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Abstract: Molecular imprinting–aptamer techniques exhibit the advantages of molecular imprint-
ing and aptamer technology. Hybrids of molecularly imprinted polymer–aptamer (MIP–aptamer)
prepared by this technique have higher stability, binding affinity and superior selectivity than conven-
tional molecularly imprinted polymers or aptamers. In recent years, molecular imprinting–aptamer
technologies have attracted considerable interest for the selective recognition of target molecules in
complex sample matrices and have been used in molecular recognition such as antibiotics, proteins,
viruses and pesticides. This review introduced the development of molecular imprinting–aptamer-
combining technologies and summarized the mechanism of MIP–aptamer formation. Meanwhile,
we discussed the challenges in preparing MIP–aptamer. Finally, we summarized the application of
MIP–aptamer to the molecular recognition in disease diagnosis, environmental analysis, food safety
and other fields.
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1. Introduction

The recognition and detection of target molecules in real samples are susceptible
to interference from substrates. A variety of naturally occurring biomolecule pairs in
biological systems, such as enzyme–substrate and antigen–antibody, have high binding
strength and specificity for targets [1] and are thus widely used in the detection of target
molecules. However, natural molecular recognition often suffers from low stability, difficult
modification, easy denaturation and high cost [2]. Additionally, their use is limited by mild
conditions. Therefore, exploring molecular recognition systems with excellent stability and
selectivity are important.

Molecular imprinting has attracted much interest among researchers over the past
two decades. Molecular imprinting technologies are biomimetic molecular recognition
technologies that can synthesize molecularly imprinted polymers (MIPs) with selectivity
and sensitive to analytes through chemical reactions. MIPs have highly cross-linked
macromolecular structures around template molecules. After template molecules are
eventually eluted, imprinted cavities are complementary to template molecules in terms of
shape, size and chemical functionality [3,4] and can selectively rebind to templates. MIPs
have some advantages, such as low cost, good physicochemical stability, resistance to harsh
environments and reusability [5]. Unfortunately, some macromolecules in real samples can
be retained on the surfaces of MIPs, resulting in the selective binding sites being blocked
that reduce selectivity [6]. Moreover, targets in complex samples cannot be specifically
recognized due to interferences by other substances through nonspecific binding.

In recent years, to overcome these issues, many researchers have proposed novel
specific molecular recognition technologies based on MIP–aptamer. Combining MIPs with
aptamers can better augment their advantages and increase design flexibility. Aptamers
are short DNA or RNA oligonucleotide sequences with high affinity and specificity for
targets [7]. The binding of aptamers to targets depends on the diverse three-dimensional
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structures and spatial conformations of single-stranded nucleic acid. Aptamers have the
advantages of biocompatibility, wide availability, flexible structure and ease of modifica-
tion [8] and have high specificity, thereby reducing the nonselective adsorption of MIPs.
Combinations of MIPs and aptamers improve the specificity and affinity of polymers to
target molecules, and are thus of great research significance.

In this review, we focused on the mechanism of MIP–aptamer and then summarized
the fabrication and described their applications in the field of molecular recognition. Fi-
nally, we discussed the challenges and future development trends of MIP–aptamer in
molecular recognition.

2. The Development of Molecularly Imprinted Polymer–Aptamer

MIPs and aptamers, as effective mimetics of antibodies, have similar chemical struc-
tures to recognition properties of the natural molecules. Molecular imprinting was first
reported by Polyakov’s pioneering work using silicon pore substrates in 1931 [9]. In general,
the preparation of MIPs requires the single-template imprints of targeted molecules or
similar molecules that can bind to the functional groups of functional monomers through
covalent or noncovalent molecular interactions. Template molecules can be removed from
prepared polymers, leaving imprinted 3D skeleton cavities for the specific rebinding of
target molecules [10,11]. The ability of MIPs to recognize targeted analyte molecules is influ-
enced by many factors, including ionic strength, pH, solution polarity and polymer type and
size [12]. Aptamers were first proposed by Andrew Ellingtin and Jack Szostak in 1990 [13]
and were screened from synthetic high-capacity single-stranded random oligonucleotide
libraries through the systematic evolution of ligands and an exponential enrichment tech-
nique (SELEX) [14]. Aptamers may directly bind a wide range of target analyte molecules,
such as metal ions [15], small molecules [16,17], biomolecules [18], microorganisms [19]
and cells [20]. The complex and unique three-dimensional shapes of aptamers, including
loops, hairpins, pseudoknots, bumps, triplets, branches and quadruplexes complementary
to the target molecule, are formed by folding through hydrogen bonding between bases
within a chain [21–23]. The folding of an aptamer into a 3D shape depends on many factors,
such as temperature and salt concentration. Owing to the dynamic structures of aptamers,
the binding of aptamers to targets is unstable. Furthermore, they are susceptible to thermal,
chemical and enzymatic degradation. Their stability can be increased by introducing a
functional molecule at the 5′ or 3′ end.

MIPs and aptamers have been used individually to recognize various molecules in
complex matrices. However, given that MIPs and aptamers have their own advantages and
disadvantages, combining MIPs and aptamers may be an ideal solution for synthesizing
adsorbent materials with improved properties and desirable features. The comparison of
the features of MIP, aptamer and MIP–aptamer was listed in Table 1. In 2013, Spivak et al.
prepared the first hydrogel based on MIP–aptamer for the selective recognition of target
proteins with high affinity and stability [24]. Introducing aptamers as functional monomers
into MIPs can increase binding affinity and specificity. The polymer matrix protects DNA
aptamer strands from nuclease enzyme degradation, improving aptamer stability. A new
way for molecular specific recognition is opened. Synthesized MIPs can be formed into
various morphological structures, such as bulk materials, nanomaterials, nanocomposites
and thin films. MIP–aptamers based on substrate such as CdSe quantum dots, metal–
organic framework and upconversion nanoparticles have been intensely investigated as
promising analytical devices that will further broaden the range of applications of MIP–
aptamers. MIP–aptamers also have been used in molecular recognition and detection
in the fields of environmental analysis, pathogen detection, food safety and other fields.
The applications of the most interesting MIP–aptamers since 2013 are shown in Table 2.
MIP–aptamers are applied to the analysis of target in the complex matrix with a wide linear
range and a low detection limit.
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Table 1. Comparison of MIP, aptamer and MIP-aptamer.

Properties MIP Aptamer MIP–Aptamer

Sensitivity Low Medium Ultrahigh
Selectivity Medium High Ultrahigh

Affinity Low High High
Stability High Medium High

Table 2. Applications of MIP–aptamer during 2013–2022.

Analyte Sample Method Linearity Range LOD Year Ref.

Proteins, Thrombin
and PDGF-ββ

urine, tears Visual detection - - 2013 [24]

Cytochrome C urine, serum Fluorescence 0.20–2.00 µM 0.054 µM 2018 [25]
Glycoprotein alkaline

phosphatase human serum Plasmonic
immunosandwich assay - - 2019 [26]

Thrombin bovine blood Electrochemical 2.5 × 10−9–1.3 × 10−6 mg/mL 1.6 × 10−10 mg/mL 2019 [27]

Ochratoxin A beer
High-performance

liquid chromatography-
fluorescence

0.05–1.00 ng/mL 0.07 ng/mL 2020 [28]

Cardiac Troponin I human serum Voltammetric 0.50–3.3 × 105 pM 1.04 pM 2020 [29]

Alpha-fetoprotein human serum

Matrix-assisted laser
desorption/ionization

time-of-flight mass
spectrometry

20–1000 ng/mL 0.5 ng/mL 2020 [30]

Amyloid-β oligomer human serum Electrochemical 5 pg/mL to 10 ng/ mL 1.22 pg/mL 2020 [31]
Thrombin serum Colorimetric 1.08 × 10−10–2.7 × 10−5 mol/L 2.7 × 10−11 mol/L 2021 [32]

Trypsin
blood human

serum and
urine

In situ
electropolymerization 1–90 pg/mL 0.75 pg/mL 2022 [33]

Prostate specific
antigen human serum Electrochemical 100 pg/mL–100 ng/mL 1 pg/mL 2016 [16]

Dopamine serum Electrochemical 5.0 × 10−8–1.0 × 10−5 mol/L 4.7 × 10−8 mol/L 2021 [34]

Factor IX protein human plasma
serum Electrochemical 0.8 fM to 0.8 nM 40 fM 2022 [35]

Exosomes serum Fluorescence 1.19 × 10−6–4.76 ×10−5 mol/L 2.27 × 10−6 mol/L 2022 [36]
Lincomycin meat Electrochemical 5.0 × 10−12–1.0 × 10−9 mol/L 1.6 × 10−13 mol/L 2017 [37]
Enrofloxacin fish Fluorescence - 0.04 ng/mL 2017 [38]

Kanamycin water, milk and
urine Fluorescence 8.6 × 10−8–1.7 × 10−5 mol/L 2.2 × 10−8 mol/L 2018 [39]

Tetracycline milk Electrochemical 5× 10−4–1000 nM 1.4 × 10−4 nM 2019 [40]
Chloramphenicol milk Electrochemical 1.0 pM to 1.0 nM 0.3 pM 2019 [41]

Kanamycin
milk, tap,
artesian

groundwater
Electrochemical 10.00–500.00 nM 1.87 nM 2020 [42]

Moxifloxacin Electrochemical 0.001–1 µM 0.51 nM 2021 [43]
Hepatitis C virus human serum Electrochemical 5.0 fg/mL–1.0 pg/mL 1.67 fg/mL 2018 [44]

Hepatitis B virus human serum resonance light
scattering 0.04–0.1 nmol/L 0.011 nmol/L 2021 [45]

Hepatitis B virus human blood Fluorescence 10–3500 pmol/L 1.8 pmol/L 2021 [46]
Pseudomonas

aeruginosa blood Electrochemical 101 to107 CFU/mL 1 CFU/mL 2021 [47]

Trinitrotoluene soil, river water Electrochemical 0.01 fM to 1.5 µM 3.5 × 10−9 nmol/L 2017 [48]
Carbofuran fruit, vegetable Electrochemical 0.2–50 nM 67 pM 2018 [49]

Chlorpyrifos apples, lettuce Electrochemical 1 × 10−6–400 × 10−6 nM 0.35 fM 2018 [50]

Urea soil, water Impedance
spectroscopy 0.005–500 nM 900 fM 2019 [51]

Melamine milk Electrochemical 10−12–10−4 mol/L 6.7 × 10−13 mol/L 2021 [52]
Aflatoxin B1 milk Electrochemical 50.0 pg/L to 3.5 ng/L 12.0 pg/L 2022 [53]

Histamine
human blood

plasma, canned
tuna fish

Differential pulse
voltammetry and
electrochemical

impedance
spectroscopy

0.46–35 nmol/L
0.35–35 nmol/L

0.15 nmol/L and
0.11 nmol/L 2020 [54]
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3. Synthesis of MIP–Aptamer

Hybridized MIP–aptamer exhibit many advantages over MIPs or aptamers, which had
been widely used in molecular recognition. Different methods for preparing MIP–aptamer
have been reported in the literature. The commonly used method is to mix the target ap-
tamer with target molecules to form aptamer–target molecule complexes. Then, functional
monomer, polymerization solvents, cross-linkers and initiators are added for the prepara-
tion of polymer-covered aptamer–target molecule complexes. Finally, imprinted molecules
are eluted. The process of preparation is shown in Figure 1. After the correct folding of
aptamers with targets, functional monomers are polymerized around the aptamer–target
molecule complexes via molecular imprinting technique. Meanwhile, functional monomers
interact with the remaining functional groups of targets to form co-recognition substrates.
Polymers synthesized by this method have good recognition specificity. The difference
of synthetic methods is the order in which the aptamers are added. Firstly, traditional
functional monomer and template molecule pre-polymerized for hours. Then, an aptamer
was added for polymerization. This operation may result in insufficient contact between the
aptamer and the template molecule. As a result, there are few aptamer-specific recognition
sites. Furthermore, computational modeling can improve the aptamer selection process
during synthesis.
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4. Application of MIP–Aptamer in the Molecular Recognition of Complex Samples
4.1. Biomarkers

Biomarkers are available for measurement and can reflect a physiopathological process
or therapeutic effect. The availability of biomarkers not only helps to investigate the
pathogenesis of complex diseases, but also contributes to the screening, treatment and
prognosis of diseases in clinical practice.

Proteins, as a kind of disease marker, have complex and diverse structures. Most
proteins have extremely low content in organisms and are thus difficult to recognize and an-
alyze. Therefore, the selective recognition and separation of proteins in complex biological
samples are of great significance. To increase the specificity and affinity for glycopro-
tein alkaline phosphatase in the sera of patients with hepatocarcinoma, Wei Li et al. [26]
presented a novel approach based on MIP–aptamer. First, aptamers bound to glycopro-
tein alkaline phosphatase with relatively weak affinity and specificity as the imprinting
recognition safeguard. Then, the surface-oriented imprinting of dopamine in water self-
polymerization formed a thin polydopamine layer that covered the template. Finally,
MIP–aptamer was obtained by removing the template from the polymer, as shown in
Figure 2. The polymerization of polydopamine occurred in a pure water system, which
helped to maintain the original conformation of the target molecule and facilitate the re-
binding of the target molecule to MIP–aptamer. MIP–aptamer showed cross-reactivity of
3.2–5.6% and satisfactory sensitivity with low limit of detection (6.2 × 10−12 M).
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Wang et al. utilized magnetic microspheres as substrates [30] and MIP–aptamer as
double-recognition layers to fabricate nanoprobes. First, magnetic nanoparticles func-
tionalized by hydrosulfuryl aptamers (Mag Au@SH-aptamers) were synthesized, which
captured alpha-fetoprotein. The aptamers were integrated into magnetic nanoparticles
through Au–S bonds, and SiO2 was used as the imprinted layer. Finally, high-throughput
matrix-assisted laser desorption/ionization time of flight mass spectrometry, a rapid
and highly efficient method for recognizing and analyzing protein biomarkers, was
performed. The MIP–aptamer was immobilized on the surface of magnetic nanoparticles.
MIP–aptamer could be quickly separated from the extraction solution by using a magnet.
Mag Au@SH-aptamer@MIP exhibited high recognition ability toward alpha-fetoprotein
and successfully distinguished protein biomarkers in healthy sera and sera of patients
with hepatic carcinoma.

Sullivan et al. [33] synthesized MIP–aptamer polymers to recognize trypsin. Aptamers
were used as the recognition elements of polymers, and the chemical structures of the ap-
tamers were slightly modified. The synergistic effects of the MIPs and aptamers contributed
to the highly specific recognition ability of the MIP–aptamer to trypsin, and binding affinity
was higher than that of conventional MIPs. The limit of detection of the MIP–aptamer
was over half (2.4 nm) that of MIPs (4.1 nm). In addition, Roushani et al. [55] detected
ultra-trace trypsin in human serum and urine by using a MIP–aptamer. Satisfactory results
were obtained with recoveries ranging from 94.0 to 114.0%.

Mokhtari et al. [29] fabricated MIP–aptamer to capture cardiac troponin I for im-
printing recognition. First, amino terminus cardiac troponin I aptamers was bound to the
surfaces of COOH-ZnO nanoparticle-modified GCEs through covalent immobilization,
and then methylene blue functional monomers were electropolymerized around the car-
diac troponin–aptamer complexes. After the removal of cardiac troponin, cavities for the
recognition of cardiac troponin I in human serum formed. The detection limit of the MIP–
aptamer was 2.61 × 10−5 µg/mL, with recovery rates of 93.40–114.28% and quantification
limit of 2.90 × 10−5 µg/mL.

Krishnan et al. [35] developed a biomimetic biosensor to detect human clotting factor
IX protein (FIX) for early detection of bleeding disorders by using the MIP–aptamer strat-
egy. The MIP–aptamer sensors were more sensitive than conventional aptamer sensors.
Moreover, integrating carbon nanohorn, gold nanourchin and MIP–aptamer as hybrid
materials could improve the recognition ability [35]. In addition, the MIP–aptamer was
also used for the identification of biomarker exosomes in liquid biopsies [36]. The method
had a low detection limit (2.27 µmol/L) and a good recovery (104.17%).

In addition, the recognition of other biomarkers such as cytochrome C [25], amyloid-β
oligomers [31], dopamine [34], bovine serum albumin [56], prostate [57], scortisol [58] and
thrombin [27,32] were reported based on MIP–aptamer dual recognition approach.

4.2. Pharmaceutical Analysis

Antibiotics are commonly used to treat and prevent bacterial infections. However,
they can be ingested through foodstuff because of their persistence in animals. The adverse
effects of antibiotics include allergic reactions and liver and kidney damage and can pollute
the water environment. The use of antibiotics and the detection of residues in food has
received considerable interest [59–61]. Materials that have dual recognition functions and
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are based on MIP–aptamer have been used in the recognition and analytical detection of
antibiotics in real samples.

Liu et al. prepared hybrid probes based on the synergism recognition of MIP–aptamer
grafted on upconversion nanoparticles for enrofloxacin recognition [38]. In the first step,
biotinylated enrofloxacin aptamers were immobilized on the surfaces of upconversion
nanoparticles to entrap enrofloxacin, which was the first imprinting recognition safeguard.
Then, while interacting with the residual functional groups of the enrofloxacin, methacrylic
acid monomers were polymerized around the enrofloxacin–aptamer complexes with a
molecular imprinting technology after the aptamers correctly folded on the target en-
rofloxacin molecules. The removal of enrofloxacin from polymers formed simultaneous
molecular-recognition-imprinted cavities. The MIP–aptamer was used in the recogni-
tion of enrofloxacin in the different real samples of fish, showing a detection limit of
0.04 ng/mL and recovery rates between 87.05% and 96.24%. Upconversion nanomaterials
have unique luminescence properties, low toxicity, high chemical stability, long lifespan and
deep penetration depth in living tissues. They are widely used in biological imaging [38].
MIP–aptamers based on upconversion nanomaterials are also applied in bioimaging.

A large number of biosensors based on MIP–aptamer have been used to recognize
and detect kanamycin. Geng et al. [39] prepared a novel double-recognition fluorescent
MIP–aptamer for the high-specificity recognition of kanamycin. The process of preparation
is shown in Figure 3. CdSe quantum dots are used as support, thiol-modified kanamycin
aptamers and methacrylic acid are used as functional monomers, and kanamycin is used
as the template for surface imprinting in aqueous solutions. Aptamers are fixed in poly-
mer matrices through thiol-ene click reactions. The application of thiol-ene click reaction
made the polymerization procedure more convenient and efficient. Synergistic interactions
between aptamers and methacrylic acid apparently improve the specificity and affinity of
MIP–aptamer for kanamycin in food, water and biological samples. The fluorescence inten-
sities of MIP–aptamer exhibit good linear correlation at a concentration of 0.05–10.0 µg/mL,
and the detection limit is 0.013 µg/mL. Moreover, Bi at el. proposed a highly specific and
sensitive electrochemical method for recognizing and analyzing kanamycin based on the
MIP–aptamer [42]. Beta-cyclodextrin is the most common supramolecular host compound,
which has a hollow truncated cone structure with a hydrophobic cavity and hydrophilic
rims. It can form host–guest clathrates with various molecules, which provide more fa-
vorable interactions for the adsorption of target analytes by polymer materials in aqueous
media. The use of beta-cyclodextrin increased the adsorption capacity of the MIP–aptamer
to the target analytes. The MIP–aptamers showed a good linear relationship in a range of
10–500 nM of kanamycin concentration and a detection limit of 1.87 nM. They have been
used successfully to detect kanamycin in spiked milk.
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MIP–aptamer has been used in tetracycline analysis. Rad et al. [40] introduced a novel
material for sensing tetracycline. First, aptamer–tetracycline complexes were obtained by
mixing tetracycline solution with tetracycline aptamer solution. The complexes were immo-
bilized on the surfaces of glassy carbon electrodes (GCEs) modified with gold nanoparticles
(AuNPs). Dopamine was then electropolymerized onto the modified GCEs to capture
the aptamer–tetracycline complexes. Finally, the tetracycline templet was eluted with an
ethanol–acetic acid mixture (95:5, v/v) to form cavities. AuNPs not only have good con-
ductivity, but also have a large specific surface area. The addition of AuNPs to the sensor
can increase the surface area to capture more aptamers and it is more conducive to the
specific capability of MIP–aptamer. The novel MIP–aptamer sensor was used successfully
in recognizing tetracycline in spiked milk samples, with recovery rates of 94.9–106.2% and
an extremely low detection limit of 1.4 × 10−4 nM.

Shuhuai Li et al. [37] combined lincomycin aptamers tagged with carbon dots, lin-
comycin and o-aminophenol on electrodes functionalized by gold-nanoparticle-modified
graphene to synthesize carbon dots–MIP–aptamer through electropolymerization. The
carbon dots–MIP–aptamer exhibited high selectivity and affinity for lincomycin and was
successfully used to recognition lincomycin residuals in meat samples, showing satisfactory
results and recovery rates of 89.9–104.5%.

Moreover, MIP–aptamers have been used to recognize ochratoxin A [28], chloram-
phenicol [41] and moxifloxacin [43].

4.3. Pathogen Detection

Viruses are the smallest known microorganisms, with diameters of approximately
20–400 nm [62,63], posing a major threat to humans, agriculture and ecosystems. New
viruses emerge every year, and viral diseases have become major global health problems.
Owing to the complex surface structures of viruses and their similarities, the recognition of
viruses is a major area of interest in many fields, including biomedicine, environmental
science and biosecurity. It is of crucial importance to the highly selective and efficient
recognition, detection and differentiation of multiple viruses.

Hepatitis C virus (HCV) infection causes chronic liver diseases, which is a global
public health problem. Ghanbari et al. [44] grafted MIP–aptamer onto multiwalled carbon
nanotube–chitosan nanocomposites for the recognition of HCV core antigen in human
serum samples. The MIP–aptamer based on the electropolymerization of dopamine around
the HCV cores of antigen aptamer complexes on GCEs modified with multiwalled carbon
nanotube–chitosan nanocomposites modified were attained, and the MIP–aptamer showed
specificity and high sensitivity for the identification of the hepatitis C virus core antigen.
The MIP–aptamer was immobilized on the surface of the multiwalled carbon nanotube–
chitosan nanocomposite. The recognition properties of MIP–aptamer were then improved
for the high surface area of carbon nanotubes and abundant hydroxyl and amine groups
of chitosan. Satisfactory results were obtained; the linear range was from 5.0 fg/mL to
1.0 pg/mL, and the detection limit was 1.67 fg/mL. Furthermore, their study provided
theoretical support for the application of MIP–aptamer recognition target molecules in
complex matrices.

Hepatitis B virus infection is one of the most dangerous pathogens in human health
today. Highly selective detection of the hepatitis B virus is essential. Wang et al. con-
structed a novel sandwich resonance light-scattering sensor for the hepatitis B virus and
based it on MIP–aptamer [45]. Carbon spheres with a large number of -COOH and -OH
groups were used as carriers for the preparation of the first recognition probes. Then,
aptamers were modified on the surfaces of the spheres for the preparation of the second
recognition probes. The introduction of aptamers to the MIP sandwich structures greatly
improved the specificity and showed satisfactory selectivity and sensitivity. The addition
of tetraethoxysilane provided a stable and controlled thickness of the embossed layer, thus
improving the performance of the MIP–aptamer. The imprinting factor was as high as 7.56,
and the detection limit was as low as 0.011 nM. The recovery rates were 88.0% and 115.0%.
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Wang et al. [46] used ratiometric metal–organic framework MIL-101-NH2 with suf-
ficient imprinting sites as a polymer carrier of MIP–aptamer for the specific recognition
of the hepatitis B virus, as shown in Figure 4. The hepatitis B virus aptamer was intro-
duced to the MIL-101-NH2 surface through an amide reaction, and then the surfaces were
imprinted by tetraethyl silicate self-polymerization for the recognition of hepatitis B and
imprinted polymeric cavities and aptamer interaction. Finally, ratiometry fluorometry was
performed, and MIL-101-NH2 and rhodamine B were used as the reference fluorescent and
change signals for hepatitis B virus recognition in a real human blood sample. The metal–
organic framework MIL-101-NH2 with large specific surface area served as a substrate of
MIP–aptamer that provided enough imprinting sites. The MIP–aptamer sensor apparently
improved affinity and specificity towards the hepatitis B virus with an imprinting factor of
5.72, a detection limit of 1.8 pmol/L and recoveries between 85.0 and 101%.
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Pseudomonas aeruginosa (P. aeruginosa) can cause a long-term chronic disease, and low
concentrations of P. aeruginosa can cause a serious infectious bacterium. Sarabaegi et al. [47]
designed an electrochemical sensor for the quantitative analysis of P. aeruginosa using
MIP–aptamer. The polymeric substrates maintained the aptamer stability and selectivity.
Moreover, the MIP–aptamer with many pores was conducive to P. aeruginosa adsorption.
Satisfactory results were found in determining P. aeruginosa in blood samples with low
detection limit of 1 CFU·m−1.

4.4. Environmental Analysis

Cadmium is harmful to the environment and human health, highly toxic, and carcino-
genic. Cadmium bioaccumulation in organs, mainly the kidneys, liver and lungs, can cause
significant damage to human health and lead to kidney and reproductive dysfunction,
osteoporosis and other diseases [64,65]. The World Health Organization has established a
maximum contamination level of 5 µg/L for cadmium in drinking water [66]. Therefore,
the monitoring of chromium contaminants in aqueous environments remains a challenge in
the field environmental chemistry. One of the most promising applications of MIP–aptamer
is cadmium (II) recognition [67] (Figure 5). Aptamer–Cd2+ complexes were immobilized on
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carbon quantum dots (codoped with sulfur and nitrogen) and gold-nanoparticle-modified
indium tin oxide glass electrode via Au-S bond. Through ultraviolet irradiation-induced
polymerization, MIP–aptamer was prepared on the surface of the modified indium tin
oxide glass electrode, and L-alanine and N-hydroxysuccinimide were used as a functional
monomer and cross-linking agent, respectively. After Cd2+ removal, the polymer contained
the recognition sites of Cd2+ and was successfully applied to the recognition of Cd2+ in
water, soil and vegetables, showing a detection limit of 1.2 × 10−12 mol/L.
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Moreover, MIP–aptamer has also been used to recognize environmental pollutants,
such as trinitrotoluene [48] and urea [51].

4.5. Food Safety

Melamine is a small-molecule organic chemical material widely used in plastics,
pigments, fertilizers, adhesives and flame retardants [68]. Its nitrogen content (66.7%)
is considerably higher than that of common protein nitrogen (16%) and is thus often
added illegally to dairy products, food and pet feed [69]. However, excessive intake of
melamine can cause serious damage to the urinary and reproductive systems, leading to
bladder stones, kidney failure, bladder cancer and even death in humans and animals [70].
Yu et al. [52] developed a sensor based on MIP–aptamer for the highly specific recognition
of melamine. AuNPs were synthesized through the simple reduction of sodium citrate.
MIPs with specific recognition sites formed through the electropolymerization of dopamine
with polythymine aptamers as functional monomers and melamine as template molecule.
The MIP–aptamer showed satisfactory selectivity and sensitivity, a linear relationship
between 10−12 and 10−4 mol/L for melamine detection in milk samples, and detection
limit of 6.7 × 10−13 mol/L.

Aflatoxins are carcinogenic and mutagenic. Excessive aflatoxin in food poses a huge
threat to people’s health and safety. Roushani et al. [53] designed a biosensor based on
MIP-amtamer synergistic identification for the detection of aflatoxin B1 (AFB1) in milk. The
detection limit of the method was 12.0 pg/L. Modification of the aptamer sequences with
amino increased its interaction with the substrate. Cu2O, with large specific surface area
and high adsorption capacity, was modified on the GCE surface to increase the loading of
aptamers. The proposed method can be extended to other target molecules by replacing
their aptamer sequences of other target molecules.

Pesticides have high acute toxicity and are used extensively not only in agriculture,
forestry, and horticulture but also in domestic applications. Residues at trace levels can
cause long-term effects on the environment and human life [71]. A strategy for planning pes-
ticide chlorpyrifos recognition based on MIP–aptamer has been developed and has shown
recognition properties superior to that of aptamers or traditional MIPs [50]. First, AuNR
was used as an attractive substrate for covalent MIP–aptamer immobilization. Then, GCE
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was carefully polished with alumina powder. AuNR solution was added dropwise to the
polished GCE surface for the preparation of AuNR/GCE composite in the complex solution
of the aptamer target. The MIP–aptamer was electropolymerized AuNR/GCE. Under opti-
mal conditions, the detection limit of MIP–aptamer was 0.35 × 10−6 nM, and the recovery
rate ranged from 97.56% to 103.2%, lower than the rates of previously reported methods.

Moreover, Li et al. [49] combined MIPs and aptamers to prepare an electrochemical
microfluidic chip for identifying carbofurans in cabbage, pepper, lettuce, tomato, apple,
banana, orange and watermelon, as shown in Figure 6. Carbofuran was transported to
MIPs and captured at the recognition site in the channel. Then, carbofuran was eluted with
carbinol-acetic acid, transported to the next testing position, and captured again by the
aptamer. Finally, it was detected by differential pulse voltammetry. The dual recognition of
MIP–aptamer resulted in high selectivity and showed recovery rates between 89.6% and
110.4% and a detection limit of 6.7 × 10−11 mol/L.
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4.6. Other Applications

MIP–aptamer has been successfully used to detect various target analytes in com-
plex matrices. Histamine is a biogenic amine that plays an important role in a variety
of pathophysiological processes [72]. The ingestion of high levels of histamine may
cause a range of allergic inflammatory diseases and cause cardiac arrest [73,74]. Dual-
recognition MIP–aptamer based on carboxylated carbon nanotubes decorated by gold
nanoparticles (AuNPs/cCNTs/GCE) for the highly selective and sensitive determination
of histamine in different matrices has been established [54]. Histamine–aptamer com-
plexes were pipetted on the surface of AuNPs/cCNTs/GCE, and the resulting histamine–
aptamer/AuNPs/cCNTs/GCE covalently bonded to gold nanoparticles through strong
Au-S covalent bonds. Histamine was dropped onto the surface of the modified electrode to
impregnate any free aptamer. MIP–aptamer/AuNPs/cCNTs/GCE was formed by the elec-
tropolymerization of O-phenylenediamine at the surface of aptamer/AuNPs/cCNTs/GCE.
Finally, MIP–aptamer/AuNPs/cCNTs/GCE was obtained through the elution of his-
tamine from cavities with acetonitrile/water solution (5:1, v/v). The recovery rates of
MIP–aptamer/AuNPs/cCNTs/GCE were between 95.3% and 104.4%, exhibiting good
sensitivity and selectivity toward histamine in melamine analysis in real samples of human
blood plasma and canned tuna fish. Finally, MIP–aptamer was used in the analysis of
adenosine target molecules [75,76].
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5. Conclusions and Future Perspectives

MIP–aptamer combines the merits of MIPs and aptamers, showing great promise in
molecular recognition. The affinity and specificity of MIP–aptamer significantly improved,
lowering the detection limit of the target analyte while improving the stability of target
molecule recognition in complex samples. It has broad application prospects in the analyti-
cal detection of complex matrices. Unfortunately, small molecules as template molecules
may result in fewer recognition sites in the MIP–aptamer, which would be a disadvantage
for target-molecule recognition. Usually, aptamers have a long-chain structure. Macro-
molecules, which have more complex molecular structures and functional groups, interact
easily with aptamers. This factor may limit MIP–aptamer application in small-molecule
identification. MIP–aptamer can be prepared in a number of ways. Many studies have
shown that a single modified aptamer cannot be effectively immobilized into polymers, and
making aptamer chains very flexible possibly leads to cross-reactivity and low imprinting
factor. Different DNA sequences have different binding properties in MIPs. Multivalent
or polydentate aptamers, which have multiple binding sites, may enable aptamers to be
effectively immobilized on polymers. Thus, a reasonable DNA sequence design is essential
to the detection of target molecules without known ligands. Furthermore, mixed aptamers
should also be boldly introduced into the preparation of MIP–aptamers to obtain higher
affinity. At the same time, the development of MIP–aptamer for larger targets meets a
major challenge due to the lack of available water-soluble functional monomers. Future
research should overcome the shortcomings of current experimental synthesis methods and
simplify the preparation. This proposed strategy can be easily extended and has potential
applications in bioanalysis. Computer modeling will further reduce the experimental
optimization work, improve the performance of MIP–aptamer, and ultimately improve the
selectivity, sensitivity and stability of recognition.
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