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OBJECTIVE—The evolutionary conservation of transcriptional
mechanisms has been widely exploited to understand human
biology and disease. Recent findings, however, unexpectedly
showed that the transcriptional regulators hepatocyte nuclear
factor (HNF)-1� and -4� rarely bind to the same genes in mice
and humans, leading to the proposal that tissue-specific tran-
scriptional regulation has undergone extensive divergence in the
two species. Such observations have major implications for the
use of mouse models to understand HNF-1�– and HNF-4�–
deficient diabetes. However, the significance of studies that
assess binding without considering regulatory function is poorly
understood.

RESEARCH DESIGN AND METHODS—We compared previ-
ously reported mouse and human HNF-1� and HNF-4� binding
studies with independent binding experiments. We also inte-
grated binding studies with mouse and human loss-of-function
gene expression datasets.

RESULTS—First, we confirmed the existence of species-spe-
cific HNF-1� and -4� binding, yet observed incomplete detection
of binding in the different datasets, causing an underestimation
of binding conservation. Second, only a minor fraction of HNF-
1�– and HNF-4�–bound genes were downregulated in the ab-
sence of these regulators. This subset of functional targets did
not show evidence for evolutionary divergence of binding or
binding sequence motifs. Finally, we observed differences be-
tween conserved and species-specific binding properties. For
example, conserved binding was more frequently located near
transcriptional start sites and was more likely to involve multiple
binding events in the same gene.

CONCLUSIONS—Despite evolutionary changes in binding, es-
sential direct transcriptional functions of HNF-1� and -4� are
largely conserved between mice and humans. Diabetes 58:

1245–1253, 2009

C
hanges in gene transcription are central for
evolution (1,2). At the same time, the conserva-
tion of a large body of gene regulatory mecha-
nisms has enabled the use of genetic models

and comparative genomics to provide a wealth of insights
into the role of gene regulation in human biology and
disease (3–7).

Recent studies have challenged preconceived ideas con-
cerning the extent of conservation of gene regulation. A
systematic comparison of �4,000 orthologous genes
showed that the transcription factors hepatocyte nuclear
factor (HNF)-1�, HNF-4�, FOXA2 (forkhead box A2), and
HNF-6 frequently bind to different genes in mice and
humans, leading to the conclusion that tissue-specific
transcriptional regulation has significantly diverged across
these two species (8). An analogous striking divergence of
regulator binding sites has been observed across related
yeast species (9). Such results have major implications for
human disease. For example, of all mouse genes bound by
HNF-1�, a regulator encoded by the most frequently
mutated gene in human monogenic diabetes (MODY3)
(10), only 20% showed binding to human orthologs (8).
This finding questions the value of mouse models of
human MODY3 (maturity-onset diabetes of the young 3).
By extension, this notion affects other diseases caused by
defects in genes encoding for transcriptional regulators,
including several susceptibility variants recently impli-
cated in type 2 diabetes (11–13).

The significance of such observations, however, is un-
certain, because many genomic binding events could be
functionally dispensable. Only essential functions of regu-
lators are expected to be under strong evolutionary con-
straints. Essential regulatory functions are also the most
relevant to the phenotypic consequences of human dis-
ease. We have now assessed the conservation of HNF-1�
and -4� binding in genes where we could document that
these regulators are required for transcription. In contrast
to the previous global comparative study (8), our results
reveal a high conservation of the essential functions of
HNF-1� and -4� in mice and humans.

RESEARCH DESIGN AND METHODS

Gene expression analysis. Mouse gene expression datasets from Hnf1a-
and Hnf4�-deficient liver are available in ArrayExpress (accession numbers:
E-MEXP-1733 and E-MEXP-1709, respectively). A more comprehensive anal-
ysis of the Hnf1a-deficient expression datasets is reported elsewhere (14).
Briefly, Affymetrix Mouse Genome 430 2.0 arrays were used for the compar-
ison of RNA from liver from C57BL6/J Hnf1a�/� and wild-type 4-week-old
male mice (14), or from liver-specific Hnf4� deletion (albumin Cre�/� / Hnf4

fl/fl) and wild-type controls. Hnf1a�/� and albumin Cre�/� / Hnf4 fl/fl mouse
models have been previously described (15,16). Affymetrix expression data
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gacions Biomèdiques August Pi i Sunyer, and Endocrinology, Hospital
Clínic de Barcelona, Centro de Investigación Biomédica en Red de Diabetes
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were normalized with RMA, and the LIMMA package was used for statistical
analysis to identify downregulated genes in triplicate hybridizations using an
adjusted P value �0.05. For genes with multiple probes, we selected a single
most informative probe showing the lowest P value in mutant/wild-type
comparisons. For human expression studies, we used the results of a
published microarray analysis of human hepatocellular adenomas with bial-
lelic HNF-1� mutations, and we used the entire set of genes that were
downregulated relative to normal tissue as listed in the supplementary data of
the report by Rebouissou et al. (17). To relate expression ratios of bound
genes versus all genes, we reprocessed the published human hepatocellular
adenoma and control tissue HG-U133A Affymetrix chip dataset (GEO
GSE7473) with RMA using identical conditions as for the mouse chip
datasets.
Genomic binding analysis. We used the genomic binding datasets in human
hepatocytes and mouse liver genes reported by Odom et al. (8). Unless
otherwise stated, we used the default (P � 0.01) criteria based on the JBD
(joint binding deconvolution) algorithm that was reported in that study to
select bound genes (8). Analogous results were obtained with the alternate
binding criteria that were presented in the same study (8).

To assess independent binding datasets, we used mouse hepatocyte
HNF-1� and HNF-4� ChIP/chip experiments obtained with �-Cell Biology
Consortium (BCBC) promoter arrays. A more detailed description of BCBC
HNF-1� binding studies is described elsewhere (14). Data for BCBC HNF-1�
and -4� binding studies are available in Arrayexpress (accession numbers
E-MEXP-1714 and E-MEXP-1730, respectively). Briefly, freshly isolated mouse
hepatocytes were used for chromatin immunoprecipitation as described
(18,19). After reverse cross-linking, immunoprecipitated DNA was amplified
with ligation-mediated PCR and used for hybridization of BCBC promoter
microarrays. For HNF-1�, we used version BCBC 5A0, and for HNF-4� we
used version BCBC 5A1. Six microarrays were used for each antibody with
dye swapping. Normalized data were analyzed with the LIMMA package.
Unless otherwise stated we used a stringent threshold to define genes as
bound (P � 0.001 and Log2 immunoprecipitate/input binding ratios/M �0.8),
although alternate ratios ranging from M �0.3 to 1 did not alter the
conclusions. Control experiments with IgG showed negligible binding with
these criteria. We used antibodies SC-6556 for HNF-4� and SC-8986 for HNF-1
(Santa Cruz Biotechnology). The HNF-1 antibody cross-reacts with HNF-1�.
However, in our experience the low abundance of HNF-1� in wild-type
hepatocytes is insufficient to elicit detectable binding when using an HNF-1�–
specific antibody that shows robust enrichment in experimental conditions in
which HNF-1� is induced (14). Thus, HNF-1� cross-reactivity in our studies
was negligible.
Integration of binding and expression datasets. Of the 4,022 genes
reported by Odom et al. (8), we matched 3,665 genes to probes represented in
the Affymetrix Mouse Genome 430 2.0 arrays based on either identical Refseq
or mouse gene symbols linked to the Refseqs; in the latter instance, we
verified genomic positions of Refseq and gene symbols to eliminate errors
caused by equivocal nomenclature. An analogous approach was used for
matching other gene sets described in this analysis. A compilation of the gene
expression and binding findings can be found in an online appendix, available
at http://diabetes.diabetesjournals.org/cgi/content/full/db08-0812/DC1.

In silico promoter analysis. We extracted 5� flanking sequences (�500 to
�1 bp) from mouse (mm8 assembly) and human (hg17 assembly) genomes
based on annotations from Ensembl release 49. After the recovery of
sequences in one species, we extracted the aligned sequence in the other
species based on the multiple genome alignments from the University of
California at Santa Cruz using the Galaxy platform (20). We considered the
latter sequence as the putative orthologous promoter if at least 50% of the
nucleotides aligned. We then scanned sequences with the HNF-1� (M00132)
matrices from Transfac Professional using Patser (21). We considered hits
above a threshold of 90% of the matrix score range, which corresponds to
high-affinity HNF-1� binding sequences (22).
Statistical analysis. Statistical significance was calculated with two-sided
Fisher’s exact test, or by testing the hypergeometric distribution as stated. To
assess whether HNF-1� binding enrichment among downregulated genes
differed in mouse versus human samples, we used binary logistic regression
implemented with SPSS 14.0.2.

Microarray data presented in this article have been deposited in Array-
Express (http://www.ebi.ac.uk) under the accession numbers E-MEXP-1733,
E-MEXP-1709, E-MEXP-1714, and E-MEXP-1730.

RESULTS

Conservation of essential functions of HNF-1�. We
first integrated the mouse and human liver HNF-1� binding
results reported in a systematic comparison of �4,000
orthologous genes (8) with gene expression studies in
HNF-1�–deficient mouse and human tissues. We studied
expression profiles from Hnf1a�/� versus wild-type
mouse liver and from a previously reported study compar-
ing gene expression in human hepatocellular adenomas
carrying biallelic mutations of HNF1A versus control
tissue (17). The results showed that most genes bound by
HNF-1� in mouse or human chromatin did not exhibit
changes in gene expression in HNF-1�–deficient mouse
and human tissues (Fig. 1).

The reasons for the lack of perturbation of many HNF-
1�–bound genes in cells lacking HNF-1� are currently
unknown (see DISCUSSION). However, for a subset of HNF-
1�–bound genes, we could clearly ascertain that HNF-1�
plays an essential regulatory role in liver because they
showed significant downregulation in the loss-of-function
models. HNF-1� binding frequency was significantly en-
riched 2.7-fold in genes that were downregulated in
Hnf1a�/� liver (P � 0.0001) and 4.9-fold in human genes
downregulated in HNF1A-deficient tumors (P � 0.0001).
This enrichment reflects the essential transactivating func-
tion of HNF-1� in a subset of its direct targets.

FIG. 1. HNF-1� and -4� are only essential for transcription in a subset of the genes to which they bind. Dark lines depict the distribution of liver
gene expression ratios for all genes in the experimental models described in the title of the horizontal axis. Colored lines depict expression ratios
for the subset of genes that are bound in liver by either HNF-1� or -4� using different platforms indicated in the upper legends. KO, knockout;
WT, wild type. (A high-quality digital representation of this figure is available in the online issue.)
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We next assessed HNF-1� binding conservation specif-
ically in the subset of genes where the mouse and human
expression studies could document that HNF-1� function
is essential (Fig. 2A and E). Of note, throughout this
analysis we focused on binding conservation in gene
orthologs irrespective of whether this occurred in pre-
cisely aligned sequences because it is thought that regula-
tory functions can be conserved through compensatory
sequence changes (8,23,24). Only 17% of HNF-1�–bound
mouse genes that were not downregulated in Hnf1a�/�

mice showed conserved binding in human orthologs, as
opposed to 46% of downregulated targets (P � 0.0001)
(Fig. 2B). We estimated that binding was conserved in as
many as 65% of the genes that accounted for the increase
in binding frequency among HNF-1�–dependent genes.
Similarly, HNF-1� binding was conserved in only 15% of
cases among genes that were not downregulated in
HNF1A-deficient tumors, in contrast to 43% conservation
of downregulated targets (P � 0.0001) (Fig. 2F). Thus,
HNF-1� binding exhibits much greater human-mouse con-
servation in genes in which it is essential for transcription.
Limitations of binding studies to quantify binding
conservation. Even among target genes where HNF-1�
was functionally essential, binding was not conserved in

all cases (Fig. 2B and F). However, the extent to which this
reflects true species-specific regulation or the effect of
experimental variables is uncertain. Significant false-neg-
ative and false-positive binding results in both species can
theoretically lead to a marked overestimation of binding
divergence. This notion is important because even in
optimized chromatin immunoprecipitation microarray
(ChIP-chip) protocols, the reported false-negative rate is
�20% (25,26).

To provide an independent test of HNF-1� binding
accuracy, we compared data published by Odom et al. (8),
based on Agilent 10-Kb tiles surrounding transcription
start sites, with another mouse liver HNF-1� binding
experiment based on BCBC promoter arrays containing 1-
to 2-Kb PCR product tiles. Despite major platform and
analytical differences, there was a considerable overlap of
targets (Fig. 3A). This analysis also confirmed species-
specific binding because HNF-1� binding in mouse BCBC
arrays showed a higher overlap with mouse-specific rather
than human-specific binding events (Fig. 3A and B).

We furthermore observed that binding in mouse BCBC
arrays overlapped disproportionately with the conserved
subset of mouse Agilent targets, in contrast to mouse-
specific Agilent targets (Fig. 3B). This could result from

FIG. 2. Conservation of HNF-1� function. A and E: HNF-1� binding in mice (M) and humans (H) in the study by Odom et al. (8). The larger Venn
diagrams represent binding in all studied genes; smaller diagrams below represent the subset of genes that were downregulated in Hnf1a�/� liver
(A) or HNF1A-deficient hepatocellular adenomas (E) (17). Only genes represented in both binding and expression arrays were analyzed. B and
F: Binding conservation was 3-fold higher in genes that were significantly downregulated in Hnf1a�/� liver (B) and 2.7-fold higher in genes
downregulated in HNF1A-deficient adenomas (F) (17), in comparison with nonregulated genes. C and G: HNF-1� binding was enriched in mouse
genes that were downregulated in Hnf1a�/� liver (C) and human genes downregulated in HNF1A-deficient tumors (G). In contrast to the
expectation if HNF-1� function is divergent, HNF-1� binding enrichment was comparable in the orthologs of such HNF-1�–dependent genes. D

and H: Genes downregulated in Hnf1a�/� mice or HNF1A-deficient adenomas showed a marked enrichment of conserved binding events (mice and
humans). Species-specific binding (mice only, human only) was also moderately enriched, but this was not selective for the species where gene
regulation is experimentally verified. *P < 0.01, **P < 0.001, ***P < 0.0001, Fisher’s exact test. NS, nonsignificant effect of species on binding
enrichment in downregulated genes using logistic regression analysis.
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false-positive mouse-specific events and/or, as discussed
below, if species-specific events have distinct properties
that are captured less efficiently by the BCBC platform.

Importantly, several HNF-1� targets classified as hu-
man-specific in the report by Odom et al. (8) were strongly
bound in mouse BCBC arrays (Fig. 3A), and up to 26–37%
were bound in mouse chromatin at less stringent thresh-
olds (Fig. 3C and D). This demonstrates false-negative
binding in ChIP-chip studies and indicates that overlaps of
lists of bound genes from different species do not provide
an unequivocal measure of HNF-1� binding conservation.

Other factors can overestimate binding divergence and
were not tested, yet they remain plausible. This includes
the extremely different experimental conditions inherent
to the mouse-human binding comparison, and the likeli-

hood that in at least some instances, regulator binding
selectively relocates in one species to a region that is not
interrogated in array platforms. Thus, documented and
presumed factors can collectively lead to an overestima-
tion of the interspecific binding divergence.
HNF-1� binding enrichment is conserved in orthologs
of HNF-1�–dependent genes. To overcome the nonex-
haustive nature of binding conservation estimates, we
undertook an alternate analytical approach that does not
make assumptions about the completeness of binding
detection. The increased frequency with which HNF-1�
binds to genes that are downregulated in HNF-1� defi-
ciency, compared with nonregulated genes, provides a
measure of the direct essential function of HNF-1� within
those genes. It follows that if the function of HNF-1� is
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conserved in only �20% of its target genes, as implied in
the study by Odom et al. (8), then the enrichment of
HNF-1� binding events that is observed in the HNF-1�–
dependent gene set from one species should be diluted in
the gene set that is composed of orthologous genes from
the other species. The results failed to show differences in
binding enrichment between genes that are shown to be
downregulated in HNF-1� deficiency and their orthologs
(Fig. 2C and G). Thus, human orthologs of the gene set that
was downregulated in Hnf1a�/� mice had a similar in-
crease in HNF-1� binding frequency as the regulated
mouse gene set, and the same occurred for mouse or-
thologs of genes that are HNF-1�–dependent in human
tissues (Fig. 2C and G).

Further inspection of regulated genes revealed a re-
markable enrichment of conserved binding events (Fig. 2D
and H). A more moderate enrichment of species-specific
binding was also observed (Fig. 2D and H). However, this
was not restricted to the species where regulation was
observed (as would be expected if it reflected species-
specific regulation). For example, human-specific binding
was paradoxically enriched in genes that were HNF-1�–
dependent in mouse liver (Fig. 2D). This is consistent with
the incomplete detection of binding outlined above (Fig.
2D and H). Taken together, these findings fail to detect
evidence for major human-mouse divergence of function-
ally essential HNF-1� binding events.
HNF1 motif enrichment is conserved in orthologs of
HNF-1�–dependent genes. The analysis of HNF-1�
binding was focused on a large but incomplete subset of
genes. To provide an independent confirmation of the
binding studies, we analyzed computational high-affinity
HNF-1� binding sequence motifs (22). We did not assess
the degree of conservation of precisely aligned motifs
because its significance may be obscured by the high
degree of interspecies binding site turnover (factor A
binds to gene X in both species, but in different regions)
(8,23,24). We therefore studied the conservation of HNF1
motif enrichment among HNF-1�–dependent genes. HNF1
motifs were enriched 11.5- and 6-fold in the immediate 5�
flanking regions of experimentally defined mouse and
human HNF-1�–dependent genes, respectively (Fig. 4).
We thus used the enrichment of HNF1 motifs in regulated
genes as a surrogate quantitative measure of direct
HNF-1� functional effects within such genes. In analogy to
the binding analysis, we asked whether the enrichment of
HNF1 motifs was absent or markedly decreased in pro-
moter regions of orthologs of HNF-1�–dependent genes,
as predicted from the hypothesis that HNF-1� function has
undergone a major evolutionary divergence. The results
showed that high-affinity HNF-1� binding motifs were
highly enriched in human orthologs of genes that showed
HNF-1� dependence in mice (albeit at a marginally lower
rate than the mouse orthologs) and in mouse orthologs of
genes that showed HNF-1� dependence in human tumors
(Fig. 4). This finding further supports that a substantial
fraction of functional HNF-1� targets is conserved in mice
and humans.
HNF-4� binding conservation among HNF-4�–depen-
dent genes. We also studied HNF-4�, another regulator
involved in human diabetes (27). In analogy to HNF-1�,
most HNF-4�–bound genes were not perturbed in Hnf4a-
deficient liver (Fig. 1). Among the subset of genes that did
show decreased expression in Hnf4a-deficient liver, a
similar number was bound by HNF-4� in mice and hu-
mans, in contrast to the expectation if these genes were

selectively regulated in mice (Fig. 5A). The overall conser-
vation of mouse HNF-4� binding was in reality quite high:
even among nonregulated mouse genes there was 58%
conservation, and this increased to 66% in Hnf4a–depen-
dent genes (Fig. 5B). The true extent of conservation is
likely to be higher because several genes classified as
human-specific targets were also bound in mice in an
independent experiment (Fig. 5C). This analysis therefore
also failed to support an extensive divergence of HNF-4�
function across mice and humans.
Distinct properties of conserved and nonconserved
binding. Because conserved and species-specific binding
showed different functional properties, we predicted that
they should also differ in other properties. We studied
binding multiplicity and observed that conserved HNF-1�
and -4� targets were more frequently bound at multiple
sites on the same gene, as compared with genes that were
bound in a species-specific manner (Fig. 6A). Interestingly,

FIG. 4. Conservation of high-affinity HNF1 motifs in HNF-1�–depen-
dent genes. A and C: We identified HNF1 motifs with scores >0.9 in the
immediate (500 bp) 5� flanking regions of all mouse and human genes.
Motifs were strongly enriched in mouse and human genes that are
experimentally determined to be HNF-1� dependent in Hnf1a�/� liver
(A) and HNF1A-deficient tumors (C) (17). In contrast to the expecta-
tion if HNF-1� function is divergent, high-affinity HNF1 motifs were
also enriched in the orthologs of such HNF-1�–dependent genes. B and
D: Genes downregulated in Hnf1a�/� mice or HNF1A-deficient adeno-
mas showed a marked enrichment of conserved HNF1 motifs (mouse
and human). Species-specific binding (mouse only, human only) was
also moderately enriched, but this was not selective for the species
where gene regulation is experimentally verified. The effect of species
on HNF1 motif enrichment in downregulated genes was studied with
logistic regression analysis. ***P < 0.0001, Fisher’s exact test. H,
human; M, mouse.

S.F. BOJ AND ASSOCIATES

DIABETES, VOL. 58, MAY 2009 1249



HNF-4� dependence strongly correlated with HNF-4�
binding multiplicity, suggesting that this may represent a
critical attribute of functional HNF-4� binding (Fig. 6B).
Conserved binding was also more likely to be located in
proximal promoter regions than species-specific binding
(Fig. 6C). Because BCBC arrays are built with large
proximal PCR fragments rather than oligonucleotide tiles,
these two properties could theoretically partly explain the
abovementioned differential detection of conserved events
by the two platforms. The data presented by Odom et al.
(8) also indicate that genes with conserved HNF-1� bind-
ing were twice as likely to contain a canonical HNF1
sequence motif. Collectively, these findings showed that
conserved and nonconserved binding events may differ
not only in functionality, but also in location, multiplicity,
and binding site sequence.

DISCUSSION

The results presented here are consistent with a recent
report indicating that HNF-1� and -4� binding has under-
gone evolutionary divergence across mice and humans (8),
yet they qualify this information in two critically important
ways. First, the data suggest that current large-scale
binding assays overestimate the evolutionary divergence
of transcription factor binding. Second, and more impor-
tantly, we show that binding to gene targets where HNF-1�
and -4� exert essential functions is considerably con-
served between mice and humans.

Our analysis rests on the observation that only a small
portion of HNF-1� and -4� binding events are affected in
loss-of-function studies. This result is striking, but entirely
consistent with several recent studies that compared gene

expression models with binding patterns for Oct4, Nanog,
glucocorticoid receptor, and p63 (28–30). This is central to
our analysis because high evolutionary conservation is not
expected among binding events that are not functionally
essential. Consistent with this prediction, we observed
that binding conservation was markedly dependent on the
gene expression phenotype in loss-of-function studies.

There are several likely causes for the lack of functional
dependence on HNF-1� and -4� for numerous direct
targets of these factors. First, HNF-4� or -1� are expected
to be dispensable in many bound genes because of redun-
dant regulatory factors. Second, in an undetermined num-
ber of genes, binding could simply have limited functional
consequences, as recently proposed for many binding sites
of several Drosophila regulators (31). On the other hand,
some bound genes with unperturbed expression may be
dependent on HNF-1� or -4� only in specific physiological
or developmental settings. For example, functional depen-
dence of HNF-1�– or HNF-4�–bound genes is highly tissue
specific, although most bound genes show no changes in
gene expression in either liver or pancreatic islets of mice
lacking these factors (J.M.S., S.F.B., J.F., unpublished
observations). Even though some unperturbed targets in
null mutant cells are likely to be truly functionally depen-
dent on HNF-1� or -4� in other settings, the observed
differences in binding conservation between perturbed or
unperturbed genes suggests that this classification is largely
correct. In fact, we predict that binding conservation differ-
ences between gene expression classes would be larger if all
functionally significant targets were correctly classified.

Our results highlight that the comparison of two incom-
plete binding datasets from different species can lead to an

FIG. 5. Conservation of HNF-4� binding among HNF-4�–dependent genes. A: Venn diagrams depict HNF-4�–bound genes in mice (M) and humans
(H) from the study by Odom et al. (8) in all genes and in the subset that is downregulated in liver-specific Hnf4a-deficient mice. Only genes
represented in both binding and expression arrays were analyzed. Note that the overall binding frequency of HNF-4� is twofold higher in human
chromatin, and therefore binding enrichment comparisons in ortholog pairs are uninformative because even if there is 100% conservation, the
enrichment will be twofold higher in mouse genes. HNF-4� binding was nevertheless significantly enriched in mouse Hnf4�-dependent genes and
their human orthologs (3.7- and 1.8-fold, respectively). B: Fraction of HNF-4�–bound mouse genes that exhibit conserved binding in human
orthologs, according to their expression changes in Hnf4a-deficient liver. Statistical significance was calculated with Fisher’s exact test. #P <
0.05. C: Venn diagrams depicting HNF-4�–bound genes in mouse BCBC arrays versus human and mouse Agilent arrays from the study by Odom
et al. (8). We analyzed 2,495 genes with data in both platforms. Note that Agilent arrays cover 10-Kb surrounding transcription start sites,
whereas BCBC arrays cover 1- to 2-Kb 5� flanking regions, and thus complete binding overlap is not expected.
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overestimation of evolutionary divergence. One expected
cause of incomplete detection is the high false-negative
rate in ChIP-chip (25,26). In part, this is because it relies on
the en masse amplification of thousands of DNA templates
and unavoidably results in poor amplification of a subset
of sequences in each of the two species. Failure to detect
binding conservation can also result from transcription
factors binding outside of the interrogated regions in only
one species. Furthermore, extreme differences in experi-
mental conditions in the two species can differentially
affect the binding measurements. This includes differences
in age, leanness, nutritional status, recent exposure to
drug therapies, cause of death, and use of cultured cells
versus freshly isolated tissue in the mouse models and
human organ donors (8).

To circumvent the limitation that current assays do not
capture all binding events, we studied the extent to which
the increased frequency with which HNF-1� binds to
HNF-1�–regulated genes in one species is conserved in

orthologous genes. Because HNF-1� has a complex well-
characterized DNA binding sequence motif (22), we also
studied whether the enrichment of high-affinity HNF1
motifs is conserved among regulated ortholog pairs. Both
comparisons independently tested the hypothesis that
functional binding is divergent between mice and humans.
Neither approach makes assumptions about the fraction of
binding events that are detected, or the extent of turnover
of evolutionary conserved transcription factor binding sites.
For both experimental and computational sites, we observed
no evidence to support an evolutionary divergence of func-
tional HNF-1� binding between mice and humans.

Taken together, these results suggest that functionally
important binding events exhibit a much stronger evolu-
tionary conservation than anticipated from studies that
only measure the conservation of binding. Similar conclu-
sions were drawn in a recent study that related binding of
muscle regulators with the conservation of bound se-
quences in 12 Drosophila genomes (32). That study con-

FIG. 6. Distinct binding properties of species-specific versus conserved binding. A: Fraction of genes with two or more binding peaks among
mouse-specific versus conserved HNF-1� and -4� targets. B: Fraction of downregulated genes in Hnf4a-deficient mouse liver according to the
number of HNF-4� peaks in human or mouse orthologs. A similar analysis is not shown for HNF-1� because the frequency of multiple binding
events is low. The results show that HNF-4� peak multiplicity correlates with both binding conservation and regulation in Hnf4a-deficient cells.
C and D: Spatial distribution of mouse HNF-1� and -4� binding events that are either species-specific (U) or conserved (F). Circles represent the
fraction of peaks that are located within 200-bp intervals relative to the transcriptional start site (TSS). Results show that proximal binding is
more frequently conserved. *P < 0.01; **P < 0.001; ***P < 0.0001; #P < 0.05.
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cluded that binding to conserved sequences was more
likely to be biologically significant because it occurred
more frequently in the proximity of muscle genes than
binding events occurring in nonconserved sequences (32).

We expect that the degree of conservation will vary for
different regulators, depending on the nature of the cellu-
lar functions they regulate. Comparative studies using
accurate genome-wide sequencing approaches are war-
ranted to fully understand the evolutionary conservation
of different regulators, but, importantly, such studies
should not be restricted to assaying genomic occupancy.

Our findings also showed that compared with conserved
binding, species-specific binding events differed not only
in function, but also in several binding properties. This
suggests that a subset of species-specific binding events
could be fundamentally distinct from conserved, function-
ally relevant binding events. We speculate that such spe-
cies-specific binding events may be less exposed to
evolutionary pressure, but they could be instrumental in
the acquisition of new functions.

Recent data proposing that transcriptional regulation
has diverged between mice and humans questioned the
value of mouse genetic models (8). Our findings therefore
have important implications for the use of mouse models
of human monogenic diabetes and more generally for the
use of animal models and comparative genomics to under-
stand transcriptional regulation and human disease.
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