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Abstract: CRISPR is an acquired immune system found in prokaryotes that can accurately recognize
and cleave foreign nucleic acids, and has been widely explored for gene editing and biosensing. In
the past, CRISPR/Cas-based biosensors were mainly applied to detect nucleic acids in the field of
biosensing, and their applications for the detection of other types of analytes were usually overlooked
such as small molecules and disease-related proteins. The recent work shows that CRISPR/Cas
biosensors not only provide a new tool for protein analysis, but also improve the sensitivity and
specificity of protein detections. However, it lacks the latest review to summarize CRISPR/Cas-
based biosensors for protein detection and elucidate their mechanisms of action, hindering the
development of superior biosensors for proteins. In this review, we summarized CRISPR/Cas-based
biosensors for protein detection based on their mechanism of action in three aspects: antibody-
assisted CRISPR/Cas-based protein detection, aptamer-assisted CRISPR/Cas-based protein detection,
and miscellaneous CRISPR/Cas-based methods for protein detection, respectively. Moreover, the
prospects and challenges for CRISPR/Cas-based biosensors for protein detection are also discussed.

Keywords: CRISPR; protein; detection; biosensors

1. Introduction

Protein is an important type of disease biomarker for the early diagnosis of diseases,
monitoring treatment process and outcome, and assessing prognosis [1]. Various protein
detection methods have been established including immunoassay [2], biological mass
spectrometry [3,4], fluorescence spectrometry [5], and electrical and electrochemical meth-
ods [6]. In particular, the immunoassays based on enzyme-linked immunosorbent assay
(ELISA) [2,7] and chemiluminescence immunoassay (CLIA) [8] are currently the most
commonly used protein assays, in which ELISA serves as the gold standard for protein
detection in the fields of clinical diagnosis and biosafety [9]. However, the levels of protein
biomarkers in clinical samples are generally very low, while a large amount of matrix inter-
ference exists in samples [10], so ELISA assays in clinical use are generally limited by their
sensitivity, reliability, and specificity [11]. Therefore, it is urgent to develop new methods
for the rapid, sensitive, portable, and highly specific detection of protein biomarkers.

The CRISPR/Cas system is an adaptive immune system that originated from prokary-
otes consisting of CRISPR sequences (Clustered Regularly Interspaced Short Palindromic
Repeats) and proximity CRISPR-associated protein (Cas proteins), which can effectively
and accurately identify and cleave foreign nucleic acids. This results in silencing their
expression, and maintaining the stability of its genetic system through three stages of
adaptation, recognition, and interference, thus effectively defending against foreign genes
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(e.g., phages and exogenous plasmids) [12,13]. In 1987, the CRISPR system was first dis-
covered [14], which was subsequently coined as the CRISPR system in 2002 [15]. The
CRISPR/Cas system has the advantages of programmability, specificity, sensitivity, and
single-base resolution for nucleic acid recognition, and is now widely used in the biomedi-
cal fields [16–18]. It is generally divided into two types according to the structure of Cas
proteins: Class I Cas proteins are effector complexes composed of multiple subunits; and
class II Cas proteins are single effector proteins including Cas9, Cas12a, Cas13a, and Cas14
systems [19]. In recent years, some class II Cas proteins have been found to exhibit excellent
signal amplification to neighboring non-target ssDNA or RNA with high non-specific
cleavage efficiency [20,21]. For example, the Cas12a protein can specifically recognize the
Protospacer Adjacent Motif (PAM) sequence of target DNA under the guidance of CRISPR
RNA (crRNA) through forming a Cas12a/crRNA/DNA ternary complex, exhibiting non-
specific cleavage activity to nearby ssDNA (trans cleavage activity) [22,23]. Unlike Cas12a,
Cas13a is an RNA-mediated RNA endonuclease containing two HEPN structural domains
that specifically recognize and cleave target RNA under the guidance of crRNA [24,25],
which is able to indiscriminately cleave nearby RNA [26].

Due to the characteristics above-mentioned, CRISPR/Cas systems have been explored
in the field of nucleic acid detection [27,28]. In 2017, Zhang’s team reported the seminal
work of a CRISPR/Cas13a-based ultra-sensitive and specific method for the rapid detection
of DNA and RNA, called Specific High-Sensitivity Enzymatic Reporter Unlocking (SHER-
LOCK), by combining the trans cleavage activity of the Cas13a protein with a fluorescently
dual-labeled signal reporter [29]. Later on, Doudna’s team also conducted a landmark work
of dubbed DNA Endonuclease Targeted CRISPR Trans Reporter (DETECTR) based on the
CRISPR/Cas12a system, enabling nucleic acid detection at the attomolar level and the detec-
tion of two types of human papillomavirus (HPV), 16 and 18, in clinical samples [30]. Now,
CRISPR technology has achieved remarkable success in the field of molecular diagnosis [31],
which has recently become a hot topic in COVID-19 diagnosis [32,33]. Moreover, CRISPR
diagnostic has been expanded for the detection of other substances such as ions [34,35],
proteins [36], small molecules [37,38], etc., largely compensating for the limitations of
traditional molecular diagnosis technology. For proteins, as the CRISPR/Cas system is
only capable of recognizing and cleaving nucleic acid sequences, protein targets cannot
directly activate the trans cleavage activity of Cas endonuclease, so it needs to convert
the information of the protein molecule into the detectable nucleic acid signal that can be
responded by CRISPR/Cas systems.

To date, initial efforts have been made for the detection of protein biomarkers based
on CRISPR/Cas12a systems due to the desirable characteristics of CRISPR diagnostics.
However, most of the currently published reviews are about the research progress of
CRISPR/Cas system applications in gene editing [39,40], gene therapy [41], bioimag-
ing [42,43], pathogen diagnosis [44,45], and nucleic acid detection [46–48]. Although there
are few reviews describing CRISPR-based biosensors for non-nucleic-acids, the protein
detection section is not the main part, lacking a comprehensive and systematic summary
on CRISPR-based protein detection [48–50]. A comprehensive literature review on the
application of CRISPR/Cas systems in protein detection can provide a better understanding
of CRISPR/Cas system applications in biosensing. Therefore, in this review, we present
recent advances in CRISPR-based biosensors for protein analysis, which can be divided
into three aspects based on signal conversion: antibody-assisted CRISPR/Cas-based pro-
tein detection, aptamer-assisted CRISPR/Cas-based protein detection, and miscellaneous
CRISPR/Cas-based methods for protein detection, respectively (Scheme 1). We introduce
their applications in protein detection with recent examples, and discuss their advantages,
significance, and drawbacks. Finally, their challenges and potential for future applications
are also discussed.
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2. Antibody-Assisted CRISPR/Cas-Based Protein Detection

The antibody is a major recognition biomolecule with a symmetrical structure of two
heavy chains (H chain) and two light chains (L chain) connected by disulfide and non-
covalent bonds, capable of specifically recognizing and binding to antigenic determinants
on the surface of the target proteins with high affinity and specificity [51,52]. The structure
of the entire antibody molecule can be divided into two parts: the variable region (V region)
and the constant region (C region) [53]. Antibodies are routinely used as biological recog-
nition elements for proteins in immunosensors, which are currently the most important
and widely used biosensors for protein detection [54]. The traditional ELISA method is
well-recognized as the gold standard for protein detection [55], and its detection principle
is based on the formation of a sandwich antibody–antigen–antibody structure, in which
the enzyme (usually horseradish peroxidase (HRP)) labeled on the antibody induces the
enzymatic signal amplification for measuring the concentration of targets. However, it
is still not sensitive enough for the rapid detection of ultralow concentrations of protein
biomarkers [56,57]. Moreover, the labeling of enzymes to antibodies usually requires
complicated chemical modification and purification, easily resulting in the degradation of
enzymes or antibodies. On the other hand, due to the high programmability, trans cleav-
age activity, and specificity of CRISPR systems with excellent signal amplification [58,59],
the CRISPR/Cas systems have been combined with immunoassays for protein detection
with significantly improved sensitivity. It was found that most of them were based on
antibody–antigen–antibody type sandwich assays, and one was based on antigen–antibody
recognition with the proximity CRISPR/Cas12a assay (Table 1).

Table 1. A comparison of the antibody-assisted CRISPR/Cas-based strategies for protein detection.

Method Target LOD Detection Range Signal Refs.

CRUISE Cytokine IFN-γ and
EGFR ~50 aM 1 fg/mL–1 ng/mL Fluorescence [60]

CLISA IL-6 and VEGF 2.29 fM and 0.81 fM
respectively

8 fM–5 pM and 4 fM–2.5 pM,
respectively Fluorescence [61]

Antibody-
DNA barcode conjugated

CRISPR/Cas12a
CXCL9 14 pg/mL - Fluorescence [62]

Universal proximity
CRISPR/Cas12a Antibodies 1 pM - Fluorescence [63]

iPCCA IL-6 100 fM - Fluorescence [63]

Li et al. reported a universal CRISPR-based immunosignaling enhancer called CRUISE,
which constructed an antibody-ssDNA (Abs-ssDNA) through streptavidin-biotin binding
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to a biotinylated single-stranded DNA (ssDNA) [60]. Abs-ssDNA can act as a primary
antibody to directly capture the target protein, and also indirectly as a secondary antibody
to recognize the Fc fragment of the antibody used, forming a typical sandwich structure.
Both methods can be used after washing away the unbound Abs-ssDNA, and the bound
Abs-ssDNA activates the trans cleavage activity of CRISPR/Cas12a, cleaving the reporter
molecule for the generation of a fluorescence signal. Secondary antibodies were integrated
into a variety of different immunoassays to relieve the need of redundant recognition
elements other than antibodies, providing three orders of magnitude higher sensitivity
than traditional ELISA methods for IFN-γ detection. However, the CRUISE system has
limitations similar to those of traditional ELISA methods such as the non-specific binding of
Abs-ssDNA couplers that can reduce the analytical performance of the system and require
better blocking strategies. Careful optimization of the antibody capture fixation method for
96-well plates is required to achieve higher sensitivity and specificity. Based on the classical
sandwich-type sandwich structure, Chen et al. proposed a CRISPR/Cas13a signal amplifi-
cation correlation immunosorbent assay called CLISA by designing biotinylated dsDNA
containing a T7 promoter sequence instead of the traditional enzyme used for signal output
(generally horseradish peroxidase) (Figure 1a) [61]. The presence of the target captures the
secondary antibody on the capture antibody attached on the 96-well plate. The secondary
antibody subsequently ligates the biotinylated dsDNA through biotin–streptavidin inter-
action, while the captured dsDNA is transcripted to generate a large amount of trigger
RNA under T7 RNA polymerase. The trigger RNA activates CRISPR/Cas13a system
under the assistance of crRNA along with the generation of fluorescence for protein de-
tection. The CLISA detected human interleukin 6 (IL-6) with a limit of detection (LOD)
of 45.81 fg/mL (2.29 fM) and human vascular endothelial growth factor (VEGF) with a
LOD of 32.27 fg/mL (0.81 fM). It should be noted that a strict RNase-free environment is
required for CLISA due to the use of RNA as the signal output. To improve the detection
sensitivity, Lee and coworkers introduced antibody–DNA barcode conjugates with multiple
Cas12a recognition sites into the conventional sandwich assay system using the affinity
of biotin–streptavidin [62]. The detection signal was doubly amplified by increasing the
number of Cas12a recognition sites on the DNA barcodes and the trans-cleavage activity of
the CRISPR system. The assay achieved the detection of chemokine ligand 9 (CXCL9) in
urine without PCR amplification, displaying a LOD of 14 pg/mL, which was seven times
higher than that of the conventional ELISA method. The authors successfully evaluated
CXCL9 protein in the urine of 11 kidney transplant patients with a 100% detection rate
using this method, providing a potential tool for the non-invasive clinical diagnosis of
kidney transplant rejection.

To improve the sensitivity and binding specificity, Li et al. developed a universal
proximity CRISPR/Cas12a assay by cleverly designing two target-specific primers with
different lengths, P1 and P2, which were modified with affinity ligands that bind to different
antigenic epitopes of the same antibody (Figure 1b) [63]. When the target is present, P1 and
P2 are in proximity to each other. The primer extension reaction is triggered to generate
a stable dsDNA containing the PAM sites, while the P1 is cleaved off using a nicking
nuclease during the extension, which serves as the crRNA of the CRISPR/Cas12a system,
to activate the trans cleavage activity of Cas12a, thus generating fluorescence and enabling
the detection of the antibody at low concentrations of 1 pM. After further optimization, Li
and coworkers reported that an improved iPCCA assay system achieved a LOD of IL-6 as
low as 100 fM. This method can be applied in homogeneous solutions while maintaining
detection sensitivity and does not require complex fixation and washing steps.
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illustration of the detection of antibodies using proximity CRISPR/Cas12a integrated with nicking
cleavage. Reproduced with permission from [63]. Copyright 2021 Royal Society of Chemistry.

3. Aptamer-Assisted CRISPR/Cas-Based Protein Detection

Due to the large molecular mass, high immunogenicity, and batch-to-batch variations
of antibodies, the reliability and repeatability of antibody-based CRISPR biosensors may
vary for each test, limiting their applications in protein detection. In the last decades, nucleic
acid aptamers (simplified aptamers) have received the widespread attention of scientists,
thanks to their excellent performance in sensing platforms, low cost, and comparable
sensitivity [64]. Aptamers are synthetic functionalized single-stranded oligonucleotide
sequences (DNA and RNA), also known as chemical antibodies, which are specific nu-
cleic acid sequences and have three-dimensional structures, allowing them to bind target
molecules with high affinity and specificity [65,66]. In contrast to antibodies, aptamers
show the advantages of low immunogenicity, low preparation cost, long-term storage, ease
of modifications, high stability, insensitivity to temperature, small size, no inter-batch vari-
ation, easy combination with nucleic acid signal amplifications, and applicability to a wide
range of targets [67,68]. Aptamers are generally selected from nucleic acid molecular li-
braries by the Systematic Evolution of Ligands by EXponential enrichment (SELEX) [69,70],
which was originally proposed by Tuerk and Ellington in 1990 [71]. The SELEX technology
has successfully identified various aptamers for a range of proteins, which are widely used
in cancer diagnosis, bioimaging, and therapy [72,73].
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3.1. With Nucleic Acid Amplification

As the level of proteins is low in clinical samples, it usually needs to amplify the
target proteins to effectively detect proteins. Most of the reported methods for protein
amplifications depend on isothermal amplification such as hybrid chain reaction (HCR) [74],
strand displacement amplification (SDA), [75,76], etc. In addition, traditional polymerase
chain reaction (PCR) is also applied [77,78] due to its high sensitivity. Further powered
by the amplification function of the CRISPR/Cas system, the integration of nucleic acid
amplifications to CRISPR/Cas systems can achieve much improved sensitivity (Table 2).

Prostate-specific antigen (PSA) is a serine protease produced by prostate epithelial
cells, and its level is generally very low in normal human serum, but is abnormally high in
the serum of prostate cancer patients [79,80]. Therefore, PSA is the most important prostate
cancer biomarker, where its diagnostic specificity can reach more than 90% [81]. The Wang
group developed a nicking enzyme-free SDA-assisted CRISPR/Cas12a-based colorimetric
method for the detection of PSA with a LOD of 0.030 ng/mL (Figure 2a) [82]. When the
PSA target is present, the released ssDNA opens the hairpin structure of the HP to release
complementary ssDNA, triggering a nicking enzyme-free SDA reaction. The generated
dsDNA serves as an activator of the CRISPR/Cas12a system to activate the trans cleavage
activity of the Cas12a endonuclease, which non-specifically cleaves the nearby AuNP-linker
probe. This allows the AuNPs to change from an aggregated purple state to a dispersed
red state, which is colorimetrically determined, along with a visual readout. In this work,
the exonuclease polymerase is harnessed for releasing cDNA from HP-cDNA during SDA,
along with triggering the next SDA cycle, this unique design renders the biosensor simpler
and more convenient for clinical testing. The same group also reported a colorimetric assay
for serum PSA using the nonenzymatic and isothermal properties of HCR to convert serum
PSA into nucleic acid products [83]. The presence of PSA triggers HCR amplification to
produce dsDNA containing multiple PAM sites recognized by Cas12a, activating Cas12a’s
trans cleavage activity, which nonspecifically cleaves the DNA–AuNP probe pairs along
with a colorimetric signal. This strategy enables the sensitive and selective detection of PSA
with a LOD of 0.10 ng/mL in both the spiked and clinical samples.

Ultrasensitive detection of tumor-derived extracellular vesicles (TEVs) is key for
the prognosis and diagnosis of cancers [84,85]. Li et al. developed a PCR-powered-
CRISPR/Cas12a assay, which consists of three parts: aptamer recognition, PCR ampli-
fication, and CRISPR/Cas12a detection (Figure 2b) [86]. The aptamers for membrane
proteins were coated on microtiter plates, which can specifically recognize and bind to
extracellular vesicle surface membrane proteins for the formation of a sandwich-type
complex. After washing away the unbound aptamers, the bound aptamers were ampli-
fied by PCR to generate a large amount of dsDNA, which activates the trans cleavage
activity of Cas12a, enabling the detection of CD109+ and EGFR+ TEV at a concentration
as low as 100 particles/mL. Moreover, the linear range spans six orders of magnitude
(102–108 particles/mL), which is sufficient to detect TEVs in low volume (50 µL) samples.
However, this method uses PCR amplification strategy, and its thermal cycling process
requires complex instrument control, which limits its clinical application. Moreover, high
temperature during the thermal cycling process may denature the proteins, affecting the
sensing performance. Zhao et al. also reported an HCR amplified CRISPR/Cas12a-based
biosensor, named AID-Cas, for the wash-free detection of EVs in the concentration range of
102–106 particles/µL [87]. The CD63 aptamer structural domain contained on the variant
probe specifically recognizes and binds CD63+ TEVs, triggering double-loop HCR amplifi-
cation. The amplified dsDNA contains a T7 promoter recognition sequence, which can be
recognized by T7 RNA polymerase and transcribed to a large amount of RNA, serving as
the crRNA of the CRISPR/Cas12a system. This method enables the quantitative detection
of TEVs in the cell culture supernatants and clinical samples. However, the free CD63
protein from ruptured EVs or cells may interfere with the assay results. Similarly, Xing et al.
developed an apta-HCR-CRISPR assay for the ultra-sensitive quantification of TEV surface
proteins, which uses HCR to amplify the TEV surface proteins based on the correspond-
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ing aptamers, generating dsDNA containing multiple PAM sites for activating the trans
cleavage activity of Cas12a in the presence of crRNA [88] (Figure 2c). This method can
directly be used for the clinical analysis of circulating TEVs in 50 µL serum, achieving TEV
detection at a concentration as low as 102 particles/µL in complicated biological samples.

Table 2. A comparison of aptamer-assisted CRISPR/Cas-based biosensors for protein detection with
nucleic acid amplification.

Method Target LOD Detection Range Signal Refs.

Nicking enzyme-free
SDA-assisted CRISPR/Cas12a PSA 0.030 ng/mL 0.1–5 ng/mL Colorimetric [82]

Nonenzymatic HCR-powered
CRISPR/Cas12a PSA 0.10 ng/mL 0.2–4.0 ng/mL Colorimetric [83]

PCR-powered CRISPR/Cas12a CD109+ and EGFR+ TEVs 100 particles/mL 102–108 particles/mL Fluorescence [86]
AID-Cas CD63-positive EVs 102 particles/µL 102–106 particles/µL Fluorescence [87]

apta-HCR-CRISPR TEV 102 particles/µL 64–106 particles/µL Fluorescence [88]
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3.2. Amplification-Free

The amplification of target proteins often requires complicated pre-detection process-
ing, which often leads to problems such as non-specific amplification or reagent contamina-
tion [89,90]. To overcome these problems, a series of amplification-free sensing strategies
have been proposed for protein analysis such as multiple activator dsDNA, the use of
ssDNA blockers, the combination with electrochemical signal amplification, multiple Cas
recognition sites, and other method-coupled CRISPR/Cas techniques (Table 3).

Zhao et al. designed a dual aptamer sensor to implement a multi-trigger dsDNA
tandem binding CRISPR/Cas12a system for the PCR-free detection of the SARS-CoV-2
antigenic nucleocapsid protein (Np) (Figure 3a), in which a hybrid DNA containing Cas12a-
triggered dsDNA (HyDNA) modified with two aptamers, A48 and A61, was used to
recognize different epitopes of Np [91]. When Np is present, the aptamers release two
HyDNA activators from the hybrid DNA, subsequently activating Cas12a’s trans cleavage
activity for non-specifically cleaving a nearby fluorescently labeled ssDNA probe along with
the generation of the fluorescence signal. This multi-trigger dsDNA tandem element may
be able to serve as a versatile tool for implementing highly sensitive CRISPR biosensors.
Similarly, Li et al. used a DNA walker to amplify “one-to-many” by embedding the
target’s aptamer in the locked strand and then hybridizing it with the walking strand [92]
(Figure 3b). The walker is efficiently driven by using a nicking endonuclease as the energy
supply. When the target is present, the walker can compete for the release of the walking
strand to generate multiple activators, thus activating the trans cleavage activity of Cas12a
to generate a fluorescent signal. To validate the performance of the method in real samples,
the authors applied it to the detection of inactivated SARS-CoV-2 in the saliva and serum
spiked samples, with a positive detection rate of 100%. The LOD for carcinoembryonic
antigen is 0.32 pg/mL and features a fluorescent reporter gene loaded onto a biochip coated
with photonic crystals (PC) and excited by a mini-type portable blue light, allowing the
results to be observed with only a smartphone without the need for other sophisticated
imaging tools. Zhao et al. immobilized biotinylated ssDNA partially bound to the designed
aptamer-dsDNA complex on streptavidin-coated magnetic beads (MBs), in which the target
can bind to the aptamer to release the dsDNA [93] (Figure 3c). The released dsDNA is
used as an activator of the CRISPR/Cas12a system, triggering the trans cleavage activity of
Cas12a, and thus non-specifically cleaving the fluorescently labeled ssDNA signal probe
with a fluorescent signal output. This enabled the analysis of the tumor biomarker alpha-
fetoprotein (AFP) in less than 20 min with a LOD as low as 0.07 fM/L, while the quantitative
analysis of cocaine was at a LOD of 0.34 µmol/L. This highly modular biosensing platform
has great potential for the detection of other analytes.

Under the condition of very low magnesium ion (Mg2+) concentration, Liu et al. broad-
ened the biosensing application of CRISPR/Cas13a by introducing an ssDNA blocker modi-
fied with an aptamer at the end to program the trans cleavage activity of CRISPR/Cas13a [94]
(Figure 3d). The ssDNA blocker binds to crRNA and blocks the conformational change
of crRNA to inhibit the trans cleavage activity of Cas13a. The presence induces the ss-
DNA blocker to release crRNA, restoring the Cas13a’s trans cleavage activity along with
enhanced fluorescence signal. Moreover, this strategy is applicable to the detection of
analytes that can bind to the ssDNA blocker to release crRNA. In addition, it was found
that the Mg2+ concentration plays an important role in the activity of the Cas13a protein. If
the Cas13a protein is highly active, its enzyme activity will not be easy to block, resulting
in high fluorescence background, so a suitable Mg2+ concentration is demanded to block
its activity effectively. Controlling the structure of crRNA by a simple ssDNA blocker to
regulate the trans cleavage activity of Cas13a offers new opportunities for the development
of CRISPR/Cas13a biosensors.

In 2019, Liu’s team combined electrochemistry with the CRISPR system to develop an
aptamer-based E-CRISPR tandem technology for protein detection for the first time [95]
(Figure 3e). The authors validated the detection performance of the E-CRISPR electrochem-
ical biosensor using the growth factor beta 1 (TGF-β1) protein by square wave voltammetry



Bioengineering 2022, 9, 512 9 of 19

(SWV). The ssDNA aptamer also serves as the template for activating the trans cleavage ac-
tivity of Cas12a, so the aptamers activate the CRISPR/Cas12a system without the addition
of TGF-β1, cleaving the ssDNA reporter (methylene blue-labeled) with no electrochemical
signal output. In contrast, the presence of TGF-β1 weakens the trans cleavage activity
with more intact ssDNA reporters and a stronger electrochemical signal. The linear range
was up to three orders of magnitude, with a LOD of 0.2 nM, while the detection was
completed in 60 min. Very recently, Yuan et al. reported the CRISPR/Cas12a coupled
voltage enrichment by coupling electrochemical and CRISPR systems [96]. The authors
designed two aptamers, AptVEGF-HBD-T18-MB and AptVEGF-RBD, which can specifically
recognize the HBD and RBD domains of vascular endothelial growth factor (VEGF), re-
spectively. Among them, AptVEGF-HBD-Tx-MB consists of a thiol group at the 5′ end and
a different internal T (Tx) site or MB tag at the 3′ end of the aptamer, which is covalently
modified to AuNPs@Ti3C2TXMxene/GCE through Au–S bonding. When the target is
present, AptVEGF-HBD-Tx-MB is recognized and bound to it, bringing the MB close to the
electrode surface, improving the electron transfer efficiency, and generating a “signal-on”
response; when the target is not present, the MB is away from the electrode surface, re-
sulting in the “signal-off” response; when a positive voltage of 0.4 V was applied, the
negatively charged MB groups were rapidly attracted to the electrode surface, resulting in
a stronger current signal, resulting in a “signal superconducting” response. This strategy
goes through a “signal on–off–on” sandwich-type mode for the detection of VEGF rather
than a complicated target amplification step to enrich the cleaved signal probe. Converting
the “signal-off” of CRISPR/Cas12a cleavage to “signal super on” further improves the
current response, thereby simplifying the routine detection process and amplifying the
electrochemical signal. The linear range of VEGF detection was from 1 pM to 10 µM in the
serum samples, with a LOD of 0.33 pM.

Electrochemiluminescence (ECL) is chemiluminescence that originates from the elec-
tron transfer between species generated on the surface of electrodes [97,98], which simulta-
neously has the dual advantages of electrochemical analysis and chemiluminescence such
as high sensitivity, good reliability, simple operation, and fast analysis process [99,100], so
it has been widely used in the biomedical field [101,102], food safety assessment [103,104],
environment monitoring [105,106], and other fields of biomolecule detection [107,108].
Based on the merits of ECL, Liu et al. combined the advantages of spherical nucleic acids
with CRISPR technology, in which a Y-shaped DNA structure constructed from helper DNA
(A1), prostate cancer biomarker α-methylacyl coenzyme A racemase (AMACR) adaptors,
and DNA activators are loaded onto gold nanoparticle-modified Fe3O4 magnetic beads
(Au@Fe3O4MBs) [36]. Y-SNA serves as a target transducer to convert the protein signal
into the programmable nucleic acid signal, while 1-pyrenecarboxaldehyde (Pyc) as a na-
noemitter is embedded in magnetic mesoporous silica nanoparticles (MMSNs). Meanwhile,
silver nanoparticles (AgNPs) serve as a co-reaction gas pedal to synergize with Pyc, and
the synthesized AgNP-Pyc@MMSNs nanomaterial has a strong and stable ECL signal. The
presence of the target protein induces the release of the DNA activator of Cas12a, activating
the trans cleavage activity of Cas12a and thus non-specifically cleaving the ferrocene-
labeled quenching probe (QP) in its vicinity with the ECL signal output. The designed
ECL biosensor was used to determine AMACR from 10 ng/mL to 100 µg/mL, with a LOD
of 15.8 pg/mL. However, the complicated pre-processing step causes difficulties in the
large-scale production of biosensor-related reagents for further clinical applications, and
the vulnerability to protease denaturation during the preparation process dampens the
performance of the biosensors.
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Table 3. A comparison of the aptamer-based sensors without targeted amplification for protein
detection by CRISPR.

Method Target LOD Detection Range Signal Refs.

Dual aptamer-assisted
CRISPR/Cas12a SARS-CoV-2 antigen 0.17 fM, two copies/µL 0.19–781 pM Fluorescence [91]

DNA walker-amplified
CRISPR/Cas12a CEA 0.32 pg/mL 0.7 pg/mL–1 ng/mL Fluorescence [92]

Functional MBs-assisted
CRISPR/Cas12a AFP 0.07 fM 0.24–977 fM Fluorescence [93]

ssDNA blocker-assisted
CRISPR/Cas13a

Enzymes, antigens/proteins,
and exosomes - - Fluorescence [94]

E-CRISPR TGF-β1 0.2 nM - Electrochemical signal [95]
Voltage enrichment-coupled

CRISPR/Cas12a VEGF 0.33 pM 1 pM–10 µM Electrochemical signal [96]

Spherical nucleic acids-assisted
CRISPR/Cas12a AMACR 1.25 ng/mL 10 ng/mL–100 µg/mL ECL [36]

ALCIA PDGF-BB 550 aM - Fluorescence [109]
CAFI Cytokine IFN-γ 58.8 aM 1 fg/mL–100 pg/mL Fluorescence [110]

Nano-CLISA CEA and PSA 13.9 fg/mL and
5.6 fg/mL, respectively

0.6–120 ng/mL and
0.5–150 ng/mL, respectively Fluorescence [111]

Li et al. proposed a novel aptamer-based CRISPR/Cas12a immunoassay method called
ALCIA, which established a link between non-nucleic acid targets and the CRISPR/Cas12a
system by modifying the analyte-targeted aptamer (named Apt-acDNA) at the 5′ end of
the activator DNA (acDNA), which can activate the trans cleavage activity of Cas12a upon
target recognition, along with the fluorescence signal [109]. The authors designed dual
aptamers based on two identical subunits of platelet-derived growth factor BB (PDGF-
BB), where one aptamer was modified on the plate substrate to capture PDGF-BB and
the other was modified at the 5′ end of acDNA to release the activator DNA. When
PDGF-BB is present, it can form a sandwich-like structure of aptamer/PDGF-BB/Apt-
acDNA for activating Cas12a. This assay detects PDGF-BB in the serum, urine, and saliva
during a narrow range of 0–150 pM, with a LOD of 1.57 pM. The output signal of ALCIA
can be adapted based on the actual needs. Moreover, its sensing principle is similar to
ELISA and is highly compatible with traditional ELISA methods, which has the great
potential for bioanalytical analysis and clinical testing. Similarly, Deng et al. developed
a CRISPR/Cas12a-assisted fiber-optic immunosensor (CAFI) that could detect IFN-γ in
the serum, urine, and saliva with a LOD of 1 fg/mL (58.8 aM) over a detection range of
1 fg/mL to 100 pg/mL [110]. By modifying biotinylated capture antibodies on the surface
of antifouling glass fibers modified with silane-polyethylene glycol-biotin and streptavidin,
an antibody–analyte–adaptor sandwich structure can be formed in the presence of the
target. The CAFI assay system can be applied for other analytes such as insulin detection
and analysis by simply changing the aptamer and capturing antibodies. However, its
detection time takes 4 h, which hampers its on-site applications. Increasing the temperature
of the reaction to 37 ◦C may be a feasible solution in reducing the detection time while
maintaining sensitivity. Zhao et al. covalently modified aptamer and Cas12a target DNA
activators on AuNPs to form sandwich-like structures of antibody–target–aptamers [111].
When the target is present, the sandwich-like structure forms, while the activators modified
on AuNPs are captured for activating the trans-cleavage activity of Cas12a, thus cleaving
ssDNA modified with a fluorophore (FAM) and a quencher (BHQ1) at both ends, along
with an increasing fluorescence signal (Figure 3f). The reported Cas12a/crRNA-based nano-
immunosorbent assay (Nano-CLISA) can determine carcinoembryonic antigen (CEA) and
PSA in clinical samples with the LODs of 13.9 fg/mL and 5.6 fg/mL, respectively. AuNP-
modified oligonucleotides to activate CRISPR/Cas12a can greatly enhance the sensitivity
of the assay, which makes the assay 1000 times sensitive than conventional ELISA methods.
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amplification. (a) A schematic diagram of the dual aptamer-based CRISPR/Cas12a biosensor for
synergistic sensing of SARS-CoV-2 antigen detection without PCR amplification. Reproduced with
permission from [92]. Copyright 2021 Elsevier. (b) A schematic diagram of the DNA walker amplified
“one-to-many” CRISPR/Cas12a-mediated fluorescent biosensor for detecting CEA. Reproduced
with permission from [93]. Copyright 2022 Elsevier. (c) A schematic diagram of a multifunctional
biosensing platform combining CRISPR/Cas12a and the aptamer for detecting AFP. Reproduced
with permission from [94]. Copyright 2021 Elsevier. (d) A schematic illustration of the regulation
of the trans-cleavage activity of CRISPR/Cas13a by the ssDNA blocker at low Mg2+ concentration
for protein detection. Reproduced with permission from [95]. Copyright 2022 American Chemical
Society. (e) A schematic illustration of E-CRISPR for protein detection. Reproduced with permission
from [96]. Copyright 2019 John Wiley and Sons. (f) A schematic illustration of Nano-CLISA for
protein detection. Reproduced with permission from [112]. Copyright 2021 Elsevier.
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4. Miscellaneous CRISPR/Cas-Based Methods for Protein Detection

In addition to protein signal conversion methods based on well-recognized antibodies
and aptamers, some other signal conversion methods have also been reported such as the
use of PAM-free conditional DNA substrate (pcDNA), protection experiments with the
help of nucleic acid exonuclease III, the use of protease-activated RNA polymerase, and the
use of small molecule modification activator ssDNA (Table 4).

The CRISPR/Cas system has become a powerful tool for live cell imaging, but its
utility is limited to genomic loci and mRNA imaging in living cells [112,113]. On the other
hand, the recognition of the CRISPR/Cas12a system dsDNA heavily depends on PAM
sequences [114], which greatly limits the detection scope of targets. The design of DNA
substrates using a universal response mechanism can expand the types of analytes. Inspired
by the fact that the Cas12a/gRNA complex can recognize unwound DNA substrates
without the restriction of PAM [115], the Nie team rationally constructed the unwound seed
region and introduced a bubble structure in the seed region to make it unwind to overcome
the CRISPR/Cas12a system’s PAM limitation (Figure 4a) [116]. By designing a pcDNA,
the target recognizes and converts the corresponding pcDNA into a PAM-free dsDNA
substrate (pDNA). pDNA activates the nuclease activity of Cas12a to nonspecifically cleave
the surrounding fluorescent ssDNA signal probe for living cell imaging, and this PAM-
free strategy was found to be suitable for adenosine triphosphate (ATP), miRNA, and
telomerase. This biosensor can also be applied for the sensitive sensing of a wide range of
biomolecules such as intracellular enzymes, small molecules, and microRNAs. The main
limitation of this biosensor is that its reaction kinetic depends on the effective collision of
reactants in the cytoplasm, which leads to reduced sensitivity and reproducibility due to
the complicated biological environment inside the cells. Encapsulating the components
of the sensing system into a restricted space by DNA technology or liquid–liquid phase
separation may be an effective solution to alleviate this limitation.

Cheng et al. also reported a AuNP-assisted CRISPR/Cas system for the visual de-
tection of telomerase activity in three cases: positive (P), negative (N), and false-negative
(FN) [117]. The authors designed telomeric repetitive sequence DNA and internal control
crRNAs, crRNA1 and crRNA2, respectively. Both Cas12a/crRNA1 and Cas12a/crRNA2-
mediated assays in the positive state keep AuNPs in the dispersed state. Cas12a/crRNA1-
mediated assays in the negative state induce the cross-linking of AuNPs, and Cas12a/crRNA2-
mediated assays ensure that the AuNPs remain dispersed. The false-negative state due
to the PCR inhibitor or telomere repeat amplification protocol (TRAP) reagent errors al-
lowed for both the Cas12a/crRNA1 and Cas12a/crRNA2-mediated analysis to induce the
cross-linking of AuNPs. The platform was able to visually identify false-negative results
caused by PCR inhibitor and TRAP reagent errors free of a complicated polyacrylamide
gel electrophoresis (PAGE) process, significantly improving the accuracy of conventional
TRAP. The authors also validated that the Cas9-mediated TL-LFA platform can also be
used for accurate telomerase activity detection, which can be achieved within 15 min on a
single test strip.

Exonuclease III (ExoIII) recognizes flat-ended dsDNA and cleaves it from 3′ to 5′ to
produce ssDNA with a 3′ protruding end [118]. An ExoIII-assisted Cas12a biosensing
system is reported for the detection of transcription factors (TFs) based on which the
activator dsDNA of Cas12a also contains the structural domain of TFs [119] (Figure 4b), in
which TFs can bind to the activator to prohibit the degradation of the dsDNA by ExoIII.
The intact dsDNA activator is thermally inactivated at 65 ◦C, which is further used to
activate the trans cleavage activity of Cas12a. This method is applied for the detection
of the nuclear factor-κB (NF-kB) p50 subunit with a LOD of 0.2 pM. The method has the
potential to screen TF inhibitors and evaluate their biological activities. However, it should
be noted that the method is limited to its long detection time and requires temperature
control. Moreover, the assay performance is affected by the cellular nuclear protein extracts.
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Table 4. A comparison of the miscellaneous CRISPR/Cas-based methods for protein detection.

Method Target LOD Detection Range Signal Refs.

PAM-free CRISPR/Cas12a Telomerase - - Fluorescence imaging [116]
AuNPs-assisted
CRISPR/Cas12a Telomerase - - Colorimetric [117]

ExoIII-assisted Cas12a TFs 0.2 pM 0.5–1600 pM Fluorescence [119]

PRs-assisted CRISPR/Cas12a MMP-2 and thrombin 5.4 fM and 47.8 fM,
respectively

10 fM–0.5 nM and
100 fM–0.5 nM, respectively Fluorescence [120]

AD-assisted CRISPR/Cas12a Streptavidin/biotin and
antidigoxin/digoxin interaction

0.03 nM and 0.09 nM,
respectively

0.1–2.5 nM and 0.2–5 nM,
respectively Fluorescence [121]
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(a) A schematic illustration of pcDNA-based Cas12a for detecting telomerase activity in living
cells. Reproduced with permission from [117]. Copyright 2021 Royal Society of Chemistry. (b) A
schematic diagram of ExoIII-protected CRISPR/Cas12a-based biosensor for detecting TFs in cancer
cells. Reproduced with permission from [120]. Copyright 2021 Elsevier. (c) A schematic diagram of
the PR-Cas detection of proteases. Reproduced with permission from [121]. Copyright 2020 Springer
Nature. (d) A schematic diagram of a strategy to recognize protein/small molecule interactions
based on CRISPR/Cas12a trans cleavage activity. Reproduced with permission from [122]. Copyright
2021 Elsevier.

By using protease-activatable RNA polymerases (denoted as PRs), Yang et al. trans-
formed protein hydrolysis events into multiple programmable RNA sequences by in vitro
transcription using PRs as transducers, and protease hydrolysis can activate RNA poly-
merase transcription to produce RNA, which serves as a guide RNA (gRNA) for acti-
vating the CRISPR/Cas12a system in the presence of template dsDNA, resulting in a
corresponding fluorescent signal output [120] (Figure 4c). The authors combined protein
hydrolysis-triggered signaling transcriptional events with the trans cleavage activity of the
CRISPR/Cas system to achieve dual signal amplification. This strategy was used to detect
protease biomarkers at the femtomolar level, with a LOD of 47.8 fM and 5.4 fM for thrombin
and matrix metalloproteinase-2 (MMP-2), respectively. The sensitivity of the method was
5–6 orders of magnitude lower than the traditional peptide-based methods. This strategy
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extends the CRISPR/Cas system to the activity analysis of protease biomarkers, providing
a new way for protease activity detection. Given the modularity of PR-Cas, the activity of
other proteases can be assessed by simply replacing the PR module.

Furthermore, the CRISPR/Cas system can also be extended for the detection of inter-
molecular interactions. Kim and coworkers developed a method for the rapid detection
of protein/small molecule interactions based on the CRISPR/Cas system using a small
molecule modified activator ssDNA (AD) that interacts with the target protein, and the in-
teraction between the small molecule and the protein prevents AD from binding to crRNA,
reducing the trans cleavage activity of Cas12a with decreasing fluorescence, which was used
for the detection of streptavidin/biotin and antidigoxin/digoxin with the LODs of 0.03 nM
and 0.09 nM, respectively, and this process was completed within 11 min (Figure 4d) [121].
In theory, this strategy can be used for the rapid detection of other protein–small molecule
interactions, offering a new perspective on protein–small molecule interaction analysis and
the screening of related modulators.

5. Conclusions and Perspective

CRISPR-based biosensors have achieved huge success in nucleic acid analysis, but
studies on the applications of CRISPR for protein detection are still relatively limited.
Encouragingly, antibody-combined CRISPR/Cas biosensors have largely improved the
LODs of protein detection, and expanded the detection range. It should be noted that
most of the CRISPR-based biosensors for protein detection employ aptamers as signal
recognition elements because of their superior integration and molecular properties, which
easily combine with CRISPR/Cas systems for protein recognition, converting protein
signals to nucleic acid signals with activated Cas and signal output. Moreover, with the
rapid development of SELEX technology, more and more aptamers for proteins will be
discovered [122,123], which will widely expand the applications of the aptamer-assisted
CRISPR/Cas biosensors for protein detection.

However, for further routine application and commercialization, the CRISPR/Cas-
based protein detection system still faces a range of challenges. The most critical issue
is how to efficiently convert the protein signal into a nucleic acid signal, thus activating
the trans cleavage activity of Cas enzymes. To date, most of the methods reported so
far depend on the antibodies and aptamers, with a few strategies coupled with other
methods. These methods generally suffer from problems such as multi-step detection,
ease of contamination, the need for specialized technicians, and reduced reliability in real
samples. In addition, many CRISPR/Cas-based biosensors for protein detection still need a
long detection time and sensitivity that do not fully meet the needs of clinical testing.

To accelerate the practical application of CRISPR-based biosensors for protein anal-
ysis, it will encourage combining CRISPR/Cas systems with other advanced techniques.
For example, the emergence of new technologies may better facilitate the development of
CRISPR-based biosensing systems for protein detection such as bioinformatics, which could
create easy access to predict and design gRNA/crRNA and target activators to improve
the sensitivity and specificity of the sensing systems. Automation and high-throughput
techniques can be integrated with the CRISPR/Cas system to develop biosensors that
can rapidly screen large numbers of samples simultaneously and are easy to perform for
protein analysis. Other portable devices (e.g., paper-based devices or microfluidic devices)
may also be compatible with CRISPR-based protein sensing systems to meet the needs of
clinical analysis. Moreover, as crRNA, PAM sequences, and Mg2+ are key to the sensing
performance for this type of biosensor, it needs to carefully optimize the reaction system
to achieve rapid quantitative protein detection, and improve detection sensitivity and
reliability as well as to simplify the detection steps and reduce cost. By combining mul-
tiple Cas enzymes with different functions, it may be possible to achieve multiple assays
simultaneously. Furthermore, the difficulty in detecting proteins reliably in complicated
matrices may be addressed by introducing well-developed preprocessing methods (e.g.,
extraction, centrifugation, etc.) and encapsulating the components of the sensing system
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into a restricted space (e.g., DNA technology or liquid–liquid phase separation). Although
the developed methods above only have one or two original targets, most of them have
the potential to be extended to other proteins by simply changing the aptamer or antibody.
Therefore, it is economically efficient to investigate their feasibility in other analytes, which
will largely reduce the cost and accelerate their applications. Based on the rapid develop-
ment of the technology, the deepening research on CRISPR/Cas systems, and the discovery
of new CRISPR/Cas systems, we believe that the CRISPR/Cas technology will become one
of the mainstream protein detection tools in the future, facilitating its rapid development in
disease diagnosis, pathogen analysis, environmental assessment, and other fields.
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