
genes
G C A T

T A C G

G C A T

Article

Glutamine Metabolism Regulators Associated with Cancer
Development and the Tumor Microenvironment: A Pan-Cancer
Multi-Omics Analysis

Jingwen Zou 1,2,† , Kunpeng Du 3,†, Shaohua Li 1,2, Lianghe Lu 1,2, Jie Mei 1,2, Wenping Lin 1,2, Min Deng 1,2,
Wei Wei 1,2 and Rongping Guo 1,2,*

����������
�������

Citation: Zou, J.; Du, K.; Li, S.; Lu, L.;

Mei, J.; Lin, W.; Deng, M.; Wei, W.;

Guo, R. Glutamine Metabolism

Regulators Associated with Cancer

Development and the Tumor

Microenvironment: A Pan-Cancer

Multi-Omics Analysis. Genes 2021, 12,

1305. https://doi.org/10.3390/

genes12091305

Academic Editors: Maciej Wnuk and

Gael Roue

Received: 24 June 2021

Accepted: 17 August 2021

Published: 25 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
zoujw@sysucc.org.cn (J.Z.); lishaoh@sysucc.org.cn (S.L.); lulh@sysucc.org.cn (L.L.);
meijie@sysucc.org.cn (J.M.); linwp@sysucc.org.cn (W.L.); dengmin@sysucc.org.cn (M.D.);
weiwei@sysucc.org.cn (W.W.)

2 State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,
Guangzhou 510060, China

3 Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University,
Guangzhou 510095, China; dukunpeng@gzhmu.edu.cn

* Correspondence: guorp@sysucc.org.cn; Tel.: +86-20-87343115; Fax: +86-20-87343585
† These authors contributed equally to this work.

Abstract: Background: In recent years, metabolic reprogramming has been identified as a hall-
mark of cancer. Accumulating evidence suggests that glutamine metabolism plays a crucial role
in oncogenesis and the tumor microenvironment. In this study, we aimed to perform a systematic
and comprehensive analysis of six key metabolic node genes involved in the dynamic regulation
of glutamine metabolism (referred to as GLNM regulators) across 33 types of cancer. Methods:
We analyzed the gene expression, epigenetic regulation, and genomic alterations of six key GLNM
regulators, including SLC1A5, SLC7A5, SLC3A2, SLC7A11, GLS, and GLS2, in pan-cancer using
several open-source platforms and databases. Additionally, we investigated the impacts of these
gene expression changes on clinical outcomes, drug sensitivity, and the tumor microenvironment.
We also attempted to investigate the upstream microRNA–mRNA molecular networks and the
downstream signaling pathways involved in order to uncover the potential molecular mechanisms
behind metabolic reprogramming. Results: We found that the expression levels of GLNM regulators
varied across cancer types and were related to several genomic and immunological characteristics.
While the immune scores were generally lower in the tumors with higher gene expression, the types
of immune cell infiltration showed significantly different correlations among cancer types, dividing
them into two clusters. Furthermore, we showed that elevated GLNM regulators expression was
associated with poor overall survival in the majority of cancer types. Lastly, the expression of GLNM
regulators was significantly associated with PD-L1 expression and drug sensitivity. Conclusions:
The elevated expression of GLNM regulators was associated with poorer cancer prognoses and a
cold tumor microenvironment, providing novel insights into cancer treatment and possibly offering
alternative options for the treatment of clinically refractory cancers.

Keywords: glutamine; metabolism; immune; PD-L1; pan-cancer; multi-omics

1. Introduction

Metabolic reprogramming has been recognized as a hallmark of cancer in recent
years [1]. The altered cell metabolism allows tumors to fulfill their increased energetic and
biosynthetic requirements. Glutamine metabolism has been shown to be involved in the
maintenance and survival of tumor cells and is associated with the control of oxidative
stress through glutathione synthesis [2]. Recent studies have shown that the activation of
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tumor-specific signaling pathways, such as the upregulation of the oncogene Myc, can reg-
ulate glutamine uptake and metabolism through glutaminolysis, providing an alternative
energy source for cancer cells [3]. Glutamine and its metabolites are involved in several key
cellular processes, including the tricarboxylic acid (TCA) cycle, redox balance, and mTOR
activation, as well as the biosynthesis of nucleotides, amino acids, fatty acids, and amino
sugars [4,5]. Increasing evidence suggests that metabolic reprogramming plays a vital
role not only in tumorigenesis and tumor progression but also in regulating the immune
microenvironment. Additionally, blocking the glutamine metabolism in tumor cells, which
results in an elevated level of amino acids in the tumor microenvironment (TME), can
enhance the antitumor effects of immune cells; therefore, an in-depth exploration of the
genetic alteration of glutamine metabolism in tumor development and immune escape
may provide an important theoretical basis for developing novel cancer treatments.

Glutamine uptake and the rate of glutaminolysis are known to be associated with tu-
mor growth [6]. Two key transporters for glutamine uptake into cells are solute carrier fam-
ily 1 member 5 (SLC1A5) and solute carrier family 7 member 5 (SLC7A5). SLC1A5 mediates
the sodium (Na+)-coupled influx of glutamine, whereas SLC7A5 maintains the efflux of
glutamine alongside the influx of leucine, an essential amino acid and effective activa-
tor of mTORC1 [7,8]. SLC7A5 requires covalent binding with the solute carrier family
3 member 2 (SLC3A2) heavy chain in order to be functionally expressed in the plasma
membrane [9]. Solute carrier family 7 member 11 (SLC7A11), also called xCT, is responsible
for the counter-transport of glutamate and cysteine. This exchange is favorable for cancer
cells because cysteine is a major component of the antioxidant glutathione, which in turn is
an antagonist of reactive oxygen species (ROS) [10–12]. Mitochondrial glutaminase (GLS)
is the primary enzyme of glutaminolysis, serving as a gatekeeper. Two isozymes of GLS
have been identified: a kidney-type enzyme (GLS) and a liver-type enzyme (GLS2) [13].
Abnormal expression patterns for the above glutamine metabolism (GLNM) regulators
have been observed in some cancers and are correlated with patient survival. To date, pre-
vious studies have focused on either a single cancer type or a single gene [8,14]. There has
been no comprehensive analysis of the genomic changes of the GLNM regulators and their
effects on the TME and patient prognosis across different cancer types.

Drug resistance remains a major clinical issue that impairs the efficacy of cancer ther-
apy. Currently, several mechanisms of drug resistance have been identified, including
changes in drug transport, DNA repair, apoptosis, autophagy, pyroptosis, and redox bal-
ance, which was mainly mediated by reduced glutathione [15]; thus, glutamine metabolism
may play an important role in drug response by maintaining redox balance. It has been
reported that the upregulation of SLC7A11 has been identified as a mechanism of cisplatin
resistance in ovarian and bladder cancer, as well as gemcitabine resistance in pancreatic
cancer [16,17]. This affords the opportunity to provide a fruitful theoretical basis for the
implementation of individualized therapy based on the gene expression profile; therefore,
comprehensive analysis of the relationships between GLNM regulators and drug sensitivity
are indispensable.

In this study, we systematically analyzed the gene expression, epigenetic regulation,
and genomic alterations of six key GLNM regulators (including SLC1A5, SLC7A5, SLC3A2,
SLC7A11, GLS, and GLS2) across 33 different cancer types. Additionally, the impacts of
these gene expression changes on clinical outcomes, drug sensitivity, and immune cell
infiltration were investigated. We also explored the upstream microRNA–mRNA molecular
networks and the possible downstream signaling pathways, which might be mediated
through these GLNM regulators.

2. Materials and Methods
2.1. Data Acquisition

All the datasets analyzed in the present study are publicly available. The RNA-
seq, single-nucleotide variation (SNV), copy number variation (CNV), methylation, and
clinical data for adrenocortical carcinoma (ACC), bladder urothelial carcinoma (BLCA),
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breast cancer (BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma
(CESC), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), lymphoid neoplasm
diffuse large b-cell lymphoma (DLBC), esophageal carcinoma (ESCA), glioblastoma multi-
forme (GBM), head and neck squamous carcinoma (HNSC), kidney chromophobe (KICH),
kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP),
acute myeloid leukemia (LAML), brain lower-grade glioma (LGG), liver hepatocellular
carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC),
mesothelioma (MESO), ovarian serous cystadenocarcinoma (OV), pancreatic adenocarci-
noma (PAAD), pheochromocytoma and paraganglioma (PCPG), prostate adenocarcinoma
(PRAD), rectum adenocarcinoma (READ), sarcoma (SARC), skin cutaneous melanoma
(SKCM), stomach adenocarcinoma (STAD), testicular germ cell tumors (TGCT), thyroid
carcinoma (THCA), thymoma (THYM), uterine corpus endometrial carcinoma (UCEC),
uterine carcinosarcoma (UCS), and uveal melanoma (UVM) were obtained from the Cancer
Genome Atlas (TCGA) data portal (https://gdc.cancer.gov/, accessed on 1 May 2021).
These datasets included 10,995 level 3 RNA-seq samples, while clinical data were available
for analysis for 11,160 samples. The Genotype-Tissue Expression (GTEx) dataset (V7.0)
consists of 11,688 samples and contains 56,202 genes representing the expression profiles of
30 different organs (53 tissues), including adipose tissue, adrenal gland, bladder, blood,
blood vessel, brain, breast, cervix uteri, colon, esophagus, fallopian tube, heart, kidney,
liver, lung, muscle, nerve, ovary, pancreas, pituitary, prostate, salivary gland, skin, small
intestine, spleen, stomach, testis, thyroid, uterus, and vagina profiles.

2.2. Genome-Wide Analysis

A genome-wide analysis of the GLNM genes was performed using the GSCALite
platform [18]. The expression profiles of the GLNM genes in selected normal GTEx tissues
were displayed in the form of a heatmap. RSEM-normalized RNA-seq data were used for
differentially expressed gene (DEG) analysis. The genes with fold change values (FC) > 2
and false discovery rates (FDR) < 0.05 were identified as DEGs. The SNV frequency and
variant types of the six GLNM genes were visualized in a heatmap and a waterfall plot.
The CNV statistics were based on processed data from GISTIC2.0 [19], while the correlation
between the CNV and mRNA expression was determined from raw data. The percentages
of heterozygous and homozygous CNVs for each cancer type were compiled into a pie
chat and the Pearson coefficient of the correlation between gene expression and the CNV
was calculated. The methylation analysis explored the differential methylation levels and
the correlation between methylation and gene expression.

2.3. Survival Analysis

RSEM-normalized expression values and the methylation levels of genes were used
to divide the cancer samples into high and low groups based on the medians. Then, an
R package, “survival”, was performed to evaluate the survival differences between the
two groups. In addition, the integrative effect of the six GLNM genes on survival was
investigated in the form of gene signatures using the Gene Expression Profiling Interactive
Analysis (GEPIA) database [20]. The Cox proportional hazards model was used to calculate
the hazards of the high-expression group [21]. The survival curves were plotted using the
Kaplan–Meier method and compared between groups using log-rank tests [22]. A p-value
less than 0.05 was considered to indicate a significant difference.

2.4. Analysis of Immune Cell Infiltration

We used immuneeconv, an R software package, to calculate the immune score, stroma
score, and microenvironment score for each of the GLNM regulators based on xCell algo-
rithms [23]. GEPIA2 was used to evaluate the association between PD-L1 and the gene
set expression level. The association between tumor-infiltrating immune cells (TIICs)
across 33 cancer types and the gene set expression level was estimated via ImmuCel-

https://gdc.cancer.gov/
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lAI [24]. The Spearman correlation test was applied to analyze the correlation between the
expression of GLNM regulators and the abundance of different immune cells.

2.5. Drug Sensitivity Analysis

The gene expression data and IC50 values for different drugs for 1018 cancer cell lines
in the GDSC database were integrated for investigation. The area under the dose–response
curve (AUC) values for the drug and gene expression profiles were downloaded to analyze
the correlation of gene expression and drug sensitivity. The Pearson correlation coefficients
of annotated drug–target pairs were used for comparisons, with the same number of
correlation pairs generated by randomly sampling the correlations.

2.6. Analysis of Molecular Mechanisms

The upstream microRNA–mRNA molecular networks and the downstream pathways
activity were explored. The miRNA transcript expression data were derived from TCGA,
including 9105 samples and 33 cancer types. The microRNA regulation data were obtained
from databases, including experimental validation (papers, TarBase, miRTarBase, and
mir2disease), as well as TargetScan and miRNADA prediction. The downstream signaling
pathways activity were analyzed based on reverse-phase protein array (RPPA) data from
the TCPA database. The pathway activity score (PAS) was the sum of the relative protein
levels of all positive regulatory components minus the relative protein levels of the negative
regulatory components in a particular pathway [25]. The cancer samples were stratified
into two groups based on the median gene expression, and Student’s t-test was used to
determine the difference in the PAS between the two groups. When a gene in the high
expression group has a higher PAS than the low expression group, the gene may have an
activating effect on a certain pathway or may otherwise have an inhibitory effect on the
pathway [26].

2.7. Statistical Analysis

Student’s t-test was performed to compare the GLNM gene expressions differences,
as well as the methylation differences between tumors and corresponding normal tissue.
The percentage of the SNV in the coding region of each gene was calculated with the
following formula: [number of mutated sample]/[number of cancer sample]. The log-rank
test was used to compare the survival curves. The correlations were evaluated by Pearson
or Spearman tests. A p-value less than 0.05 was considered statistically significant.

3. Results
3.1. Aberrant Expression of GLNM Regulators in a Variety of Cancers

Based on the published data, a total of six key GLNM regulators, including four
transporters (SLC1A5, SLC7A5, SLC3A2, and SLC7A11) and two gatekeeper enzymes (GLS
and GLS2), were employed in the current study (Figure 1). The expression profiles of
normal tissues were assessed based on the GTEx dataset, as shown in Figure 2A. SLC3A2
and SLC1A5 were highly expressed in a variety of tissues, while SLC7A11 displayed lower
expression. The expression levels of SLC7A5 in the testis, GLS2 in the liver, and GLS in
blood vessel were relatively high. The differential expression analysis was based on paired
samples for each cancer type. Across the 33 cancer types, only THCA, KIRP, BLCA, LIHC,
HNSC, BRCA, LUAD, PRAD, ESCA, KICH, LUSC, KIRC, STAD, and COAD had paired
samples (Figure 2B). Upregulated expression of SLC7A11 (10/14), SLC1A5 (7/14), SLC7A5
(6/14), and SLC3A2 (5/14) was observed in most of the tumor tissues; however, GLS in
LUSC, KIRC, and KICH and GLS2 in KIRC and LIHC, were significantly downregulated.
Next, a gene set variation analysis (GSVA) was performed to calculate a GSVA score
to represent the integrated level of the expression of the gene set, which was positively
correlated with the expression of the gene set; therefore, if the GSVA score in the tumor
group was higher than that in adjacent group, this indicated that the overall expression
of the gene set in the tumor group was higher. In the present study, we observed that
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the GSVA scores were significantly higher in BRCA, COAD, ESCA, HNSC, LIHC, LUAD,
LUSC, STAD, and THCA than in the adjacent normal tissues (Figure 2C). This revealed
that the aberrant expression of the GLNM regulators might be involved in tumorigenesis
in multiple cancer types.

3.2. Genetic Alterations of GLNM Regulators in Various Cancers

To identify the genetic alternations of the GLNM regulators, we assessed the SNV
frequency and variant types across 33 types of cancer. The cancer types ranked from high
to low by SNV frequency were UCEC (130%), SKCM (61%), COAD (49%), STAD (44%),
BLCA (24%), LUAD (24%), LUSC (18%), HNSC (15%), CESC (14%), GBM (12%), KIRP
(11%), and BRCA (10%). The SNV frequency was less than 10% in the remaining 15 cancer
types. There were no mutations of six GLNM regulators in PCPG and UCS (Figure 3A).
The genes ranked from high to low by SNV frequency were SLC3A2 (27%), SLC7A11 (23%),
GLS (20%), SLC7A5 (18%), GLS2 (17%), and SLC1A5 (17%) (Figure 3B). The mutation types
included missense mutation, in-frame deletion, nonsense mutation, splice site, frame-shift
deletion, frame-shift insertion, multi-hits, and missense mutation, which was the most
abundant type. In general, the mutation frequencies of SLC3A2 (27%) and SLC7A11 (23%)
were the highest and the main mutation type observed was the missense mutation.
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We then explored the proportions of the different CNV types of the GLNM regulators,
as well as the correlation between the CNV and the mRNA expression. The pie chart shows
that the main variation types were heterozygous amplification and heterozygous deletion
(Figure 3C). Heterozygous amplifications with percentages >25% were found for SLC7A11
in ACC and KICH; SLC7A5 in ACC, KIRP, KICH, and READ; SLC3A2 in KICH, ESCA, UCS,
and OV; SLC1A5 in ACC, KICH, CESC, GBM, BLCA, LUSC, and UCS; GLS in READ, ESCA,
LUAD, LUSC, UCS, OV, and TGCT; and GLS2 in ACC, KIRP, KICH, LUAD, LUSC, UCS,
OV, and TGCT. Heterozygous deletions with percentages >25% were found for SLC7A11
in COAD, READ, HNSC, ESCA, STAD, CESC, CHOL, BLCA, MESO, LUSC, UCS, LIHC,
OV, and TGCT; SLC7A5 in ESCA, LUAD, BLCA, LUSC, UCS, PRAD, SKCM, LIHC, BRCA,
OV, SARC, and TGCT; SLC3A2 in UCS, SKCM and TGCT, SLC1A5 in LUAD, LGG, OV,
SARC, and TGCT; and GLS in KICH, BLCA, and SARC. The correlation analysis indicated
that the mRNA expression of these regulators was significantly positively correlated with
the CNV in the majority of cancer types (p < 0.05, Figure 3D). These results suggested
that heterozygous amplification and heterozygous deletion were common among these
regulators, mediating their abnormal expression and possibly playing an essential role in
cancer development.

3.3. Epigenetic Alteration of GLNM Regulators in Various Cancers

Differential methylation analysis showed that the methylation levels were significantly
lower than those of normal tissues for the following: SLC7A11 in LUSC, BLCA, UCEC,
LUAD, ESCA, HNSC, COAD, PRAD, and LIHC; SLC1A5 in LUSC, UCEC, LUAD, THCA,
BRCA, KIRC, and LIHC; GLS in BLCA, UCEC, COAD, and KIRP; SLC7A5 in LUSC, ESCA,
and HNSC; SLC3A2 in COAD; and GLS2 in LUSC, BLCA, and LUAD; however, the
methylation levels were significantly higher in tumor tissues compared to normal tissues
for GLS in LUAD and LIHC; SLC7A5 in PRAD and KIRP; SLC3A2 in LUSC and KIRP;
and GLS2 in ESCA, PRAD, KIRC, and LIHC (Figure 4A). The analysis of the correlation
between methylation and mRNA expression indicated that the methylation of the GLNM
regulators was significantly negatively correlated with their expression, except for GLS in
BLCA and for SLC7A5 in THYM and UCEC (Figure 4B). The overall survival rates in the
hypermethylation and the hypomethylation groups showed that the hypermethylation of
SLC1A5, SLC3A2, and SLC7A11 was a low-risk factor for survival in most of the cancer types;
however, hypermethylation was identified as a high-risk factor for survival for SLC7A5 in
LGG, GLS in KIRC, and GLS2 in LAML and PCPG (Figure 4C,D). These results indicated
that the abnormal expression of the GLNM regulators could be regulated by aberrant DNA
methylation, which could ultimately influence the prognosis of cancer patients.

3.4. Significant Correlation of GLNM Regulators with Survival

The survival analysis showed that patients with high expression levels of SLC7A5,
SLC7A11, GLS, SLC1A5, and SLC3A2 had significantly poorer prognoses for most of the
cancer types, while those with high expression of GLS2 exhibited significantly better
prognoses for KIRC, CESC, LUAD, KICH, LGG, and MESO (Figure 5A). To further assess
the integrated effects of the GLNM regulators on survival, we performed a survival analysis
through the GEPIA2 platform based on a six-gene signature (the GLNMR signature).
The results showed that patients in the low-GLNMR signature group had a better overall
survival rate than those in the high-GLNMR group in terms of ACC, HNSC, KICH, KIRC,
LGG, LIHC, MESO, and SARC (all p < 0.05, Figure 5B–I); however, there were no significant
differences between the two groups in terms of CESC, ESCA, GBM, KIRP, LUAD, THYM,
and UCEC (Figure S1). These results demonstrate that the dysregulated expression patterns
of the GLNM regulators were closely associated with the prognoses of patients with ACC,
HNSC, KICH, KIRC, LGG, LIHC, MESO, and SARC.
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Figure 4. Alterations of glutamine metabolism (GLNM) regulators in terms of methylation in relation
to gene expression and overall survival (OS): (A) Differential methylation of GLNM regulators
between 14 paired normal and tumor tissues; (B) Correlation between mRNA expression and methy-
lation. (C) Effects of hypermethylation of GLNM regulators on survival risk. Blue dots represent
low risk and red dots represent high risk. The sizes of the dots represent significance. (D,E) KM
plots showing the differences in overall survival between patients in low and high hypermethylation
groups for SLC1A5 in LGG (D) and GLS in KIRC (E).

3.5. Association of Immune Cell Infiltration and PD-L1 with GLNM Regulators

To explore the involvement of glutamine metabolism in TME, we assessed the corre-
lation of immune cell infiltration and PD-L1 with the GLNM regulators. We found that
the immune score, stroma score, and microenvironment score were significantly related
to the expression of the GLNM regulators (Figure 6A). There were significantly negative
relationships between the immune scores and the GLNM regulators for ESCA, HNSC,
KIRP, LAML, OV, READ, SKCM, STAD, TGCT, and UCEC. Next, we further assessed the
correlations between the infiltration of 24 immune cells and gene set expression scores
(GSVA scores). Based on the correlation patterns between the immune cell infiltrations
and the GSVA scores of GLNM regulators, we observed two clusters of cancer types
(Figure 6B). These two clusters displayed distinct patterns of immune cell infiltration.
Significantly positive correlations were found between the expression of GLNM regulators
and the infiltration of immunosuppressive cells (including nTreg, iTreg, exhausted, DC and
macrophage cells) in THCA, PCPG, LIHC, GBM, SARC, KICH, PRAD, BRCA, MESO, and
UVM. Significantly negative associations were found between the expression of GLNM
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regulators and the infiltration of the following immune effector cells: NK, CD8+ T, Tfh
and CD4+ T cells in TGCT, CESC, LUAD, LUSC, SKCM, ESCA, STAD, COAD, PAAD, and
HNSC. We then explored the relationship between the expression level of PD-L1 and the
GLNM regulators. We observed that the expression of PD-L1 had significantly positive
associations with the expression of GLNM regulators in 23 types of cancers, including ACC,
BLCA, BRCA, COAD, DLBC, ESCA, GBM, KICH, KIRC, KIRP, LAML, LGG, LIHC, LUSC,
MESO, OV, PAAD, PCPG, PRAD, SARC, THCA, UCEC, and UVM (Figure 7); however,
there were no significant associations between PD-L1 expression and the expression of
GLNM regulators in the remaining ten cancer types (Figure S2). In general, we demon-
strated that increased expression of GLNM regulators was associated with a cold tumor
immune microenvironment in almost all cancer types and upregulated PD-L1 expression
in ACC, KICH, KIRC, LGG, LIHC, MESO, and SARC, which implied a positive association
with immunotherapeutic responsiveness.
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Figure 6. Associations between glutamine metabolism (GLNM) regulator expression and the tumor microenviron-
ment: (A) heatmap displaying the correlations between GLNM regulator expression and immune scores, stroma scores,
and microenvironment scores; (B) the relationship between GLNM regulators expression and immune cell infiltration.
Blue represents negative correlations and red represents positive correlations. Note: * p < 0.05, ** p < 0.01, *** p < 0.001,
# FDR < 0.05.
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Figure 7. Glutamine metabolism (GLNM) regulator expression is significantly positive correlated with PD-L1 expression in
ACC, BLCA, BRCA, COAD, DLBC, ESCA, GBM, KICH, KIRC, KIRP, LAML, LGG, LIHC, LUSC, MESO, OV, PAAD, PCPG,
PRAD, SARC, THCA, UCEC, and UVM (all p < 0.05).

3.6. Effects of Aberrant GLNM Regulator Expression on Drug Sensitivity

To elucidate the influence of the GLNM regulators on the effects of drug treatment,
we used the GDSC data to investigate the relationship between gene expression and
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drug sensitivity. We found that GLS2 expression was positively correlated with resistance
to CHIR-99021, piperlongumine, A-770041, AZD6482, AZD7762, BEZ235, bortezomib,
CGP-60474, dasatinib, HG-6-64-1, MG-132, midostaurin, SB216763, TGX221, temsirolimus,
WH-4-023, XMD8-85, and Z-LLNle-CHO. In contrast, GLS expression was negatively
associated with the resistance to the drugs stated above. The expression of SLC7A11,
SLC3A2, and SLC1A5 showed a significantly positive correlation with drug resistance
(Figure 8). These results indicated that changes in the expression of GLNM regulators
may be an effective indicator for predicting drug responses and could serve as a potential
treatment target.
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3.7. Underlying Molecular Mechanism of GLNM Regulator Alteration

The miRNA-to-gene network analysis showed that all six of the GLNM regulators
were regulated by more than one miRNA. SLC3A2 is regulated by only two miRNAs, while
GLS is regulated by 27 miRNAs. In addition, the same miRNA could regulate multiple
genes, such as hsa-miR-7-5p, which regulated SLC3A2, SLC7A5, and GLS (Figure 9A).
This indicated that a complex miRNA regulatory network finely regulated the expression
of the target GLNM regulators and was involved in tumor development and progression.
The pathway analysis showed that the GLNM regulators were involved in TSC/mTOR, the
cell cycle, PI3K/AKT, the DNA damage response, EMT, RTK, RAS/MAPK, hormone ER,
hormone AR, and apoptosis pathways. The percentage of cancers in which a GLNM regu-
lator had an effect on a certain pathway showed that the transporters, including SLC7A5,
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SLC7A11, SLC3A2, and SLC1A5, were involved in the activation of apoptosis and the cell cy-
cle in most cancer types, while GLS2 was mainly involved in the activation of hormone AR
and GLS was mainly involved in the activation of EMT (Figure 9B). These data suggested
that the GLNM regulators might play vital roles in regulating cancer-related pathways.
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4. Discussion

Proper expression of the GLNM regulators is essential for maintaining the balance
between glutamine metabolism and cell survival. In the present study, we systemically
investigated the relationships between the expression of GLNM regulators and genomic
alterations, TME characteristics, prognosis, drug sensitivity, and the underlying molec-
ular mechanisms. Our study demonstrated that in most cancer types, SLC1A5, SLC7A5,
SLC7A11, and SLC3A2 were highly expressed and indicative of poorer survival outcomes,
while the effects of changes in the expression of GLS2 and GLS depended on the type of
cancer under consideration. High GLS2 expression was associated with a better prognosis,
while high GLS expression was associated with a poorer prognosis. In previous studies, the
glutamine transporters SLC1A5, SLC7A5, SLC7A11, and SLC3A2 were found to be highly
expressed in a variety of cancers [27–30]. These transporters mediate glutamine transport,
playing a vital role in tumor cell metabolism, proliferation, and cancer prognosis. GLS and
GLS2 appeared to exhibit different expression patterns and functions in different types of
tumors. In addition, the two glutaminases exhibited diverse roles in tumorigenesis and
were shown to suppress or promote tumor development, depending on the specific tumor
type. GLS2 expression was scarce in hepatocellular carcinomas and glioblastomas, which
showed high levels of GLS [31]. Based on cell line analysis, it was found that the expression
of GLS2 was inversely correlated with GLS in 52% of the 33 cancer types. Moreover, it
has been reported that GLS is frequently upregulated in most cancers, which is somewhat
different from our results [31,32]. In the present study, GLS2 expression and overall sur-
vival were positively correlated in most of cancers, with GLS2 presenting as a suppressor
gene. The normal tissue samples in the TCGA dataset were taken from tissues near tumors
and may be similar to, but not representative of, true normal tissue. The comparison of
tumor tissues with relatively distant normal tissues might have allowed for a more accurate
evaluation of differentially expressed genes. This issue may have been responsible for some
of the contradictions between the identified upregulation of GLNM regulators in previous
studies and our own observation of no significant upregulation in certain cancer types.
In general, these regulators could serve as good predictors of the prognosis of different
cancer types.

Our results reveal that complex genomic and epigenomic modulations of the GLNM
regulators affected their expression, resulting in the metabolic reprogramming of cancer.
A previous study had demonstrated that the epigenetic silencing of GLS2 by promoter
hypermethylation was common in human liver cancer, in accordance with the results
observed in our study [33]. Additionally, the upregulation of GLNM regulators through
miRNAs appears to be another important mechanism. For example, miR-122 has been re-
ported to modulate the expression of SLC1A5 in hepatocellular carcinoma [34]. In addition,
miR-26b has been shown to target SLC7A11 [17]. We confirmed some of the results shown
in previous studies, further supporting the reliability of our findings. We also identified
new miRNAs that had not been previously studied. These results can provide theoretical
and experimental evidence of the development of safe and effective tumor-targeted drugs.
Mechanically, these GLNM regulators are tightly correlated with the activation and inhibi-
tion of cancer-related pathways. It was demonstrated that in multiple cancer types, higher
GLS2 expression was negatively correlated with an EMT signature, which may shed light
on the mechanism of tumor suppression by GLS2. GLS2 has been identified as a p53 target
gene, which may contribute to its tumor suppressor function [35]. In the liver orthotopic
model, intrahepatic metastasis and lung metastasis were inhibited by overexpression of
GLS2 [36]. Knockdown of endogenous GLS2 by shRNA promoted lung metastasis of
liver cells in nude mice [37] Mechanistically, GLS2 negatively regulates the activity of the
PI3K-AKT signaling pathway and Rac1 by mediating p53 function [37]. Although GLS2
tends to exhibit tumor-suppressing activity, it was reported as a pro-tumorigenic gene in
luminal-subtype breast tumors [38]. Actually, the expression of GLS2 is also regulated by
oncoproteins including N-myc; therefore, GLS2 may display complex and diverse modula-
tory functions in cancer cells. These regulators are functionally coupled, and the whole
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dynamic process of glutamine metabolism cannot be successfully evaluated in terms of
single regulators; thus, we comprehensively evaluated the differences in gene expression
between tumors and normal tissues, as well as the prognostic differences between the
high-expression and low-expression groups. Comprehensive gene expression profiles can
better reflect dynamic metabolic processes, such as glutamine uptake and glutaminolysis.

Although there has been a rapid increase in immunotherapy, the limited beneficiary
population and drug resistance are hindering its further development. Metabolically
reprogrammed tumor cells compete with immune cells for nutrients and release metabo-
lites into the microenvironment, which inhibit the function of antitumor immune cells;
thus, blocking the abnormal metabolism of tumor cells may be a potential way to im-
prove the efficacy of immunotherapy. Previous studies have reported that in breast cancer,
glutamine metabolism alterations increased the secretion of G-CSF and GM-CSF, then
recruited MDSC to promote tumor progression [39]. The enhanced glutamine uptake
influenced the composition of the immune cell infiltrates and was significantly associated
with upregulated PDL1 expression as well as poor survival outcomes in breast cancer [40].
In this study, we found that the alteration of the GLNM regulators led to a cold TME,
which was negatively correlated with the immune score and immunoeffector cells and
positively correlated with immunosuppressive cells. Interestingly, in different tumors, the
cold immune microenvironment had distinct phenotypes. Some tumors presented with
substantial immunosuppressive cell infiltration, while others presented with decreased
infiltration of immunoeffector cells. In addition, the high expression of the GLNM reg-
ulators was significantly positively correlated with PD-L1 expression, as was the case
in previous studies. Previous studies have demonstrated that the expression of PD-L1
was upregulated in renal cancer cells in glutamine deprivation culture medium via the
EGFR/ERK/C-Jun pathway [41]. The expression of PD-L1 was mediated via the nuclear
factor-kappa B (NF-kB) signaling pathway, which was activated by the reduction in GSH
levels [42]. Upregulated SLC7A11 promoted the expression of PD-L1 and CSF1 through the
αKG/HIF1α axis, which further recruited TAMs and MDSCs infiltration [43]. These results
suggested that targeting these regulators may provide a way in which to reverse the cold
immune microenvironment and enhance the antitumor effects. For tumors with high
expression levels of the regulators and PD-L1, a combination of targeted therapy and
immunotherapy may yield better results. Our analysis is the first to identify the two
distinct TME patterns affected by the alterations of GLNM regulators across 33 cancer
types; however, the underlying mechanism of the effects of these GLNM regulators on the
immune microenvironment requires further research.

Due to the rapid proliferation of tumor cells, there is an increased need for glutamine
and the GLNM regulators are frequently overexpressed to meet this demand. Regulators
that specifically maintained this biological process in tumor cells can be used to develop
a novel class of anticancer drugs; the logical basis for this strategy is depriving tumor
cells of an important nutrient. Several inhibitors and blockers have been proposed to
selectively target the regulators that are abnormally expressed in cancer [8]; however, all
of these agents remain in the preclinical stage. SLC7A11 has been reported to induce
selective drug resistance [15–17,44]. Recently, SLC7A11 was also reported to be involved
in the sensitivity to the histone deacetylase inhibitors [45]; thus, the pharmacological
blockade of SLC7A11 not only inhibits tumor growth, but also reverses resistance to certain
drugs. In the present study, we observed that the high expression of GLS was positively or
negatively correlated with resistance to specific drugs. We found that GLS expression was
negatively associated with the sensitivity of temsirolimus, an mTOR inhibitor. Interestingly,
combining the GLS inhibitor with an mTOR inhibitor is reported to result in a combinatorial
effect [46–48]. The upregulation of GLS was reported to be induced following mTOR
inhibition, providing a theoretical basis for the combination of GLS inhibitors and mTOR
inhibitors. Moreover, GLS was identified as an activator of the mTOR pathway to promote
colorectal carcinogenesis; therefore, we speculated that the increased expression of GLS
would activate the mTOR signaling pathway, as the expression of GLS was negatively
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correlated with the sensitivity of mTOR inhibitors. On the other hand, we speculated that
the use of mTOR inhibitors would upregulate the expression of GLS through a feedback
mechanism, leading to drug resistance of mTOR inhibitors, meaning combined use would
increase the efficacy. These correlations warrant further in-depth studies in a certain type of
tumors. The relationship of GLNM regulator expression and drug sensitivity might provide
an important theoretical basis for developing novel cancer treatments. Additionally, these
findings provide a rationale for combination therapies to reverse resistance to certain
drugs [49].

Despite the new insights into the alternations of GLNM regulators provided by our
study, we note that there are some limitations. First, based on information from the TCGA,
we could only assess the genetic changes in the tumor tissue as a whole, and it was not
feasible for us to analyze the genetic changes in tumor cells and stromal cells separately.
Second, we explored only a few potential alterations that can affect the expression and
function of the GLNM regulators. Other related alterations that should be considered are
post-transcriptional and post-translational modifications, such as mRNA splicing, m6A
methylation, and altered protein stability. Third, since our study was mainly based on gene
expression, we could not gain insights into the impacts of the CNV and SNV alternations
on tumors. Finally, we did not perform any analyses that correlated the expression levels
of GLNM regulators with those of demographic factors or pathologic factors other than
overall survival.

5. Conclusions

In this study, we focused on the expression and function of six key GLNM regulators in
tumors and the TME. Exploring the genomic alterations and miRNA network revealed ad-
ditional mechanisms of the cancer-associated dysregulation of these regulators. Our results
were in accordance with those of most previous studies and provided new information for
subsequent studies. In addition, the significant effects of these regulators on the TME and
drug resistance were identified, which provides a novel insight into cancer treatment and
may offer alternative options for the treatment of clinically refractory cancers.
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between glutamine metabolism (GLNM) regulator expression and PD-L1 expression in CESC, CHOL,
HNSC, READ, SKCM, STAD, TGCT, THYM, and UCS. (All p > 0.05)
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