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Shape is an interesting property of objects because it is
used in ordinary discourse in ways that seem to have
little connection to how it is typically defined in
mathematics. The present article describes how the
concept of shape can be grounded within Euclidean and
non-Euclidean geometry and also to human perception.
It considers the formal methods that have been
proposed for measuring the differences among shapes
and how the performance of those methods compares
with shape difference thresholds of human observers. It
discusses how different types of shape change can be
perceptually categorized. It also evaluates the specific
data structures that have been used to represent shape
in models of both human and machine vision, and it
reviews the psychophysical evidence about the extent to
which those models are consistent with human
perception. Based on this review of the literature, we
argue that shape is not one thing but rather a collection
of many object attributes, some of which are more
perceptually salient than others. Because the relative
importance of these attributes can be context
dependent, there is no obvious single definition of
shape that is universally applicable in all situations.

The many facets of shape

We all use the word “shape” in our day-to-day
discourse, but a precise definition of that term is
surprisingly difficult to formulate. Consider the
following sentences:

1. The three-dimensional (3D) modeling software
provides a set of primitive shapes, including a
sphere, a cube, a cylinder, and a pyramid, which
can all be deformed and/or combined to create an
infinite variety of more complex shapes.

2. The old woman lived in a house, whose shape
resembled a shoe.

3. All John has left from his boxing career is his
misshapen nose.

4. We all recoiled at the grotesque shape of the creature,
whose head was covered with small pointed horns
and two writhing tentacles on each side.

5. The sculpture was shaped like a geographic surface
with hills, dales, valleys, and ridges.

Note that the individual shape primitives described in
the first sentence have specific mathematical definitions,
but how do we describe the more complex shapes that
are derived from them? In the second sentence, the
shape of the house is described by comparing it to
something else (i.e., a shoe). This is also the case for
the third example except that the “something else” is
recognized implicitly as the shape of a normal nose.
If we cannot describe a shape by comparing it to
something else, we often resort to describing it as a
configuration of namable parts as in the fourth and
fifth sentences.

With the exception of the basic primitives in the first
example, all of these shape descriptions are remarkably
vague. If we define a shape (or a part of a shape) by
its resemblance to some other form with which we
are familiar, then we are still left with the problem of
defining the shape of that familiar form. This type of
language is only meaningful to the extent that we have
a shared understanding about the overall shapes of
namable objects (or parts).

There are an infinite number of possible physical
measures of an object, but how do we decide which ones
should be referred to as shape? Should this be decided
by fiat from some prominent mathematical authority,
or should we trust our own perceptual intuitions? Our
approach as we begin this discussion is to keep an open
mind about what object properties constitute shape. We
will assume, however, that any theory of shape must
ultimately be grounded in human perception. Thus,
if two shapes are similar by a mathematically defined
measure of shape, they should also be perceptually
similar as well.

The present article is divided into two parts: The first
part will focus on the measurement of shape differences.
It will consider how the congruence and similarity of
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objects are established within classical geometry. It
will also discuss the correspondence relations between
objects and how different types of shape change can be
categorized. The second part will consider a variety of
data structures for the representation of shape, and it
will also propose a set of criteria for evaluating those
as possible models of human perception. Based on
this review of the literature, we will argue that shape
should be considered as a collection of many object
attributes, some of which are more perceptually salient
than others (see also Green, 2017; Koenderink, 1990).
This suggests that there may not be a single definition
of shape that is wholly satisfactory, because different
sets of attributes may be relevant in different contexts
(Kimia, Tannenbaum, & Zucker, 1995). For example,
the metric properties of Euclidean geometry may be
of paramount importance to a tool and die maker but
not so much to a biologist who is trying to classify the
biological forms of different species.

Methods of shape comparison

Shape-related concepts in classical geometry

Classical geometry provides precise formal definitions
for a relatively small number of basic shapes. For
example, a sphere is defined as the locus of points in
three-dimensional (3D) space that are all equidistant
from a central point. Similarly, a square is defined as a
polygon with four sides of equal length whose adjacent
sides are all orthogonal to one another. Although
classical geometry does not include formal definitions
for more complex shapes like horses or hands, it does
provide procedures for establishing the geometric
equivalence of different objects. For example, two
polygons (or polyhedra) are said to be congruent if
all of their corresponding edges are equal in length
and all of the corresponding angles between edges are
equal as well. Two polygons (or polyhedra) are said
to be similar if all of the corresponding edges are in
a fixed proportion with one another, and all of the
corresponding angles between edges are equal.

Figure 1 shows three polygons labeled A, B, and C.
Whereas all three polygons are similar to one another,
only A and B are congruent within classical Euclidean
geometry. Most observers would agree, however, that A,
B, and C all have the same shape. This suggests that the
concept of similarity is closer to our intuitive notions
of what constitutes shape equivalence than the concept
of congruence. It is also interesting to note in this figure
that all three polygons have different positions and
orientations in space. Those variations are irrelevant
to establishing the congruence or similarity between
two polygons. It is only the relationship between the
corresponding lengths and angles that matter. For the

Figure 1. Three polygons that are geometrically similar to one
another. Objects A and B are also congruent.

sake of simplicity, the examples in Figure 1 have been
restricted to two-dimensional (2D) planar objects, but
the same definitions are applicable to arbitrary numbers
of dimensions.

Another more general way of defining geometric
equivalence (i.e., congruence) in Euclidean geometry
involves the possible alignment of one object with
respect to another. Two objects are said to be congruent
if and only if they can be aligned perfectly, so that each
point on one object coincides with a corresponding
point on the other and vice versa. Within Euclidean
geometry, there are a restricted set of movements or
transformations with which this alignment can be
achieved. These are referred to as rigid transformations
(or isometries), and they include translations, rotations,
and reflections. What all these transformations have
in common is that they do not alter the distances
between any pair of points on an object. They only
affect its overall position and orientation. It should
also be pointed out, however, that reflection is slightly
different from translation and rotation, in that it does
not preserve handedness.

Expanding that set of transformations to include
uniform dilations or scaling to achieve alignment
provides a more general definition of the Euclidean
concept of similarity. Uniform dilation alters the
distances between all pairs of points on an object, but it
does so in a fixed proportion.

The Erlangen program of Felix Klein

Although Euclidean geometry was considered to
be sacrosanct in philosophy and mathematics for over
two millennia, that gradually started to change in the
19th century (Torretti, 2019). New geometries with
assumptions different from Euclid’s began to emerge,
and older discoveries like projective geometry began to
be recognized as alternatives to Euclidean geometry.
In 1872, the German mathematician Felix Klein was
awarded a professorship at the University of Erlangen
at the young age of 23. In an effort to summarize his
ambitious research goals, he wrote a booklet on the
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possible unification of all known geometries within
a common framework, which is now referred to as
the Erlangen program. His proposal relied heavily on
group theory, which was not widely understood at that
time. Klein argued that each type of geometry can be
associated with a group of one-to-one transformations
that map a space onto itself. The technical name for
such a transformation is automorphism (e.g., Anderson
& Feil, 2015). The geometric structures that are defined
for each geometry are those that are invariant under
its associated automorphism group. He also noted that
these geometries can be organized in a hierarchical
manner so that the group associated with one geometry
can be a subset of the group associated with another.
Klein’s proposal was more like a manifesto than a
formal proof, and the hard mathematical work to
develop the theory with full rigor was left to others,
especially to his friend and collaborator Sophus Lie.

We have already introduced how this works in
Euclidean geometry. The Euclidean (isometry) group
includes all combinations of translations, rotations, and
reflections. If reflection is excluded from this set, the
result is referred to as a special Euclidean group. Each
individual transformation is an isometry—it preserves
the lengths and angles on any geometric form. For
example, to transform object A into object B in Figure
1, one must apply a translation and a rotation. It is easy
to prove that two geometric figures are congruent (in
the sense of having equal corresponding lengths and
angles) if and only if there exists a transformation in
the Euclidean group that makes the first figure identical
to the second. If we are given an automorphism group,
we can define congruence in terms of the equivalence
classes that remain invariant with respect to arbitrary
transformations in this group. In the case of the
Euclidean group, all members of the same class have the
same Euclidean shape and also the same absolute size.
Additional invariants of Euclidean transformations
include the perimeters and areas of 2D figures and the
surface area and volumes of 3D objects.

If we expand the group, we create a more liberal
congruence relation that partitions the space of
geometric figures into coarser equivalence classes. This
process is illustrated well by the transition from the
Euclidean to the similarity group. The latter contains
the Euclidean group as a subgroup but also includes all
uniform dilations. All three objects in Figure 1 belong in
the same equivalence class with respect to the similarity
relation. Like metric congruence, similarity preserves all
angles. Whereas absolute distances, areas, and volumes
are not preserved over similarity transformations, the
ratios of these attributes remain invariant, as do any
translational, rotational, or reflective symmetries. Many
mathematicians maintain that the similarity relation
captures well the literal meaning of the everyday
English expression that two geometric figures “have the
same shape.” Thus, all circles have the same shape, all

spheres have the same shape, all cubes have the same
shape, and so on.

The preceding two paragraphs do not provide a
mathematically rigorous definition of shape per se,
but they do provide a widely used definition of shape
equivalence. Two geometric figures have the same shape
if and only if one of them can be transformed into the
other via a similarity transformation—that is, via some
combination of translation, rotation, reflection, and
uniform scaling. The notion of shape that is defined by
these equivalence classes is referred to as Euclidean (or,
interchangeably, metric) shape throughout this article
to distinguish it from alternative notions of shape.

To continue Klein’s hierarchy, the next rung on the
ladder is affine geometry—the study of the geometric
properties that remain invariant under arbitrary affine
transformations. The latter also form a group—the affine
group of automorphisms. It contains the similarity
group as a subgroup with the addition of nonuniform
dilations, including shears. A shearing transformation is
illustrated in the left panel of Figure 2. An appropriately
chosen nonuniform dilation transforms a square into
an arbitrary rectangle or rhombus. The equivalence
relation defined by this group is more liberal than the
similarity relation and partitions the space of geometric
figures into coarser equivalence classes. For example, a
circle is affine equivalent to an arbitrary ellipse. Thus,
all ellipses (circles included) have the same affine shape.
Also, all triangles have the same affine shape. Angle
measures in general (including perpendicularity) are not
meaningful concepts in affine geometry, but parallelism
is an affine invariant. Another important invariant of
the affine automorphism group is the ratio of lengths of
parallel line segments (see Figure 2), including bisection.
(The relative lengths of nonparallel segments are not
preserved.) Concavities, convexities, and planarity are
also invariant under affine transformations. Straight
lines remain straight and all incidence relations are
preserved.

The next rung on the ladder is projective geometry. It
is generated by the group of projective collineations. A
collineation is an automorphism that maps lines onto
lines. If points A, B, and C are connected by a single
line, then the projections of those points will also be
connected by a single line. The set of all collineations
forms a group that contains the affine group as a
subgroup. In addition to collinearity and incidence, the
so-called cross-ratio of four points is also a projective
invariant (see Figure 2).

The final rung of the hierarchy is topology. This was
not part of Klein’s original proposal, but its inclusion
is a natural extension of his ideas. Topology is the
study of the geometric properties that remain invariant
under continuous deformations such as stretching,
twisting, crumpling, and bending. To illustrate, the
outline of a human head is topologically equivalent to
the outline of a hand, and a coffee mug is topologically
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Figure 2. Some invariants of affine and projective geometry. The left panel depicts a rectangular object that has been subjected to a
shearing transformation. Note that the ratios of parallel line intervals are preserved. The right panel shows the central projection of a
line with four points labeled A, B, C, and D. The cross-ratio of line intervals defined by those points is invariant over all projective
transformations.

Object property Isometry group Similarity group Affine group Projective group Topological group

position variable variable variable variable variable
orientation variable variable variable variable variable
lengths invariant variable variable variable variable
length ratios invariant invariant variable variable variable
angles invariant invariant variable variable variable
parallelism invariant invariant invariant variable variable
parallel length ratios invariant invariant invariant variable variable
colinearity invariant invariant invariant invariant variable
cross-ratios invariant invariant invariant invariant variable
coincidence invariant invariant invariant invariant invariant
closure invariant invariant invariant invariant invariant
number of holes invariant invariant invariant invariant invariant

Table 1. Different transformation groups and some properties they leave invariant.

equivalent to a doughnut. The invariants of topological
transformations include incidence relations and the
number of holes in an object.

Another more recent discovery is the concept of
mixed groups. The simplest example of this is pictorial
space. In the picture plane, distances and angles are
well defined by 2D Euclidean geometry, but the depth
dimension is different. All other planes in pictorial
space (except the picture plane) are best characterized
by a 2D affine geometry (Koenderink & van Doorn,
2012; Koenderink, van Doorn, & Wagemans, 2018),
in which distances in different directions cannot be
compared. Pictorial space is a mixture of these, and
that is what causes the eyes or a pointed finger in a
depicted scene to appear as if they are tracking the
observer as he or she moves relative to the picture plane
(Koenderink, van Doorn, Kappers, & Todd, 2001).

A summary of these different groups and a subset
of their corresponding invariants is provided in Table
1. The most important thing to note in this table is its
hierarchical organization. The topological invariants are

also preserved by the projective group. The projective
invariants are also preserved by the affine group. The
affine invariants are also preserved by the similarity
group, and the isometry group preserves the invariants
of any of the other groups.

At this point, it may be reasonable to question what
any of this has to do with the definition of shape,
especially if we expect that term to be grounded in
visual perception. After all, few if any observers would
describe a circle and an ellipse as having the same
shape, and they would likely report that a square and a
trapezoid, or a head and a hand, are not even remotely
similar in shape. However, these observations may be
quite misleading because they involve transformations
in the frontoparallel plane. There have been numerous
mathematical analyses to show that visual information
about 3D structure is often mathematically ambiguous.
For example, early analyses by Koenderink and van
Doorn (1991) and Todd and Bressan (1990) showed
that two-frame apparent motion sequences of objects
rotating in depth allow an infinite family of possible
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Figure 3. Front and side views of a normal human head (top)
and one that was distorted by an affine shearing
transformation. Note that the frontal views are
indistinguishable from one another. This is an example of the
bas-relief ambiguity first identified by Belhumeur, Kriegman,
and Yuille (1997).

interpretations that are all related by an affine stretching
or shearing transformation along the line of sight. A
similar ambiguity was also demonstrated by Belhumeur,
Kriegman, and Yuille (1997) for the analysis of 3D
shape from shading. They referred to this as the
bas-relief ambiguity because it nicely explains why
bas-relief sculptures can appear to look perfectly
normal when viewed from an appropriate vantage
point. An example of this is shown in Figure 3, which
shows a frontal and side view of a normal human head
and one that has been subjected to an affine shearing
transformation. Note that the shearing transformation
is easily recognizable in the side view, but when the two
heads are viewed from the front, they are perceptually
indistinguishable. These theoretical analyses suggest
that the perception of 3D shape from shading or motion
is invariant within a subset of the affine transformation
group for which unidirectional dilations or shearing
transformations are oriented parallel to the observer’s
line of sight.

It is also interesting to note in this regard that the
Klein hierarchy of geometries has a close connection
to the concept of nonaccidental properties, which
plays a prominent role in the literature on human
perception and object recognition. Although that term
was originally coined byWitkin and Tenenbaum (1983),
it is now generally associated with Irv Biederman

(1987) because it is a cornerstone of his famous
theory of object recognition by components. One of
the most fundamental problems in the perception of
3D shape is that the structure of a 2D image can be
severely distorted by optical projection. However, if
two objects can be distinguished by properties that are
invariant over projection, then those properties might
be especially informative for human or machine vision.

One such property includes coincidence relations
(what Biederman refers to as cotermination), which
are invariant over all topological transformations. It
is possible that two noncoincident points may appear
to be coincident in an image because they are aligned
perfectly along the line of sight but that can only occur
from a nongeneric view that is unlikely to occur by
accident. There is considerable evidence that accidental
views are perceptually interpreted as if they were
generic, and that is the basis of many perceptual
illusions (see top row of Figure 4). Another example
of a nonaccidental property is collinearity, which is
invariant over all projective transformations. Accidental
views of curved contours that make them appear
straight can also produce perceptual illusions (see
bottom row of Figure 4). A third example discussed by
Biederman is parallelism. There is a potential problem
with parallelism as a nonaccidental property because
it is only invariant under orthographic projection.
Nevertheless, there is at least one famous illusion (i.e.,
the Ames room) that is caused by an accidental view of
converging contours that makes them appear parallel.

The Klein hierarchy of geometries opens the door
to a much broader set of equivalence relations for
defining the concept of shape than could ever have
been imagined within the narrow confines of Euclidean
geometry. As we shall show in the discussion that
follows, this expanded set of possible relations will be
extremely useful for the analysis of shape in human
perception. Indeed, there is abundant evidence to
demonstrate that projective and topological relations
are much more perceptually salient than Euclidean
metric relations.

Correspondence matching

It is interesting to note that almost all discussions
of geometric equivalence between two objects
involve a comparison of corresponding features,
such as corresponding lines, corresponding angles, or
corresponding points. This raises an interesting question
about whether similar correspondence relations exist in
human perception. The first experiment to investigate
this issue was performed by Phillips, Todd, Koenderink,
and Kappers (1997). At the beginning of each trial, a
stereoscopic surface was presented with a single target
location marked by a small dot, as shown in the upper
panel of Figure 5. After a short interval, the same
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Figure 4. Impossible triangles created in two different ways. The
top row shows a generic and accidental view of a sculpture by
Brian McKay and Ahmad Abas (https://www.flickr.com/
photos/themachobox/1068978352). The accidental view
appears to have a cotermination of two bars that are actually
separated in depth. The bottom row shows a generic and
accidental view of a similar sculpture by Mathieu Hamaekers
(https://im-possible.info/english/art/sculpture/
hemaekers_unity.html). In that one, the accidental view
appears to have straight edges, but they are actually curved in
depth.

surface was presented at a different orientation, and
the dot was moved to a different location, as shown in
the lower panel of Figure 5. This second dot could be
moved over the surface with a handheld mouse, and
observers were required to move it to the same surface
location as the target in the first view. They were able to
perform this task with a surprising degree of precision.
Under optimal conditions, the variance in their settings
over multiple trials was just a few minutes of arc (see
also Koenderink, Kappers, Pollack, & Kowato, 1997;
Koenderink, van Doorn, Kappers, & Todd, 1997).

In describing their subjective impressions while
performing this task, observers reported that there are
certain salient structures on a surface, such as hills,
valleys, and ridges, that can be used as landmarks
for localizing the position of the probe dot on each

Figure 5. The correspondence matching task developed by
Phillips, Todd, Koenderink, and Kappers (1997). Observers
adjust the position of a dot on a surface so that it matches the
position of a dot shown in an earlier interval.

trial. There are two important criteria that need to be
satisfied for any surface point to be perceptually useful
as a landmark. First, it must have some property that
makes it stand out from its neighbors, and second, that
property must be viewpoint invariant. Some possible
candidates for landmarks include local maxima and
minima in depth or orientation. Those points clearly
stand out from their neighbors, but they change
systematically when a surface is rotated in depth.
Maxima and minima in curvature are much better
candidates to serve as landmarks because they do not
change as a function of the direction of view (see also
Attneave, 1954).

In order to test that idea, Phillips, Todd, Koenderink,
and Kappers (2003) presented surfaces at different
orientations in depth and asked observers to mark
the tops of the ridges and the bottoms of the valleys.
Observers expressed great confidence in their abilities
to perform this task, and the overall pattern of their
responses had a high degree of reliability. Most
important, the landmarks they selected were minimally
affected by changes in surface orientation, thus
indicating that their judgments were based on some
property of the surface that was viewpoint invariant.
The results also revealed that the marked locations had
a negligible correlation with local extrema of depth or
orientation and that they were highly correlated with
local extrema of curvature.

https://www.flickr.com/photos/themachobox/1068978352
https://im-possible.info/english/art/sculpture/hemaekers10unity.html
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More recent studies of correspondence matching
have focused on 2D shapes (Norman, Phillips, & Ross,
2001; Schmidt, Spröte, & Fleming, 2016), and they have
also expanded the original paradigm by including shape
pairs that differ due to nonrigid deformations (Schmidt
& Fleming, 2016). The results reveal that observers can
reliably determine the point-to-point correspondences
despite those deformations and that their responses
can be accurately predicted by interpolating between
perceptually salient landmarks based on extrema of
curvature. When considered in combination, these
findings provide strong evidence that observers are able
to perceive the point-to-point correspondence between
pairs of objects over a surprisingly broad range of
conditions.

The primary take-home message from this research
is that 2D and 3D objects contain sets of landmarks
(sometimes referred to as singularities) that are defined
by extrema of curvature and are invariant over changes
in position and orientation (see also Atteneave, 1954;
Hoffman & Richards, 1984). When considered in
isolation, these local landmarks provide relatively little
information, However, as we will describe more fully in
later sections, the relationships between them provides
a global topological scaffolding that makes it possible to
decompose objects into perceptually distinct parts and
to identify the point-to-point correspondence relations
across different objects. Indeed, one of the most
important distinctions among different representations
of shape is the particular set of features they exploit
and the manner in which their spatial arrangements are
characterized.

The measurement of shape differences

Objective measures of shape change. There are many
practical applications where it is important to quantify
differences in shape, and there are many possible
procedures by which this can be achieved. Because it
is universally recognized that changes in the position,
orientation, or size of an object have no effect on its
objective shape, an ideal measure of shape change
should not be affected by any of those transformations.
Consider the two pairs of objects labeled A and B
that are shown in Figure 6. The lower figure of pair A
was created by displacing one vertex in a horizontal
direction, and the lower figure of pair B was created
by displacing an entire edge. In both cases, the original
area of the figure is colored black and the changed
region is colored red.

One possible metric for evaluating shape differences
between objects is called the overlap index. It defines
shape change on a scale of 0 to 1 based on the ratio
of areas (or volumes) between the intersection of two
objects and their union (Lee & Sallee, 1970; Zhao &
Stough, 2005). For the examples shown in lower panels

Figure 6. Two possible deformations of a square shape labeled
A and B. The upper panel of each pair shows the original
square, and the lower panel shows the transformed version of
it. Note that some parts of the figures change while others do
not. The changed regions are colored red.

of Figure 6, the area shown in black is the intersection,
and the combined areas of the black and red regions
are the union. Note that the proportion of overlap is
larger for the pair of objects on the left (labeled A), so
they have a smaller shape difference according to this
measure than the pair of objects on the right (labeled
B). An important limitation of the overlap index is that
the objects to be compared must be aligned and scaled
appropriately so that the area of overlap is maximized.
Lee and Sallee (1970) argued that for all possible
translations, rotations, and size changes, there exists one
that maximizes the ratio of overlap for the two objects,
and that is the one for which the overlap index should
be computed. However, they did not provide a specific
method for determining that special alignment. This is
sometimes referred to as the Procrustes problem, after
the mythical Greek bandit who made his victims fit his
bed either by stretching their limbs or cutting them off.

Efficient algorithms for solving the Procrustes
problem have been developed more recently (e.g.,
Dryden & Mardia 2016; Hamsici & Martinez,
2008; Kendall, 1984). These algorithms are designed
specifically to compare the shapes of objects that have
corresponding sets of landmarks. Each configuration of
landmarks can be defined as a point on a hypersphere,
whose dimensionality is determined by the number of
landmarks. A least squares procedure is employed to
find the optimal translation, rotation, and scaling of
one configuration relative to the other to minimize the
geodesic distance between them on the hypersphere.
The shape difference between two objects is defined
by the residual geodesic distance following their
optimal alignment. According to that measure, the
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shape difference between the pair of objects depicted
in Figure 6A is smaller than the pair of objects depicted
in Figure 6B.

Another possible measure for scaling differences
between shapes involves comparing the angles at each
corresponding vertex on polygons or the angles across
each corresponding edge for polyhedra. This can be
achieved in a variety of ways, such as computing
the sum of squares for the difference between each
corresponding angle. Note that this approach does
not require any special alignment between the objects
to be compared, but it does require a correspondence
mapping between the vertices (or edges) on each object.
It is also limited to polygons or polyhedra with the
same number of vertices. For the two shape changes
depicted in Figure 6, an analysis of the corresponding
angles would show that the shape difference shown
in Figure 6A is much larger than the one in Figure 6B.
Indeed, according to that measure, the two objects
in Figure 6B have exactly the same shape. Other
possible shape difference metrics include measures of
convexity (e.g., the perimeter of an object divided by
the perimeter of its convex hull) or a comparison of
object topology using the Euler characteristic. Neither
of those measures would detect any shape change at all
among the objects depicted in Figure 6.

There are far too many shape difference metrics
used in the literature to provide an exhaustive account
here, but an excellent summary of many of them
has been provided by Wirth (2004). We have chosen
these particular examples to demonstrate that there is
a surprising degree of inconsistency among existing
shape difference metrics. With respect to the shape
changes shown in Figure 6, some of them would reveal
that the shape change depicted in Figure 6A is larger
than the one shown in Figure 6B. Others would reveal
exactly the opposite or fail to detect either of the
depicted shape changes in that figure. Some measures
require a prealignment of objects or a correspondence
map in order to be effective, whereas others do not.
The problem is that all of these metrics have been
designed to measure particular aspects of shape in
specific contexts, but there is no overarching analysis to
bind them together in a coherent manner. One possible
method to achieve that goal might be to scale shape
changes in terms of their perceptual discriminability.

Perceptual measures of shape change. In a remarkable
study published almost 40 years ago, Chen (1982)
proposed a radical new hypothesis that the relative
perceptual salience of different types of shape
change may be systematically related to the Klein
hierarchy of geometries. He referred to this as the
topological approach to visual perception, based on his
observations that changes to topological properties are
easier to detect than any other type of shape change
(see also Chen, 1982, 1983; He et al., 2015). Chen has
provided numerous psychophysical examples to support

Figure 7. Some example stimuli used to study the perceptual
salience of different types of shape change. All of the shapes in
the periphery involve distortions of the one in the center.
Moving clockwise from the upper left, the depicted distortions
involve a change in the aspect ratio, making parallel lines
converge, adding curvature to straight line segments, or
punching a hole in an object. (Reprinted from Todd,
Weismantel, & Kallie, 2014.)

this hypothesis, but he has never employed objective
measures of shape change to see if any of them could
potentially account for his results.

A recent experiment by Todd, Weismantel, and Kallie
(2014) was designed to address this issue. Observers
were asked to discriminate 2D forms that could be
subjected to four different types of shape change as
shown in Figure 7. These included punching a hole in
an object (a topological property), adding curvature
to a straight edge (a projective property), changing
the relative orientations of parallel edges (an affine
property), and changing the overall aspect ratio of
an object (a Euclidean metric property). Each type
of shape change could be presented with varying
magnitudes, and the method of constant stimuli was
used to determine the 75% threshold for detecting each
one. In addition, nine possible shape difference metrics
were employed to evaluate the objective magnitudes
of shape change at threshold for each of the possible
transformations.
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The psychophysical results provided a dramatic
confirmation of Chen’s hypothesis. No matter what
metric was employed to measure the thresholds on a
common scale, the thresholds for the Euclidean metric
changes were 10 to 30 times larger than those obtained
for the topological changes. The thresholds obtained for
the affine and projective changes were both in between
those, but the projective changes produced consistently
smaller thresholds than the affine ones.

An earlier experiment by Biederman and Bar (1999)
produced similar results for images of 3D objects.
Unlike Todd, Weismantel, and Kallie (2014), they did
not employ any objective measures of shape change.
The calibration method they used was to select different
pairs of objects with different types of shape change
that were all equally discriminable when viewed together
at the same orientation in depth. However, when one of
the objects was rotated in depth relative to the other, the
changes to nonaccidental properties were much easier
to detect than the Euclidean metric changes. In their
analysis of the results, Biederman and Bar combined
all the affine, projective, and topological changes into a
single category, so it is not possible to determine from
their reported data whether there were any systemic
differences within that group.

Another related experiment using 3D stereoscopic
objects was performed by Todd, Chen, and Norman
(1998). The stimuli depicted wireframe figures in
varying orientations consisting of four line segments.
Observers were required to discriminate pairs of objects
using a match to sample task. The foil in each case
was created by rotating one line segment by exactly
40 degrees relative to the others. In one third of the
trials, the rotated line segment altered the pattern of
intersection in 3D space (a topological property). In
another third, it altered whether or not three of the
line segments were coplanar (an affine property), and
in the remaining third, it altered the Euclidean metric
structure of an object while leaving its affine and
topological structure intact. The percentage of correct
responses was 80% in the Euclidean condition, 90% in
the affine condition, and nearly 100% in the topological
condition. Similarly, the average reaction time was 3
seconds in the Euclidean condition, 2 seconds in the
affine condition, and only 1 second in the topological
condition.

When considered in combination with Chen’s (1982,
1985, 2005) many experiments on pop-out, these results
provide compelling evidence to support his hypothesis
about the relative perceptual salience of different types
of transformations. Changes in shape that alter the
topological structure of an object are easier to detect
than changes that alter its projective structure while
leaving its topology intact. Changes that alter projective
structure are easier to detect than changes in affine
structure that leave projective relations intact. The most
difficult changes to detect are those that only affect

Figure 8. The evolutionary shape change between diodon on
the left and orthagoriscus on the right. (Reprinted from On
Growth and Form by D’Arcy Wentworth Thompson, 1917.)

Euclidean metric structure. This is why the type of
change depicted in Figure 6A is easier to detect than
the one depicted in Figure 6B. The change in Figure
6A alters the affine property of parallelism, whereas the
one in Figure 6B does not. We know of no objective
measures of shape change that are able to predict this
overall pattern of sensitivity. Indeed, almost all of them
predict exactly the opposite.

Identifying different types of shape change

It is often insufficient to know that two shapes
are different without also knowing how they are
different. There is a considerable body of research on
the classification of shape changes in many different
fields, including biology, engineering, and human
perception. Let us first consider the shape changes that
occur in complex biological forms due to growth or
evolution. The first systematic analysis of these changes
was performed by the great Scottish naturalist D’Arcy
Wentworth Thompson (1917) in his famous book
On Growth and Form. The method he employed for
comparing 2D shapes involved covering them with a
rectangular grid to provide a coarse coordinate system.
He would then distort the grid on one so that the
most salient landmarks on both shapes were located
at corresponding positions on their respective grids
(see Figure 8). The pattern of grid distortion required to
make that happen highlighted the underlying geometric
transformation by which the two forms were related.
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Figure 9. Two sequences of human head profiles. The one on
the left was generated using a cardiodal strain transformation
to simulate normal human growth. The one on the right was
created with a modified version of that transformation that
simulates human evolution.

The significance of Thompson’s insights for human
perception was first recognized in an influential study
by Shaw, McIntyre, and Mace (1974). They were
intrigued by Thompson’s discussion about the growth
of a human head, and they developed a mathematical
transformation called cardiodal strain that allowed
them to simulate how the shape of a head changes as a
function of age. This was later modified slightly by Todd
and Mark (1981) to better capture the size changes
that also occur due to human growth (see Figure 9),
and it allowed them to accurately fit longitudinal x-rays
of human heads at different ages. The underlying
physical basis of this transformation is that bone grows
proportionally to the pressure that is placed upon it
(Wolff, 1892/1986)—what is often referred to as Wolff’s
law.

When arrays of transformed head profiles are
presented to human observers, the ones transformed
by cardiodal strain are readily identified as growth,
whereas those depicting other control transformations
are not (Mark & Todd, 1985; Mark, Todd, & Shaw,
1981; Pittenger & Shaw, 1975; Todd, Mark, Shaw, &
Pittenger, 1980). Interestingly, the same results are
obtained if observers are presented with sequences
depicting dogs, monkeys, or Volkswagen Beetles
(Pittenger, Shaw, & Mark, 1979), thus indicating that
cardiodal strain is a general style of change that can be
perceptually identified over a wide variety of objects.
It can also be generalized to 3D objects or shaded
photographs of faces (Mark & Todd, 1983).

Research on the perceptual categorization of shape
change fell out of favor in the 1990s, but it has been
making a comeback in recent years. One particularly

Figure 10. The left panel shows a man’s face from the painting
American Gothic by Grant Wood (1930). The right panel shows
a transformed version in which the distance between the
eyebrows and the mouth was reduced. The original image on
the left is judged to have a sad expression, whereas the one on
the right is judged as angry. (Reprinted from Neth & Martinez,
2009.)

exciting application of this approach involves the
perception of emotional expression (Neth & Martinez,
2009; Martinez, 2017). Their analysis begins with
the automatic extraction of facial landmarks such as
the eyes and mouth, and the distances between all
pairs of landmarks are measured. These distances can
then be systematically distorted by a set of possible
geometric transformations. Each basic facial expression
is associated with a specific transformation relative to a
neutral face, and these can be applied in combination to
create compound expressions such as happily surprised,
which are easily recognizable (Du, Tao, & Martinez,
2014). Figure 10 shows an example from Neth and
Martinez (2009). The left panel depicts a face from the
painting American Gothic that is perceived to have a sad
expression even though there is no downward curvature
of the mouth. The right panel shows a transformed
version of this face, in which the vertical distance
between the brows and the mouth has been reduced.
This causes the transformed face to appear angry.

Similar experiments have also been performed with
nonbiological transformations. An especially interesting
variation of this research has been reported by Schmidt
and Fleming (2018). They presented observers with
a photograph of a single object and asked them to
identify a physical process that could have affected its
shape, such as being folded, crumpled, twisted, or bent.
Both free response and discrimination procedures were
employed. The results revealed that observers can make
these judgments with a surprising degree of reliability.
This suggests that there are particular features of an
object’s shape that provide information about how it
may have been altered in the past (see also Fleming &
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Schmidt, 2019; Leyton, 1992, 2012; Schmidt, Phillips,
& Fleming, 2019).

It is reasonable to question whether all of the
transformations described above should actually be
considered changes in shape. They certainly are by
the classical definition from Euclidean geometry that
a shape change is anything that cannot be undone
by translations, rotations, and dilations, but is that
definition consistent with our intuitive understandings
about shape? Consider the ability of normal observers
to recognize the shape of a human head (see Figures
3, 9, and 10). We are able to identify head shape over
a wide range of different individuals, with different
facial expressions, hairstyles, or clothing accessories.
We can also identify head shape across people of
different ages, genders, or races or even when someone
is depicted in a caricature or a cubist painting. These
observations suggest that the perception of head shape
must be based on some remarkably abstract property
that is invariant over all the possible different forms
that are recognizable as human heads. This is also
true for categorizing other objects such as houses or
airplanes, because they too can appear in a wide variety
of different forms. If shape is the primary attribute for
recognizing objects like houses or airplanes, as is widely
believed, then the concept of shape must be flexible
enough to accommodate all of their possible variations.
The traditional view from classical Euclidean geometry
is incapable of achieving that.

A closer examination of Figures 3, 9, and 10 reveals
that all of the transformed versions of these objects
have one thing in common. They all share the same set
of parts. For example, the transformed heads in Figure
9 all have a chin, mouth, nose, and cranium, and
the depicted transformations involve relatively subtle
changes in the spatial arrangements of those parts. The
concept of parts does not exist in classical geometry, but
observers often refer to them in their verbal descriptions
of shape. This suggests that parts may be an important
component in the perceptual representation of shape.

The representation and
measurement of shape

All of the discussion provided thus far has focused
on the evaluation of shape equivalence and the
measurement of shape differences, but these issues
shed little light on the definition of shape per se. In his
influential book on Theoretical Geography, William
Bunge (1962) proposed four criteria for evaluating any
measure of shape: (1) It should be objective; (2) tt
should not consist of something less than shape, such as
a set of position coordinates; (3) it should not consist of
something more than shape such as a set of parameters
for a Fourier or Taylor series; and (4) it should not do

violence to our intuitive notions of what constitutes
shape. In order to satisfy this fourth criterion, any two
objects that are similar according to a valid measure of
shape should also be perceptually similar and vice versa.

We believe that Bunge’s fourth criterion should be
elaborated in more detail in order to highlight some
specific aspects of human performance that have been
reported in the literature. For example, we know that
human observers can identify shape differences quite
rapidly (see Biederman & Bar, 1999; Chen, 1982,
1985, 2005) and that some types of shape change are
easier to detect than others (Todd, Chen, & Norman,
1998; Todd, Weismantel, & Kallie, 2014). There is also
extensive evidence that human observers decompose
objects into perceptually distinct parts (see Biederman,
1987; De Winter & Wagemans, 2006). A perceptually
valid theory of shape representation should be able to
explain all of those findings.

Generic data structures

Maps
One common method for representing objects in

the environment involves a type of data structure
called a “local property map.” The basic idea is quite
simple and powerful. A visual scene is broken up into
a matrix of small local neighborhoods, each of which
is characterized by a number (or a set of numbers)
to represent some particular local property, such as
position, orientation, or color. One major shortcoming
of local property maps as a possible data structure
for the perceptual representation of shape is that
they are highly unstable. Consider what occurs, for
example, when an object is translated or rotated in
space. This causes all the positions and orientations
within each local neighborhood to change, so that the
representation does not exhibit shape constancy.

Graphs
Another type of data structure that can be used for

the representation of shape is called a graph. A graph is
a set of nodes called vertices and a set of connections
between those nodes called edges. The history of graph
theory is often traced to a article works published
in 1736 by Leonard Euler on the “Seven Bridges of
Königsberg.” Euler also developed a formula relating
the number of edges, vertices, and faces of a convex
polyhedron that is generally recognized as the beginning
of topology. The appeal of graphs in vision science
stems from the fact that connected patterns of visible
contours in line drawings can provide considerable
information about the 3D shapes of objects, even in
the absence of any shading or texture. This suggests
that a graph-based analysis could potentially provide a
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representation of shape that is closer to our perceptual
intuitions than the set of position coordinates in a local
property map.

The representation of 2D shape

Contour segmentation at extrema of negative curvature
In an early article on shape perception, Atteneave

(1954) argued that information about object shape in
contour drawings is not distributed homogeneously in
an image but is instead concentrated around curvature
extrema. To demonstrate this, he modified an image of
a sleeping cat in which curved contours were replaced
by straight line segments that all terminated at the
locations of curvature extrema from the original
image. Despite these changes, this modified drawing
is instantly recognized as a cat. This idea has more
recently been developed by Feldman and Singh (2005),
who showed that the Shannon information for curved
image contours is actually much greater for negative
extrema than for positive ones.

We have already discussed how curvature extrema
provide salient landmarks on an object for establishing
point-to-point correspondence relations, but they also
provide information for segmenting contours into
perceptually distinct parts. Hoffman and Richards
(1984) were among the first to argue that decomposing
shapes into parts is a basic function of human
perception and that negative minima of curvature
are ideal features to define part boundaries. This idea
has been tested extensively over the past 35 years,
and it has received considerable empirical support
(see Singh, 2015, for a review). One study by De
Winter and Wagemans (2006) is especially noteworthy
in this regard because of its impressive scope. They
asked 201 observers to segment the outline drawings
of 88 common objects. The results revealed that
locations of negative curvature were often selected as
segmentation points but that observers’ judgments were
also influenced by several other factors, such as the
lengths of the segmentation boundaries.

It is also interesting to note in this context that the
curvature singularities along the boundary of an object
can be represented as a primitive form of graph based
on their adjacency relationships. A given Feature A
might be described, for example, as being clockwise
to the right of Feature B and counterclockwise to the
left of Feature D. Indeed, that is precisely the type of
language that observers use when describing how they
perform correspondence matching tasks.

Blum’s medial axis
Another way of representing the overall shape and

part structure of a 2D figure is the medial axis transform

Figure 11. The medial axes of a dog and a camel computed
using a traditional method (left) and a Bayesian estimation
procedure. (Reprinted from Feldman and Singh, copyright
(2006) National Academy of Sciences, U.S.A., with permission.
This material is excluded from any creative common license.)

first proposed by Blum (1967, 1973). The medial axis
of a figure can be conceptualized in several different
ways, but probably the most intuitive of these is called
the maximal disk model. A maximal disk is one that
touches the boundary of a planar shape in at least two
locations without crossing it. The medial axis is defined
as the locus of center points for all possible maximal
disks on a figure. An alternative conceptualization is
called the grassfire model. Suppose that the boundary
of a grass area is set on fire. The medial axis in that case
is defined by the points where the fires from different
portions of the boundary come together.

The medial axis transform has been studied
extensively in computer vision (see Feldman & Singh,
2006, for a review), and the results have shown that it
is notoriously unstable over small perturbations of the
boundary. It can also produce branches that bear no
resemblance to the part structures perceived by human
observers (see left column of Figure 11). In an effort
to correct these problems, there have been numerous
attempts to prune unwanted branches from the output
of the computation. Feldman and Singh (2006) have
developed a particularly promising approach to achieve
that goal using a Bayesian estimation procedure to
compute medial axes (see right column of Figure 11).

The Blum medial axis transform provides a more
complex graph structure than the adjacency relations
between contour singularities. Note in Figure 11 that
the branches created by this process have a hierarchical
nested structure, which provides a natural framework
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for subdividing an object into parts. Although it would
be possible to explicitly represent the relative lengths of
these branches (e.g., to encode the difference between
a gazelle and a giraffe), the medial axis is primarily a
topological structure, and, as such, it is invariant over a
wide range of possible object deformations.

Shock graphs
An interesting extension of the medial axis transform

has been proposed by Kimia, Tannenbaum, and
Zucker (1995) and Siddiqi, Shokoufandeh, Dickenson,
and Zucker (1999). Their model uses a weighted
combination of the grassfire equation of Blum with the
heat (diffusion) equation of thermodynamics. These
define a curve evolution process that gradually deforms
the shape of an object. There are several types of
singularities (called shocks) that can arise as a closed
curve is deformed in this manner. First-order shocks
are associated with protrusions or indentations along a
contour. Second-order shocks consist of thin necks that
connect two blobs on each side, which are intuitively
recognized as parts, and third-order shocks produce a
bending of extended regions.

The inward evolution process described above creates
a topological skeleton of a 2D shape, much like the
grassfire equation of Blum. However, it provides two
important enhancements over more traditional methods
(Siddiqi, Shokoufandeh, Dickenson, & Zucker, 1999).
First, the individual nodes of the shock graph are
labeled by the types of singularity from which they
arise, and second, they are also labeled with respect
to the time of their appearance within the overall
process of curve evolution. This provides a much richer
data structure that can be used for matching shapes
or subdividing them into parts. There is also some
psychophysical evidence that shock-based descriptions
are predictive of human shape perception. Siddiqi,
Kimia, Tannenbaum, and Zucker (2001) have shown
that observers’ shape judgments on a variety of tasks
can be influenced by when shocks form with respect to
one another and also by where on the boundary they
form.

Feature vectors
There is another type of 2D representation that is

used frequently in neural network models of object
recognition (Fukushima, 1980). This approach is
loosely based on the hierarchical structure of the
primate visual system. Visual inputs are initially
convolved with a bank of linear filters, and the output
of that process then undergoes a sequence of additional
convolutions and normalization processes. In the initial
stages of this analysis, these filters will only respond to
simple patterns within a localized region of visual space.
However, at higher levels, they tend to respond to more

complex patterns irrespective of their precise locations.
These models are typically trained using supervised
learning on a large set of input images. This causes the
filters at higher levels of the network to become tuned to
abstract features that best separate the training images
into separate categories. One well-known example of
this approach is the HMAX network by Riesenhuber
and Poggio (1999) and Serre, Oliva, and Poggio (2007).
The performance of convolutional neural networks
(CNNs) has expanded greatly in recent years as it has
become technologically possible to add more and more
layers to these networks. Two of the more prominent
recent architectures include AlexNet (Krizhevsky,
Sutskever, & Hinton, 2012) and GoogLeNet (Szegedy
et al., 2014).

Although CNNs typically outperform other types of
algorithms for object recognition in annotated data sets,
they should not be considered plausible representations
of shape per se. One important reason for this is
that they are not exclusively sensitive to the shapes
of objects. They can also base their categorization
decisions on other image attributes such as color,
texture, or the pattern of shading. It is also interesting
to note that the images that maximize the classification
probability for a given response category are often
visually uninterpretable to human observers. This is
the property that allows the creation of adversarial
images that are categorized as one thing by human
observers and something entirely different by a CNN. A
good example of this from Goodfellow et al. (2017) is
shown in Figure 12. The left panel shows the image of a
panda. The middle image was created by using iterative
optimization algorithms to propagate information
backward through the network and synthesize an image
that maximizes the probability to be classified as a
gibbon. Note that it appears perceptually as random
noise. If a small amount of this noise is added to the
image of the panda as shown in the right panel, it has
no effect on observers’ judgments but tricks the network
into categorizing the combined image as a gibbon with
a high level of confidence.

Another potential problem with CNNs for the
representation of shape is that they seem to violate some
of the central principles of Gestalt psychology. For
example, human observers can spontaneously detect
global shapes based on the alignments of local oriented
features that are spatially separated from one another
(e.g., Biederman, 1987; Field, Hayes, & Hess, 1993;
Grossberg & Mingolla, 1985; Grossberg, Mingolla,
& Ross, 1997; Kellman, Garrigan, & Shipley, 2005;
Petrov, Van Horn, & Todd, 2011). The importance of
feature arrangements for human observers relative to
neural networks was nicely demonstrated in a classic
experiment by Hayworth, Yue, and Biederman (2007).
They created line drawings of common objects and
broke them up into complementary pairs, each of
which contained half the contours from the original
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Figure 12. An example of an adversarial image. The left panel shows the image of a panda. The middle panel shows a pattern of noise
that has been optimized so that it is categorized as a gibbon by GoogLeNet with the highest possible confidence. The right panel
shows the image on the left with a small amount of noise from the middle panel added to it. This image is categorized as a panda by
human observers and as a gibbon by GoogLeNet. (Reprinted from Goodfellow et al., 2017, available for use through open access.)

Figure 13. Three images from a match to sample task. The
sample in the left panel contains half the contours from a
drawing of a lock. The middle panel shows a spatially scrambled
version of the sample, and the right panel shows a
complementary version that contains all of its deleted contours.
Human observers choose the complementary version as most
similar to the standard, whereas the HMAX network chooses
the spatially scrambled version. (Re-created from Hayworth,
Yue, & Biederman, 2007, with permission from the authors.)

(see Figure 13). They then performed a match-to
sample task with human observers and the HMAX
network. The sample image was always one of the
complementary drawings. The comparison images
always included a scrambled version of the sample
together with the complement of the sample. Observers
always judged that the complement appeared more
similar to the standard, whereas HMAX always selected
the scrambled version as being more similar. This
finding suggests that the network treats the images
as a set of features without considering how they are
organized.

Human observers are quite good at recognizing
objects that are partially occluded, and they can also
recognize objects in different poses or against different
backgrounds. However, these changes in viewing
context often produce miscategorizations by CNNs
(Alcorn et al., 2019; Kortylewski et al., 2020; Yuille
& Liu, 2021; Wang et al., 2018; Zhu et al., 2019). All

of these findings provide strong evidence that the
performance of current CNNs may be fundamentally
different from human perception. Kortylewski et al.
(2020) have recently argued that it may be possible
to achieve greater tolerance to changing contextual
conditions by training a network to detect parts of
objects, rather than representing each category with
a single feature vector. We suspect this approach
may produce results that are much closer to human
perception, but it would also be necessary to encode
how those parts are arranged with respect to one
another.

Although feature vectors are a powerful tool in
computer vision for object recognition, they do not
satisfy Bunge’s second and fourth criteria for a good
measure of shape. The features that are extracted by
these models are not a pure measure of shape because
they also encode the location, orientation, size, and
color of an object. Similarly, these models cannot
explain why some types of shape change are more
difficult to detect than others, nor do they provide an
easy method of subdividing an object into perceptually
distinct parts.

The representation of 3D shape

Depth and orientation maps

The first explicit representation of 3D shape within
vision science was proposed over 70 years ago by
James Gibson (1950). He argued that our immediate
knowledge of visible surfaces can be described as a
point-by-point mapping of depth and orientation
for each local surface region within the field of view.
Many years later, this same type of representation
was adopted by researchers in machine vision. For
example, in his pioneering work on shape from shading,
Horn (1975, 1977) defined shape as a local orientation
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Figure 14. Two local probe tasks to measure the perception of
3D shape on curved surfaces. For the relative depth probe
depicted on the left, observers must choose whether the red or
green dot appears closer in depth. For the orientation probe on
the right, observers must adjust a circular gauge figure until it
appears to rest in the tangent plane within a designated local
region. Note that the figure on the upper right appears to
satisfy that criterion, but the one on the lower left does not.

map (see also Lee & Rosenfeld, 1985; Pentland, 1984;
Witkin, 1981). A similar approach was also adopted
by Marr (1982) and Marr and Nishihara (1978). They
argued that our immediate perceptual awareness of
surfaces is based on local mappings of depth and
orientation, and they named this representation the 2
1/2D sketch.

These theoretical ideas about the structure of
visual knowledge have important methodological
implications. In any psychophysical experiment on
3D form perception, an observer must be asked some
question about the perceived structure of the stimulus.
If it is assumed, for example, that our immediate
awareness of surfaces is best described as a local
depth or orientation map, then the most sensible
psychophysical procedure for studying the perception
of surfaces would involve judgments of local depth or
orientation.

Figure 14 shows two probe tasks that have been
used in numerous psychophysical experiments on
the perception of 3D shape. The left panel shows a
relative depth probe developed originally by Todd and
Reichel (1989), in which observers must judge which
of two probe dots appears closer in depth. The right
panel shows a relative orientation probe developed by
Koenderink, van Doorn, and Kappers (1992), in which
observers must adjust the 3D orientation of a circular
disk so that it appears to be parallel to the tangent
plane of a local surface region. Both of these tasks
can be performed very quickly with a high degree of
confidence, and it is possible in both cases to compute
a 3D surface that is most consistent with the overall
pattern of judgments over a large number of probe
locations (Koenderink, van Doorn, & Kappers, 1992,
1996; Koenderink, van Doorn, Kappers, & Todd, 2001).

The surfaces computed from either method are
highly correlated with one another, and they also have

a high degree of test-retest reliability, with R2 values
typically in excess of 0.97 (Egan & Todd, 2015; Todd,
Norman, Koenderink, & Kappers, 1997). However,
the results also show that the best-fitting surfaces
are typically distorted relative to the ground truth
by an affine stretching or shearing transformation in
depth (e.g., see Figure 3), which is consistent with
the known ambiguities of various sources of visual
information such as shading or motion (Belhumeur,
Kriegman, & Yuille, 1997; Koenderink & van Doorn,
1991; Todd & Bressan, 1990). These findings are also in
agreement with the results obtained using global shape
adjustment tasks (Bradshaw, Parton, & Glennerster,
2000; Johnston, 1991; Todd & Norman, 2003) or depth
magnitude estimations (Loomis & Philbeck, 1999; Todd
& Norman, 1991).

The ease and reliability of local orientation and
ordinal depth judgments suggest strongly that they are
measuring some basic aspect of observers’ perceptual
knowledge, but are the structures they reveal a valid
representation of 3D shape? The problem with local
property maps is that they fail Bunge’s second criterion.
A set of local positions is not a pure measure of shape
because it also encodes the location, orientation, and
size of an object. Similarly, it does not provide an easy
way to compare two surfaces if they are at different
positions and/or orientations. It provides no intuitions
about why some types of shape change are more
difficult to detect than others, nor does it provide an
easy method of subdividing a surface into parts (e.g.,
hills and valleys). It is especially interesting to note in
this regard that Gibson (1979) explicitly disavowed
his earlier advocacy of local property maps from the
1950s. He eventually recognized that convexities and
concavities are not made up of elementary impressions
of slant but are instead unitary features of the layout of
surfaces in the environment.

Contour graphs

Pizlo’s model
One way of representing 3D shapes with graphs has

been proposed by Pizlo, Li, Sawada, and Steinman
(2014). They have developed an interesting new
algorithm for computing the 3D structures of
symmetrical polyhedra from line drawings depicted
under orthographic projection, and they have attempted
to market that algorithm as a general theory of 3D
shape perception (see also Pizlo, 2008). For purposes of
the present discussion, our primary interest concerns
the specific data structure generated by this analysis (Li,
Pizlo, & Steinman, 2009; Li et al., 2011). It consists of
a set of 3D Cartesian coordinates for each vertex and
a connection graph that describes which vertices are
connected to which others (see also Erdogan & Jacobs,
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Figure 15. The edge labeling model of Malik (1987). The left panel shows the symbols used for representing different types of edges.
The middle panel shows some different types of vertices used by the model and their possible interpretations. The upper right panel
shows a complex object with a consistent pattern of labels for all of its edges. The lower right panel shows an impossible object for
which some of the edges have no interpretations that are consistent for both of their connected vertices.

2017). Pizlo et al. (2010) have argued that this model is
also applicable to smoothly curved surfaces. However,
the data structure in that case is formally equivalent to
a depth map.

Thus, Pizlo’s analysis shares all the same problems
described above for local property maps. First, it is not
perceptually intuitive. No one would ever describe a
shape colloquially by listing the Cartesian coordinates
of its vertices. It does not provide an obvious method
for testing if two shapes are the same, even though they
might have different sizes and are viewed from different
positions and orientations in space. It provides no
intuitions about why some types of shape change are
more difficult to detect than others. Why, for example, is
a change in aspect ratio harder to see than the addition
of a bump on a surface? It also does not provide any
insight about how an object might be subdivided into
namable parts.

Edge and vertex labeling
Graph data structures have been popular in the

field of computer vision since its inception in the
1960s, especially in research on the interpretation
of line drawings (Figure 15). One of the first
contributions in this field was provided by Guzman
(1968). He recognized that vertices on polyhedra can
be classified based on the patterns with which their
edges coterminate with one another (see also Clowes,
1971; Huffman, 1971, 1977; Malik, 1987; Waltz, 1975).
He also recognized that the vertices on each end of
an edge can be used to classify whether it is a corner
(where a surface is visible on both sides of the edge)
or an occlusion (where the surface is only visible on

one side). The basic idea behind this analysis is that the
connecting edges for each vertex type have a limited set
of possible interpretations and that the interpretation
of any given edge must be consistent for both of its
connected vertices. In some cases, that latter constraint
cannot be satisfied, which produces the appearance of
an impossible figure. Figure 15 shows the edge labeling
model of Malik (1987) with a possible object in the
upper right panel and an impossible object in the lower
right panel.

It is important to note that the graph representations
used in these analyses can be encoded much more
efficiently than depth or orientation maps. They are
also much more abstract than the one proposed by
Pizlo. They are mostly concerned with the topology of
polyhedra rather than metric structure, and they are
largely invariant over projective transformations and
changes in viewing direction. These models make it
relatively easy to compare shapes based on the types
of vertices they contain and the topology of their
graph structures. They can also be used to subdivide
objects into distinct parts (see Waltz, 1975). The vertices
in these analyses are part of a more general class of
visual landmarks that are referred to as singularities,
and these structures play a critical role in many other
representations of shape that will be described in
subsequent sections.

These traditional models of edge and vertex labeling
were designed to be used with line drawings of objects
in which all of the lines correspond to occlusions or
sharp corners between two faces, and they work quite
well in that context. There were also attempts to extend
these analyses to natural images of objects, but that is
where the research in this area hit a roadblock because
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Figure 16. The top panel shows the image of a textured object,
with cast shadows and specular reflections. The center panel
shows an edge filtered version of that image, and the bottom
panel shows a line drawing with only the corners and
occlusions.

of two problems. First, the corners and occlusions in
natural scenes are not always well delineated within
patterns of shading. Second, the edges in natural scenes
can also be caused by other factors, such as specular
highlights and abrupt changes of surface reflectance
or illumination (e.g., shadows). To demonstrate this
more clearly, a shaded image of a textured object
with shadows and specular reflections is shown in the
top panel of Figure 16. The middle panel shows an
edge filtered version of this image, and the bottom
panel shows an idealized line drawing with only the
corners and occlusions. Human observers can identify
the different types of edges quite easily within the

Figure 17. Three objects constructed with cylindrical parts. Note
that they are easily recognizable as a bull, a swan, and a dog.

pattern of shading, but there are no existing theoretical
explanations of how that might be possible.

Graphs of volumetric parts

Generalized cylinders
As the field of computer vision started to take off

in the 1970s, researchers began to focus on shape
representations that can be encoded with relatively few
parameters. They were willing to sacrifice the precise
details of Euclidean metric structure if they could
obtain a more economical description that captures the
qualitative aspects of shape. One of the first attempts
to achieve that goal was presented by Binford (1971).
Inspired by Blum’s (1967) medial axis transform,
he argued that parts of objects can be modeled as
generalized cylinders, which are generated by sweeping
a planar curve, such as a circle, along an axis or a
spine. Objects that form from natural growth and many
manufactured objects tend to have such shapes. This
representation is quite similar to a medial axis graph
except the axes are surrounded by tubes. It is also
possible to allow the sweeping curve to change in size,
orientation, or planar shape as it is swept along the
spine (Terzopoulos, Witkin, & Kass, 1987, 1988). Figure
17 shows easily recognizable examples of a bull, a swan,
and a dog that were created using cylindrical parts.

Generalized cylinders are particularly popular for
3D modeling and character animation in computer
graphics. By manipulating the parts separately from
one another, it is possible to simulate globally nonrigid
motions, such as human gaits, while preserving the local
rigidity of each individual limb. By sacrificing metric
structure, generalized cylinders can be encoded much
more efficiently than local property maps. Nevertheless,
because they capture the part structure of objects, they
are easy to recognize by human observers.

Biederman’s model
A more psychologically motivated volumetric

representation was proposed by Biederman (1987). He
combined a number of the concepts that had been
developed earlier by researchers in computer vision,
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Figure 18. A simple two-part object composed of a brick and a
curved cylinder. The brick geon is defined by its parallel straight
edges, its straight central axis, its three arrow vertices, and its
one Y-vertex. The curved cylinder is defined by its curved
central axis and edges and by its two three-tangent vertices.

including the vertex classification scheme of Guzman
(1968), the part structure decomposition of Binford
(1971), and the nonaccidental properties of Witkin and
Tenenbaum (1983). He was particularly influenced by
the observation that people tend to describe complex
novel objects by listing their parts and how they are
arranged with respect to one another. The parts in
his model include 36 basic shapes such as cylinders,
bricks, or bananas that he refers to as geons. These
are defined by their vertex types and nonaccidental
properties (see Figure 18). Objects are defined by how
these elementary parts are arranged with respect to one
another. Thus, the underlying data structure of this
theory is a graph of graphs. Parts allow a much more
efficient coding of shape, because they can be treated as
symbolic tokens within higher-order representations.

Biederman’s model satisfies all of the criteria for
a good measure of shape that we described earlier.
It is objective. It is mostly invariant under projective
transformations, and it is closely matched to the way
that human observers tend to describe complex shapes
in terms of parts. It makes it easy to compare shapes
simply by listing their respective geons. It explicitly
predicts that changes to nonaccidental properties
should be easier to detect than changes in metric
properties, and it provides a simple procedure for
subdividing an object into parts. It is also supported by
a wealth of psychophysical data (see Biederman, 1995,
for a review).

Nevertheless, there are a couple of limitations of
the model that deserve to be highlighted. One of these
is that it does not provide a way of identifying the
relevant vertex types and nonaccidental properties in
natural images. This is probably of little consequence
in evaluating it as a psychological model because it is
clear that human observers can identify these features

quite easily (see Figure 16). However, the absence of a
specific algorithm for extracting these features limits the
model’s potential applications in computer vision.

A second limitation of Biederman’s model is that
it does not work well with smooth surfaces, like the
objects shown in Figure 14, that do not have sharp
corners or polyhedral vertices. For example, how is it
possible to describe the shape of a tooth, a pattern
of draped cloth, or a familiar landscape? The geons
described by Biederman are ill suited to represent
those objects. Fortunately, there are other techniques
for describing smoothly curved objects that will be
considered below.

Patch graphs on 3D surfaces

The top row of Figure 19 shows two depictions of a
smoothly curved 3D surface. The one on the left is de-
picted with shading, and the one on the right is depicted
using a pattern of iso-height contours that are also re-
ferred to as level sets. Note that this surface has no outer
contour from which a medial axis could be constructed,
and it has no visible edges or vertices that would allow
the application of Biederman’s model. Pizlo (2008) has
argued that an object like this has no shape because it
is asymmetrical, but that claim is clearly ridiculous. If
observers are asked to describe its shape, they readily
do so in terms of its topographic features. For example,
it might be described as a circular ridge with many small
bumps and saddles along its crest and a larger bump
in the center. This type of object could easily be repre-
sented using a depth or orientation map, but how could
we do so in a manner that captures the topographic
parts that are identified by human observers?

Morse graphs of surface extrema
One possible strategy was described 40 years ago in

an influential article by Koenderink and van Doorn
(1976) on “Singularities of the Visual Mapping.”
They described how the Morse theory of differential
topology can be used to create a graph of a surface’s
topography. Consider a continuous function that
defines some attribute such as height at each point on
a surface. There are three types of local singularities
defined by that function: local maxima, local minima,
and saddle points. Local maxima and minima of a
height map are easily identified where the circular
iso-contours converge to a single point. Saddle points
occur where the iso-contours intersect one another.
For example, the height maxima in the right panel
of Figure 19 are marked by small red dots. The height
minima are marked by small blue dots, and the height
saddle points are marked by small green dots. These
singularities define a graph of a surface’s topological
structure. The local maxima, minima, and saddle
points define the nodes of the graph, and the edges are
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Figure 19. The left panel shows a shaded image of a smoothly curved surface without any sharp corners or a closed boundary contour.
Observers typically describe this as a circular ridge with many small bumps and saddles along its crest and a larger bump in the center.
The right panel shows the same surface with a series of iso-height contours. The red, green, and blue dots mark height maxima,
saddle points, and height minima, respectively.

formed by connections between maxima and adjacent
saddle points, as well as the connections between saddle
points and adjacent minima. This results in a cellular
graph structure of local surface patches that captures
the qualitative aspects of a surface, without any
information about its metric structure. A particularly
clear discussion of Morse theory and its application
to vision can be found in Kunsberg and Zucker (in
press). They use a more advanced version of that theory
called the Morse–Smale complex to identify bumps
on a surface and to create a graph of its topographic
features.

There is some empirical evidence to indicate that
local extrema of depth may provide critical information
for human perception. For example, Todd and Reichel
(1989) found that local relative depth judgments are
significantly less accurate (and slower) if the two points
to be compared are separated by a depth extremum (see
also Koenderink & van Doorn, 1995; Koenderink, van
Doorn, & Wagemans, 2015). They argued that these
judgments may be based on an ordinal representation,
in which regions with a common slope are anchored
by local depth minima and maxima. Todd, Oomes,
Koenderink, and Kappers (2004) showed that observers
are quite accurate at marking local depth extrema
along surface scan lines (see also Todd & Thaler, 2010).
Although they sometimes mistake inflexion points
for local minima, they always add an additional local
maximum when that occurs, so that the number of
maxima on a scan line is always one greater than the
number of minima.

Graphs of intrinsic curvature
Another possible graph representation of smoothly

curved surfaces has been proposed by Koenderink

(1990). At any point on a smooth surface, there are
two principal directions of curvature that are always
orthogonal to one another: one where the curvature
(Κmax) is larger than in any other direction and another
where the curvature (Κmin) is smaller than in any other
direction. Koenderink noted that Κmax and Κmin can be
transformed into two alternative measures: one called
curvedness, which varies with scale, and another called
the shape index, which is scale invariant (see Figure
20). The shape index partitions surface patches into
five qualitatively distinct types: bumps, ridges, saddles,
valleys, and dimples. These can define the nodes of a
graph, and the adjacency relations between regions
define the edges. These different types of curvature are
easily identified in the iso-height contours of Figure
19. For bumps and dimples, the contours form closed
loops, and for saddles, they diverge away from each
other. One important advantage of this approach over
the Morse theory analysis is that the shape index is
invariant over variations in surface orientation, whereas
local extrema of height, depth, or slant are not.

There have been several psychophysical studies that
highlight the relevance of these ideas for the visual
perception of 3D shape (Lappin, Norman, & Phillips,
2011). For example, research has shown that observers
can discriminate variations of the shape index on
quadric surface patches (Mamassian, Kersten, & Knill,
1996; Phillips & Todd, 1996; van Damme, Oosterhoff,
& van de Grind (1994) and accurately categorize those
patches as bumps, ridges, saddles, valleys, or dimples
(de Vries, Koenderink, & Kappers, 1993; van Damme &
van de Grind, 1993). In addition, Perotti, Todd, Lappin,
and Phillips (1998) have shown that observers are much
more sensitive to qualitative changes in shape index
from motion than they are to quantitative changes in
curvedness.
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Figure 20. The shape index proposed by Koenderink (1990) partitions local surface regions into five distinct categories that are
intuitively identified as bumps, ridges, saddles, valleys, and dimples.

An interesting property of patch graphs of either
local singularities or intrinsic curvature is that they
are often tightly coupled with sources of visual
information, such as shading, texture, motion parallax,
and binocular disparity. Note that these image
properties all form continuous fields, with the same
mathematical structure as a surface. Thus, they all have
their own local singularities and patterns of curvature.
The patch graphs for motion parallax and binocular
disparity are almost identical to those of the visible
surfaces from which they arise. That is not the case
for shading or texture, but there are still interesting
correspondences to examine. For example, Koenderink
and van Doorn (1980) have shown that saddle points in
the shading field only occur on surface points where
one of the principal curvatures is zero.

It is worth noting that patch graphs satisfy all of
the criteria discussed earlier for evaluating possible
representations of shape. They naturally decompose
surfaces into parts, which are closely aligned with how
observers describe topographic features on surfaces.
They make it easy to compare surface shapes (as long as
the number of patches is relatively small), and they also
make clear how changes in the topological structure of
a graph should be easier to detect than metric changes
that do not alter its topology.

Rims and other extremal curves

What patch graphs cannot do is provide a convenient
method for depicting curved surfaces in line drawings.
We know that skilled artists are able to create realistic
depictions of smoothly curved objects with a relatively
small number of image contours, but it is still an open
question about where those contours should be placed
in order to provide the most perceptually effective
depiction. One important contour on a smoothly
curved object is its rim (see Figure 21). The rim is
defined as the locus of surface points for which the
angle between the surface normal and the direction of
view is exactly 90°. It is important to note that the rim is

Figure 21. A shaded image of a curved surface and three types
of contour drawings. Moving clockwise from the upper left, the
panels depict a smoothly shaded image of the object, its
silhouette, its rim, and the rim combined with curvature
extremal contours, for which Kmax is a local maximum or Kmin is
a local minimum. Note that the curvature extremal contours
dramatically improve quality of the drawings.

different from the silhouette of an object. The silhouette
is a subset of the rim that defines the boundary between
figure and ground. All points on one side are part of
the object, whereas all points on the other side are part
of the background. The rim, in contrast, can extend
into the interior of a surface or even be disconnected
from the silhouette.

Koenderink and van Doorn (1976) performed the
first rigorous analysis of how rims can be structured
and how they are especially relevant to 3D form
perception. They began by describing the different
types of singularities that can occur on the rim.
That work was later expanded by Damon, Giblin,
and Haslinger (2009, 2011, 2016), who were able to
enumerate all possible singularities and classify them
by their relative stability over small changes in viewing
direction. Koenderink (1984a) also presented a theorem
that relates the apparent curvature of the rim to the
intrinsic curvature of the surface in its immediate local
neighborhood (on the attached side). The basic idea is
quite simple. Because the curvature perpendicular to
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Figure 22. Two line drawings of the head of “David” by
Michelangelo (1504) created with different types of contours.
The one on the left shows only the rim contours, whereas the
one on the right also includes suggestive contours. (Reprinted
from DeCarlo, Finkelstein, Rusinkiewicz & Santella, 2003, with
permission from the authors.)

the rim is always convex, the curvature parallel to the
rim uniquely specifies the qualitative shape index. He
also noted that an abrupt termination of the rim can
only occur in saddle shaped regions and that artists
often draw that incorrectly (see also Koenderink & van
Doorn, 1982).

It should be noted in Figure 21 that the rim by
itself does not provide a truly compelling impression
of the depicted 3D shape. In order to augment that,
Phillips, Todd, Koenderink, and Kappers (2003) have
argued that additional information can be provided
by curvature extremal contours, which connect points
where Kmax is a local maximum or Kmin is a local
minimum. This is implicit in line drawings of polyhedra.
The edges have infinite curvature, and the faces have
no curvature at all. Of course this is impossible for
real objects, but it is a reasonable approximation in
many contexts. It is possible to generalize the concept
of a sharp edge on polyhedral surfaces to include
curvature extremal contours on more rounded surfaces,
and the addition of those contours can dramatically
enhance pictorial depictions. The lower left panel
of Figure 21 shows the rim contours of the shaded
image in the upper left panel together with its curvature
extremal contours. Note how this produces a much
more compelling depiction of the object’s shape than
what is obtained when the rim contours are presented
in isolation.

Another technique for enhancing the appearance
of line drawings has been developed by DeCarlo,
Finkelstein, Rusinkiewicz, and Santella (2003).
They proposed broadening the definition of the rim
somewhat to include points on a surface where the
angle between the surface normal and the direction of
view is a local maximum that need not be exactly 90°.
The locus of these local slant maxima defines what they
call suggestive contours. Figure 22 shows a drawing
of David with only the rim contours on the left and

Figure 23. An aspect graph that shows the four possible
characteristic views of a torus and the possible transitions
between them.

suggestive contours on the right. Clearly, the one on
the right provides a more compelling impression of 3D
shape.

Aspect graphs

The seminal articles of Koenderink and van Doorn
(1976, 1979) did much more than just list the different
types of singularities that can occur on the rim. They
also described how the structure of the rim changes
as a function of the viewing direction. As an object is
rotated continuously in depth relative to the observer,
singularities on the rim can appear and disappear but
always in pairs. Each distinct set of visible singularities
is referred to as a characteristic view or an aspect, and
there is also a set of possible transitions for how one
aspect can be replaced by another. When considered in
combination, these structures form a graph, in which
the aspects are the nodes, and the transitions between
aspects define the edges (see Figure 23).

Damon, Giblin, and Haslinger (2009, 2011, 2016)
have further developed these insights within an area of
mathematics called singularity theory, and they have
also considered the singularities on the borders of cast
shadows. In principle, it would be possible to perform
similar analyses on a wide range of image structures,
such as specular highlights, and extremal contours, but
the cost in terms of greater complexity would be quite
high.

Because aspect graphs can be extraordinarily
complex, it is likely that their relevance to human
perception may be limited to relatively simple cases like
the torus in Figure 24. One psychophysical investigation
to examine this issue was performed by Tarr and
Kriegman (2004). They measured observer sensitivity
to changes in 3D orientation of a torus and a bell.
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Figure 24. The left panel shows The Librarian by Giuseppe
Arcimboldo (1566), and the right panel shows a blurred version
of it. Note that the original painting can be perceived as a
person or an arrangement of books, but when the image is
blurred, it can only be perceived as a person.

The results revealed that observers were most sensitive
to changes in orientation that resulted in an aspect
change, although some aspect transitions had no effect
on performance. This is clearly a topic that is deserving
of more research.

Shape as a function of scale

Another complication for the representation of shape
is that the appearance of objects can change when
they are observed at different distances. For example,
consider the shape of a golf ball. At far distances, it
appears as a point; at moderate distances, it appears
as a sphere; and at very close distances, it appears as
an array of hemispherical pits. At distances in between
moderate and very close, the spherical structure and the
hemispherical pits can be perceived simultaneously, and
observers can focus their attentions on either one. The
issue of scale is relevant to all of the representations of
shape described thus far. For example, the seemingly
spurious branches of the Blum medial axis model arise
due to the fine-grained structure of the boundary (see
left column of Figure 11). The Bayesian analysis of
Feldman and Singh (2006) is an effective method of
removing those (see right column of Figure 11), but
the fine-grained structure is still part of our perceptual
experience, especially when parts of a shape are viewed
under magnification.

Is it possible to highlight the macroscopic parts
in a representation of shape, without discarding the
fine-grained structure altogether? Koenderink (1984b)
has proposed an elegant method for achieving that
goal using a Morse graph of an image, in which the
nodes consist of local maxima, minima, and saddle
points in the luminance field (see also Lindeberg, 1993;

Witkin, 1983). The number of nodes in the graph can
be reduced when an image is blurred by the diffusion
equation, but it can never increase. Reductions occur
when an extremum (i.e., a maximum or a minimum)
merges with a saddle point so that both are annihilated.
Thus, an image can be defined as a nested set of
luminance singularities that vanish in a well-defined
sequence with progressive blurring. At some scales,
a given singularity will exist as a single blob of light
or dark luminance. At courser scales, it may cease to
exist at all, and at finer scales, it may be subdivided into
additional singularities. The same basic idea can also be
applied to height or depth maps of surfaces or even a
2D curve along the boundary of an object. Note that
these results are only valid for blurring that is based on
the diffusion equation. Other types of blurring can give
rise to spurious singularities.

It is clear that human observers are capable of
perceiving objects at multiple scales simultaneously.
This was first demonstrated in the 16th century by the
Italian painter Giuseppe Arcimboldo, who was famous
for his imaginative portrait heads made entirely of
other objects. For example, the left panel of Figure 24
shows his painting of a librarian that can be perceived
as a person or as a collection of books. If the image is
blurred as shown in the right panel, then the perception
of books is eliminated, but the appearance of a person
remains. Similar double images at different scales were
also created by Salvador Dali in the 20th century.

A more rigorous psychophysical investigation of
multiscale shape perception was performed by Brown
and Burbeck (1999). They used the relative orientation
probe task shown in Figure 15 on an image of a bumpy
sphere. The new twist they added was to vary the size
of the probe disk. When the probe disk was small,
observers’ judgments were correlated with the local
orientations of the individual bumps. However, as
the size of the disk was made larger, the observers’
adjustments were more closely associated with the
macroscopic spherical shape of the object.

It is obviously not possible to represent all possible
scales of an object down to a molecular or subatomic
level, which means that no possible representation of
shape can be veridical in an absolute sense, but perhaps
it is desirable to include a range of scales that are likely
to arise in natural vision. This is another interesting
area of shape perception that is worthy of additional
research.

Conclusions

One of the things that stands out in this review
of possible shape representations is their remarkable
variety. Different researchers have tried to capture the
concept of shape using many different data structures,
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ranging from the local property maps of early Gibson
and Marr to much more abstract conceptions like
medial axes or aspect graphs. Despite the obvious
differences among these approaches, there are also some
important general principles that bind them together.

Invariance over change

One important theme that emerges from this
discussion is that the concept of shape involves many
different object attributes, some of which are more
perceptually salient than others (see also Green, 2017;
Koenderink, 1990). This suggests that there may not be
a single definition of shape that is wholly satisfactory,
because different sets of attributes may be relevant in
different contexts. For example, the metric properties of
Euclidean geometry may be of paramount importance
to a tool and die maker but not so much to a biologist
who is trying to classify the biological forms of different
species.

Within this set of possible shape attributes, we have
argued that observers are most sensitive to those that
have the greatest stability over change, as was first
suggested by Chen (1982). One obvious reason for this
is that patterns of visual stimulation are subject to
projective distortions, which do not preserve many of
the geometric properties of objects in the environment.
However, some properties, like collinearity and
coincidence relations, are invariant over projective
transformations, and those properties are especially
informative for human perception.

Curves and surfaces can be described at varying
levels of differential structure, including local positions
(zero-order), local orientations (first-order), and
local curvature (second-order). There is considerable
evidence to suggest that curvature is the most important
of these for perception of shape, as suggested long
ago by Attneave (1954) and Gibson (1979). This is
likely because curvature is invariant over changes in the
direction of view, whereas position and orientation are
not.

Singularities of the visual mapping

Another important source of information about
shape is provided by singular points or curves within
patterns of visual stimulation. Singularities occur at
local extrema along any continuous function of surface
attributes. This could include local extrema of depth
or orientation, but they most commonly involve local
extrema of curvature. These structures are ubiquitous
within many theoretical analyses of shape that have
been proposed for both human and machine vision.
For example, the edges and vertices of polygons and
polyhedra are defined by discontinuities of curvature.

The classification of singularities was critical to the
early development of computer vision that focused on
the interpretation of line drawings, and it remains an
active topic of research in both computer vision and
mathematics.

Singularities facilitate the perception of shape in two
different ways: First, they provide salient landmarks on
surfaces that make it possible to establish point-to-point
correspondence relations between different objects.
When performing correspondence matching tasks,
observers consciously seek out salient landmarks to
help them triangulate corresponding surface positions
(Phillips, Todd, Koenderink, & Kappers, 1997). Second,
singularities can also be used to constrain the possible
interpretations of a scene in their immediate local
neighborhoods and to help classify the contours in an
image (Malik, 1987).

The importance of parts

We have also emphasized the part structure of
objects, as first suggested by Blum (1967) and Binford
(1971). Parts allow a much more efficient coding of
shape because they can be treated as symbolic tokens
within higher-order representations. In addition, parts
can simplify the computational processing of global
shape, by decomposing the analysis into a series of
subproblems. The concept of parts does not exist in
classical geometry, but it arises frequently in observers’
verbal descriptions of shape. Thus, in order to account
for that, a perceptually valid representation of shape
should allow a natural decomposition of an object
into parts. It is interesting to note that most of the
representations proposed in the literature are able to
satisfy that criterion. Examples include Biederman’s
theory of recognition by components, Blum’s medial
axis transform, and surface patch graphs.

Possible shape data structures

There are two popular data structures employed in
the literature for representing shapes, which we have
referred to as maps and graphs. Maps are created by
subdividing an object into a dense network of small
local neighborhoods, each of which is characterized
by some set of attributes. To represent a 2D curve,
for example, each local neighborhood could be
characterized by its 2D position coordinates. To
represent a 3D surface, each local neighborhood could
be characterized by its 3D position coordinates or by
its surface depth gradient. Depending on the scale of
the neighborhoods, maps can encode any possible
aspect of surface geometry including the positions and
orientations of objects, as well as their shapes. However,



Journal of Vision (2022) 22(1):1, 1–30 Todd & Petrov 24

it is impossible to separate those properties without
additional analyses.

Graphs provide a more abstract type of data
structure that can be tailored more specifically to
the representation of shape, and because of their
hierarchal structure, they provide a natural way for
decomposing objects into parts. In general, graphs can
be encoded much more efficiently than maps. Moreover,
because their nodes and edges typically represent
viewpoint-invariant features, they can also provide a
plausible explanation of why some shape changes are
more difficult to detect than others.

What is shape?

It is likely that some readers will be unconvinced
by this discussion and will insist that the definition of
shape must be focused entirely on metric properties. If
shape perception were based on anything less than that,
they will argue, then our judgments of objects would
not be “veridical,” but our day-to-day experiences in
the natural environment would seem to contradict that
conclusion. Moreover, we know how to compute metric
structure from various sources of visual information, so
why would the visual system not exploit that capability?

This type of argument is misleading at best. First, it
ignores the fact that observers’ judgments of Euclidean
metric structure have been studied extensively in
the literature on human perception, and with very
few exceptions, most of these studies have shown
that judgments of metric structure produce large
systematic errors and are highly unreliable (see Todd
& Norman, 2003, for a review). Second, although
there are known algorithms for computing metric
structure from visual information in certain contexts,
they typically rely on assumptions that are seldom if
ever satisfied in the natural environment. For example,
they might assume that an object is viewed under
orthographic projection (Ullman, 1979) or that it is
bilaterally symmetric (Sinha, Ramnath, & Szeliski,
2012). Sometimes these algorithms allow for a family
of possible interpretations, and a unique solution is
obtained by adopting a minimization procedure, such
as picking the one with the smallest volume or surface
area (Pizlo, Li, Sawada, & Steinman, 2014). However,
whenever those constraints are violated, as is often the
case in natural vision, these algorithms will produce
systematic errors.

So what is the alternative? Perhaps it is best to
think about shape from the functionalist philosophical
perspective of James Gibson in his analysis of
ecological optics. The function of shape perception in
our day-to-day experiences is to discriminate objects
and to classify them into distinct categories. It is
important to keep in mind that there are an infinity of
object properties that could potentially be associated

Figure 25. Girl With a Mandolin by Pablo Picasso (1910). Note
how the subject is easily recognizable despite the large
amounts of distortion.

with the concept of shape. One way of determining
which ones are most relevant in any given context is
to weight them in terms of how reliably they can be
measured and how efficiently they can be encoded.

Nonaccidental properties are weighted more heavily
than metric properties because they are invariant under
optical projection and are therefore more reliable
sources of information. Singularities are weighted
more heavily than other features because they are so
easily recognizable in visual images. Singularities of
curvature are weighted most heavily because they are
invariant over changes in position and orientation.
Similarly, parts are useful in visual perception because
they dramatically increase the efficiency of encoding
and processing shapes. Graphs are preferred over maps
for exactly the same reason, especially when the nodes
of those graphs are singularities in image structure.

There are several advantages of defining shape as
a weighted configuration of properties, as opposed
to the classical definition that shape is what is left
over after the effects of position, orientation, and size
have been normalized (e.g., Dryden & Mardia, 2016).
The weighted property model can allow for crude
judgments of relative lengths in different directions (i.e.,
metric structure) when that is necessary, such as trying
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to determine if a couch will fit through a doorway.
However, it also allows for the categorization of shapes
based on the subset of properties they share in common
and the categorization of transformations based on
the specific properties that are changed and those that
remain invariant. This can also explain how we are able
to look at sets of objects and immediately discern that
their shapes are similar in some ways but different in
others (e.g., see Figures 8–10).

This ability is demonstrated most clearly by
postimpressionist and cubist painters of the late 19th
and early 20th centuries, such as Van Gogh, Cézanne,
and Picasso. They began to systematically distort their
subjects in an effort to explore the outer limits of
representational art. For example, Figure 25 shows a
cubist painting of a girl with a mandolin created by
Pablo Picasso in 1910. Although this scene is hugely
distorted, it is still possible to perceive the overall shape
and identity of the subject. How observers are able to
recognize scenes with that level of distortion remains a
mystery over 100 years later.

Keywords: 3D surface and shape perception, shape and
contour, non-Euclidean geometry
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