjusted for multiple testing using the Benjamini and 

Hochberg method. Genes were filtered to those expressed (defined as log2(CPM)>1) 

by a minimum of 3 samples in each group. Unless otherwise specified, adjusted p 260 

values < 0.05 and log2-fold change 1 and -1 cut-offs were applied to define 

https://github.com/s-andrews/FastQC


significantly up- or down-regulated genes, respectively. Heatmaps were generated 

using the package ComplexHeatmap R package (v 2.14.0) and volcanos were plotted 

using EnhancedVolcano R package (v1.16.0). 

 265 

Gene set enrichment analysis 

GSEA was performed using the GSEA software (Broad Institute; v4.3.2, RRID: 

SCR_003199) inputting the normalized count matrix and incorporating expressed 

genes as a background gene list, against Hallmark (h.all.v2023.1) and curated KEGG 

gene sets (c2.cp.kegg.v2023.1), obtained through the GSEA GUI (Broad Institute; 270 

RRID: SCR_003199) using the default settings.69,70  

 

Allele specific gene expression analysis 

 

The whole genome sequencing VCF files were filtered to identify informative 275 

heterozygous SNPs located in the chr21amp genes with coverage from the Smart-

seq2 RNA-seq data (exonic or 3’UTR) for each case (Supplementary Table 4). 

Parental haplotypes were assigned for each SNP based on VAF. A custom genome 

file with replacement of REF alleles by ALT was generated prior to re-aligning the 

trimmed RNA-seq FASTQs to this custom genome file to enable alignment 280 

correction. Read-counting was performed for both the WT and ALT aligned BAM files 

to enable maximal capture of all reads aligning to the SNP site, and read counting 

was performed to assess for allelic skew.   

 

Bulk ATAC-seq analysis 285 

Data pre-processing 

Illumina sequencing data in the binary base call (BCL) format were 

demultiplexed. using bcl2fastq v2.20.0.422. Adapter trimming was performed using 

Trim Galore v0.6.5. Trimmed reads were aligned to the hg19 human reference 

genome with Bowtie2 v2.4.2.71 Duplicate reads were removed using MarkDuplicates 290 

module from Picard v2.3.2 and mitochondrial reads were removed using Samtools 

v1.9.72 ATAC-seq QC was performed using the fragSizeDist function of the 

ATACseqQC R package (v1.14.4) to assess for fragment size distribution whereas 

mapped, mitochondrial and duplicated reads were calculated using Samtools.72 The 

shiftGAlignmentsList function from ATACseqQC was further used to shift the 295 



coordinates of aligned reads in the BAM file to account for the 5’ overhang of 9 base 

long created by the tagmentation of Tn5 transposases. Specifically, coordinates of 

reads mapping to the positive and negative strand were shifted by +4 and -5, 

respectively.  The resulting BAM file was converted to bigWig format using deepTools 

and viewed in the UCSC data hub.73 300 

 

Peak calling, annotation, and quantification 

BAM files from each genotype were merged and peak calling was performed 

using MACS2 v2.2.7.1.74 Each peak was standardized to a fixed width of 500bp.75 

Specifically, for each peak, 250bp was subtracted from and added to the coordinate 305 

of the peak summit to obtain the start and end coordinate of the peak, respectively.  

Next, for each sample, the peaks were ranked according to the their -log10(p value). 

Overlapping peaks were subsequently merged by retaining the peak coordinate with 

the highest -log10(p value). This process was repeated across all samples to generate 

a consensus peak list for the entire dataset for downstream peak annotation and 310 

quantification. 

 Peak annotation was performed with the ChIPseeker R package (v1.34.1), and 

TxDb.Hsapiens.UCSC.hg.knownGene (v3.2.2)  annotation R package. Specifically, 

each peak was annotated with its nearest gene and whether it is located within the 

promoter or putative distal regulatory element. The former is defined as located within 315 

1000bp upstream and 100bp downstream of a transcription start site (TSS) while the 

latter is defined as located outside promoter region. 

 Peak quantification was performed by counting the number of sequencing 

reads that align to each peak using the countOverlaps function from the 

GenomicRanges (v1.50.2) R package. The raw peak count data was tabulated as a 320 

matrix whereby the column represent the peak coordinates, rows represent the 

sample, and values represent the raw read count. For each sample, the raw counts 

were normalized by the corresponding sample’s library size (total raw counts) and then 

multiplied by 1,000,000 to obtain the peak expression values in counts per million 

(CPM) unit. 325 

 

Differential peak analysis 

Differential peak analysis was carried out in DESeq2 R package (v1.28.1).68 

Differentially expressed peaks were identified using the Wald test and P values were 



adjusted for multiple testing using Benjamini-Hochberg. Unless otherwise specified, 330 

adjusted p-values < 0.05 and log2-fold change 1 and -1 cut-offs were applied to define 

significantly up- or down-regulated genes, respectively. 

 

Transcription factor motif analysis 

Motif calling and discovery analysis was performed using the 335 

findMotifsGenome.pl function in Homer v20201202 76 using both MACS2 narrowPeak 

and MACS2 summit files extended +/- 200bp as input files and a file of all ATAC peaks 

as background. 

Principal component analysis 

Principal component analysis (PCA) was performed using the FactorMineR 340 

(v2.8) R package and the eigenvalues for the 1st two principal components were 

computed using the factoextra (v1.0.7) R package. For PCA of RNAseq, we used 

highly variable genes as features. Highly variable genes were defined at the top 10% 

of expressed genes with the highest variance, and these expressed genes were 

defined as genes with ≥1 CPM in at least 3 samples. For PCA of ATACseq, we used 345 

differentially expressed peaks as defined above as features. The gene and peak 

expression values of RNAseq and ATACseq, respectively, were offset by +1, log2-

transformed, and then scaled prior to dimension reduction analysis. 

Western blotting 

SET2 and HEL cells were treated with DMSO or DYRK1A inhibitor EHT1610 350 

for the time and concentrations indicated in the figure legends. Whole cell lysis was 

performed with TENT buffer (50mM Tris, pH 8.0, 2mM EDTA, 150mM NaCl, 1% 

Triton X-100) supplemented with 2mM NaF, 2mM NaVO3, 2mM Sodium 

Pyrophosphate, 2mM beta-glycerophosphate, and 1x complete protease inhibitor 

cocktail (Roche) for 30 minutes on ice. Debris was cleared by centrifugation at 355 

21000g for 10 minutes at 4°C. Lysates were denatured in LDS sample loading buffer 

(Life Technologies) at 95°C for 5 minutes and electrophoresed on 4-15% Mini-

Protean TGX gels (BioRad). Proteins were transferred to PVDF membranes (EMD 

Millipore) and probed with primary antibodies against LIN52, phospho-S28-LIN5277, 

FOXO1, phospho-FOXO1 S329, phospho-STAT3 Y705, STAT3, GRB2 and HSC70. 360 



The membranes were then incubated with primary antibodies overnight at 4ºC on a 

shaking platform. After washing with 1x TBST five minutes for five times, all Western 

blots were detected by HRP-conjugated secondary antibodies and visualized with 

SuperSignal™ West Pico PLUS Chemiluminescent Substrate (ThermoFisher 

Scientific), or were detected with IRDye secondary antibodies (LI-COR) and 365 

visualized with Odyssey CLx Imaging System (LI-COR). Primary and secondary 

antibodies are described in detail in Supplementary Table 16. Densitometry values 

were calculated using ImageJ software (NIH).   

High-throughput single-cell RNA-sequencing (10x Chromium) 

9,000 CD34+ lineage negative and 9,000 viable mononuclear cells were 370 

sorted into 30 µl PBS/0.05% BSA (non-acetylated) in a 1.5ml DNA lo-bind 

Eppendorf. Two samples with non-overlapping HTOs were hashed, and the cell 

number/volume adjusted to the target for loading onto the 10x Chromium Controller. 

Samples were processed according to the 10x protocol using the Chromium Single 

Cell 30 library and Gel Bead Kits v3.0 (10x Genomics). Cells and reagents were 375 

prepared and loaded onto the chip and into the Chromium Controller for droplet 

generation. Reverse transcription was conducted in the droplets and cDNA 

recovered through demulsification and bead purification. Pre-amplified cDNA was 

used for library preparation, multiplexed and sequenced on a Novaseq S4, aiming to 

obtain > 50,000 reads per cell. A preliminary, low-depth run was performed to more 380 

accurately estimate the number of cells and total sequencing required. 

10x Genomics single-cell RNA sequencing data pre-processing and integration 

Illumina sequencing data in the binary base call (BCL) format were 

demultiplexed. using bcl2fastq (v2.20.0.422). UMI counts were obtained by aligning 

FASTQ files to the human reference genome (GRCh38 3.0.0) using Cell Ranger 385 

software (v7.0.0) from 10x Genomics. The CellRanger ‘‘count’’ standard pipeline was 

used to obtain the expression matrix for each individual library for each donor. cite-

seq-count/1.4.4 was run using the --expected cells setting for HTO libraries.  

Demultiplexing & doublet exclusion 

Donors were demultiplexed using the Souporcell pipeline v2.0 and Singularity 390 

v3.2. Donor identification was performed using the hashtag oligonucleotide (HTO) 



information and the HTODemux() function implemented in Seurat v4.  Doublet 

exclusion was performed using (1) souporcell's incorporation of troublet v2.4 for 

intergenotypic doublet detection incorporating cluster assignments and cell allele 

counts and (2) identifying cells labelled by more than one unique HTO. Doublets 395 

were excluded from downstream analysis. 

Single cell 3’-biased RNA-sequencing data pre-processing 

Quality control was performed using the following parameters: number of genes  

detected > 500, percentage of mitochondrial reads < 15%, percentage of unmapped 

reads < 75%, min cells expressing genes  = 10, minimum UMIs =500. n=6143  400 

HSPCs from healthy donors, n=27549 non-chr21amp BPMPN and n=6572 from  

chr21amp BPMPN passed QC and were taken forward for analysis (total n= 40264  

cells).  The median mitochondrial read % of cells passing QC was 3.7% (IQR 2.9-

4.7%), median UMI count was 18648 (IQR 12862-26004) and median number of 

genes detected were 4665 (IQR 3772-5514).  405 

 

Dimensionality reduction, removal of individual donor effect and cell 
clustering 

To account for any technical batch effects and different sequencing depths, 

we integrated the healthy control dataset by batch using Seurat integration.78 After 410 

log-normalization of each dataset using `NormalizeData`, we selected the top 2,000 

highly variable genes across the datasets using `SelectIntegrationFeatures`, scaled 

the normalized data and regressed out the percentage of mitochondrial genes. For 

healthy control samples, we used Reciprocal Principal Component Analysis (RPCA) 

to integrate across batches using the `FindIntegrationAnchors` function with k=10 415 

and `IntegrateData`, followed by PCA analysis with 30 principal components, and 

UMAP for Dimension Reduction for dimensionality reduction. Clustering was 

performed using the Louvain algorithm (“FindClusters’), based on the k-nearest 

neighbor graph derived from integrated data and using resolution = 1.0.  

Marker gene identification and cell type annotation 420 

Differentially expressed genes for each healthy donor cluster were identified 

using the ‘FindAllMarkers’ function in Seurat. Differentially expressed genes were 

identified using the criteria of minimum log2FC 0.5, minimum percent expression 0.1, 



and ranked using p values and log2FC to select up to 50 genes per cluster. Clusters 

were identified by manual inspection of differentially expressed genes for canonical 425 

marker genes of blood cell lineages and comparison to reference datasets.79–82 BP-

MPN cells were then reference mapped to healthy control cells using the Seurat 

FindTransferAnchors and TransferData reference mapping functions to transfer the 

cell type annotations. Cells annotated as lymphoid cells were excluded from 

downstream analyses, leading to a final cell count of 40264 cells. 430 

CNA inference 

Inference of chromosomal alterations from single cell gene expression data 

was performed using a haplotype-aware caller, numbat.61 Healthy control samples 

without copy number alterations were used as the expression reference 

(lambdas_ref). Numbat was run with default parameters. The clustered clonal outputs 435 

were reviewed and Numbat output clones (bulk_clones) were assigned to single cells.  

 

Single-cell regulatory network inference and clustering (SCENIC) analysis  
SCENIC permits identification of regulons (genes co-expressed with 

transcription factors) with known binding targets based on cis-regulatory motif 440 

analysis. The AUCell algorithm enabled quantification of each regulon.  We used 

pyscenic (version 0.10.0) implemented via singularity v3.2 to perform single-cell 

regulatory network analysis and followed the published protocol steps.83 We first run 

the python script ‘arboreto_with_multiprocessing.py’ using the ‘grnboost2′ method 

followed by running ‘pyscenic’ using default parameters with the database file 445 

‘hg38__refseq-r80__10kb_up_and_down_tss.mc9nr.feather’ and the motif 

information file ‘motifs-v9-nr.hgnc-m0.001-o0.0.tbl’. Identified regulons from pyscenic 

were selected based on the average AUCell score across cells > 0.02 and the 

number of genes in each regulon > 10.  

Quantitative real time PCR in shRNA experiments  450 

In DYRK1A knockdown experiments, RNA was extracted using RNeasy micro 

kit using the protocol for low cell numbers (Qiagen #74004). RNA quality and 

quantification was performed on the nanodrop. Reverse transcription was performed 

with EvoScript Universal cDNA Master mix (Roche #07912455001) using 250-500 ng 

of RNA. qPCR was performed on a 7500 Real-Time PCR Machine using PCR Master 455 



Mix (Applied Biosystems TaqMan Universal PCR Master Mix #4304437). DYRK1A 

(Hs00176369_m1 qPCR primer, ThermoFisher) expression levels were normalized to 

GAPDH (housekeeping gene, Hs00176369_m1 qPCR primer, ThermoFisher).  

Dual luciferase transcriptional assay  

In this STAT5 luciferase reporter assay system84 in human embryonic kidney 460 

(HEK) 293T cells either WT Jak2 or Jak2V617F are co-expressed. The 

thrombopoietin receptor (TPOR) is co-transfected in all conditions as HEK cells 

express low levels of endogenous TPOR. TPO is then added to the system to 

stimulate JAKSTAT signaling through binding to the TPOR. Transcriptional activation 

of STAT5 was analyzed via dual luciferase assay (Promega) perfomed in HEK293T 465 

cells by measuring the ratio of Spi-Luc reporter driven firefly and pRL-TK-driven 

renilla luciferase as previously reported.84 HEK293T cells were transiently 

transfected using Lipofectamine 2000 reagent (ThermoFisher) with cDNAs coding for 

WT h-TPOR, murine (mu-) Jak2 WT or Jak2V617F, mu-Stat5b (constitutively active 

or WT), DYRK1A WT or scramble control (Supplementary Table 15), or the empty 470 

pMX-IRES-GFP (PIG) vector, as indicated. Cells were stimulated or not with 

10 ng/mL TPO (Miltenyi Biotec) for 24 hours. Luciferase activities were assayed 48 h 

posttransfection using the Spi-Luc reporter for STAT5 transcriptional activity.85 pRL-

TK was used as an internal transfection control. 
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