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Abstract

Diffusion tensor imaging (DTI) studies in early Parkinson’s disease (PD) to

understand pathologic changes in white matter (WM) organization are variable in

their findings. Evaluation of different analytic techniques frequently employed to

understand the DTI-derived change in WM organization in a multisite, well-

characterized, early stage PD cohort should aid the identification of the most

robust analytic techniques to be used to investigate WM pathology in this

disease, an important unmet need in the field. Thus, region of interest (ROI)-

based analysis, voxel-based morphometry (VBM) analysis with varying spatial

smoothing, and the two most widely used skeletonwise approaches (tract-based

spatial statistics, TBSS, and tensor-based registration, DTI-TK) were evaluated in

a DTI dataset of early PD and Healthy Controls (HC) from the Parkinson’s

Progression Markers Initiative (PPMI) cohort. Statistical tests on the DTI-derived

metrics were conducted using a nonparametric approach from this cohort of early

PD, after rigorously controlling for motion and signal artifacts during DTI scan

which are frequent confounds in this disease population. Both TBSS and DTI-
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TK revealed a significantly negative correlation of fractional anisotropy (FA) with

disease duration. However, only DTI-TK revealed radial diffusivity (RD) to be

driving this FA correlation with disease duration. HC had a significantly positive

correlation of MD with cumulative DaT score in the right middle-frontal cortex

after a minimum smoothing level (at least 13mm) was attained. The present

study found that scalar DTI-derived measures such as FA, MD, and RD should

be used as imaging biomarkers with caution in early PD as the conclusions

derived from them are heavily dependent on the choice of the analysis used.

This study further demonstrated DTI-TK may be used to understand changes in

DTI-derived measures with disease progression as it was found to be more

accurate than TBSS. In addition, no singular region was identified that could

explain both disease duration and severity in early PD. The results of this study

should help standardize the utilization of DTI-derived measures in PD in an

effort to improve comparability across studies and time, and to minimize

variability in reported results due to variation in techniques.

Keyword: Neuroscience

1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized

by a variety of clinical symptoms such as tremor, rigidity, and abnormalities of gait

and posture (Magrinelli et al., 2016). Motor symptoms in PD have classically been

correlated with loss of dopaminergic neurons in the substantia nigra (SN) pars com-

pacta (Alexander, 2004). In addition to dopamine-related motor dysfunction, how-

ever, multiple nondopaminergic deficits in PD affecting cognitive (Kudlicka et al.,

2011; Yarnall et al., 2013) and other neuropsychiatric domains have been reported

that result in non-motor symptoms including depression (Marsh, 2013), apathy

(Kaji and Hirata, 2011), and cognitive impairment including dementia (Aarsland

et al., 2017; Meireles and Massano, 2012; Watson and Leverenz, 2010; Yarnall

et al., 2013). Furthermore, diffuse pathologic progression has been posited to un-

derlie these non-motor features, including cortical lesions observed in the later

stages of disease (Goedert et al., 2013) as well as other non-dopaminergic anatomic

involvement (Hawkes et al., 2010) even in the pre-motor stage of PD. Neuroimag-

ing techniques such as positron emission tomography (PET) and single-photon

emission computed tomography (SPECT) have been used to aid diagnosis, assess

potential new therapies, and monitor disease progression in PD (Politis, 2014).

MRI, however, is ubiquitously present, logistically more feasible, potentially easier

to standardize, avoids radiation exposure, and has the potential to provide simulta-

neous structural, functional, and perfusion investigation into PD, unlike PET and

SPECT.
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Identification of an MRI-derived imaging biomarker early in PD will not only

improve understanding of the disease, but also allow for monitoring of disease pro-

gression as well as understanding response to treatment (Lang and Mikulis, 2009),

which in turn is vital for the conduct of symptomatic and disease-modifying clinical

trials (Walsh, 2016). Three complementary MRI techniques involving anatomical,

diffusion, and functional changes have been widely investigated to aid early diag-

nosis and to assess the dynamics of disease progression in PD (Brooks, 2010). Spe-

cifically, resting-state functional MRI (fMRI) has shown that PD induces functional

alterations (Prodoehl et al., 2014) involving sensorimotor (Tessitore et al., 2014), vi-

sual (Holroyd and Wooten, 2006), and basal ganglia networks (Rolinski et al.,

2015). Furthermore, recent studies investigating the temporal dynamics of resting-

state fMRI networks in PD have shown dynamic functional brain disorganization

of major resting state networks, including in PD with and without mild cognitive

impairment (Cordes et al., 2018; Díez-Cirarda et al., 2018; Meszl�enyi et al., 2017;

Zhuang et al., 2018). However, fMRI findings can be vulnerable both to acquisition

parameters (Prodoehl et al., 2014) as well as to medication status of the patient

(Krajcovicova et al., 2012; Tessitore et al., 2012). Anatomical MRI employing

voxel-based morphometry (VBM) (Eidelberg, 2011; Fioravanti et al., 2015) and

deformation-based morphometry (DBM) (Borghammer et al., 2010; Zeighami

et al., 2015) has revealed cortical atrophy in PD involving various cortical and

subcortical regions which were correlated with disease duration (Eidelberg, 2011)

and degree of motor impairment (Zeighami et al., 2015). Despite these important

findings, conflicting reports from fMRI and anatomic MRI studies complicate their

understanding and applicability to further investigation of PD. Further, most studies

using anatomical MRI have shown correlations between cortical volumes and cogni-

tive status but no discernible volumetric changes in early PD participants. Detection

of neuromelanin, which is a characteristic pigment of dopaminergic substantia nigra

(SN), using anatomical MRI have been shown to discriminate PD patients and age-

matched healthy controls (Sulzer et al., 2018). However, it is still unclear whether

neuromelanin-sensitive MRI can help to distinguish early stage PD from age-

matched healthy controls as the iron concentration within the SN could influence

the neuromelanin-generated T1-contrast (Nakamura and Sugaya, 2014). Further,

progression and subtype of disease have unclear correlation with neuromelanin,

and analysis of neuromelanin involves only SN despite PD being a whole-brain

disease.

Diffusion weighted MRI (dMRI) has largely focused on the organization of white

matter (WM) fiber tracts in PD (Atkinson-Clement et al., 2017). dMRI encodes in-

formation about the orientation and magnitude of the movement of the water mole-

cules within the fiber tracts of the brain, which can be exploited to investigate fiber

tract pathology. Four scalar diffusion measures are obtained at every voxel after

fitting tensors in dMRI images: fractional anisotropy (FA), axial diffusivity (AD),
on.2019.e01481
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and radial diffusivity (RD) provide information regarding axonal and myelin orga-

nization, while mean diffusivity (MD) conveys information regarding overall diffu-

sivity patterns in the cortex, subcortex, and WM(Mori and Tournier, 2014). Indeed,

diffusivity measures obtained using a single-tensor DTI model have been proposed

as markers of structural damage in various diseases (Acosta-Cabronero et al., 2012;

Aung et al., 2013; Mishra et al., 2017), including PD (Cochrane and Ebmeier, 2013).

DTI measures of SN in PD has been most commonly compared to healthy controls

(HC) and reported using both ROI and whole-brain approaches albeit with conflict-

ing results. For instance, previous ROI-based studies have shown an increase

(Lenfeldt et al., 2015), decrease (Vaillancourt et al., 2009), and no change (Hirata

et al., 2017; Schwarz et al., 2013) in FA of the SN in PD. Although FA is the

most commonly reported measure to show differences in SN between PD and

HC, differences in other diffusion measures have also been reported for various

WM tracts involving the SN(Cochrane and Ebmeier, 2013). Previous meta-

analytic approaches have shown decreased FA and non-altered MD (Cochrane

and Ebmeier, 2013; Schwarz et al., 2013) of SN in PD. The sample sizes of these

meta-analyses were relatively small, and had significant heterogeneity in the studies

analyzed, complicating their interpretation. Since PD affects regions beyond SN,

whole-brain approaches comparing diffusivity patterns between HC and PD have

also been reported (Kamagata et al., 2014; Karagulle Kendi et al., 2008; Zhang

et al., 2011). A recent study (Wen et al., 2016) using a tract-based spatial statistics

(TBSS) (Smith et al., 2006) approach reported greater FA and reduced MD and RD

in callosal, projections and association fibers in early PD. These findings are contra-

dictory, however, to a recent meta-analytic approach (Atkinson-Clement et al., 2017)

in PD with a heterogeneous disease duration that reported reduced FA and increased

MD within the SN, corpus callosum, and cingulate and temporal cortices, along with

an inverse change within the corticospinal tract (CST) of PD. The cause of such

disparate findings is not clear, and importantly no previous study has investigated

the influence of registration algorithms and the effect of smoothing in evaluating dif-

ferences in DTI-derived measures between HC and early PD. This, in turn, could

significantly impact the findings reported and possibly account for their variable

nature.

Hence in this study, we evaluated: (a) the impact of two widely used skeletonwise

techniques, Diffusion-Tensor toolkit (DTI-TK) (Zhang et al., 2006) and

TBSS(Smith et al., 2006), to understand the impact of the registration algorithms

on the DTI-derived measures, as well as investigate their effects on understanding

disease duration and severity in early PD; (b) the effect of smoothing in detecting

differences in MD between early PD and HC using conventional VBM-based ap-

proaches in light of data in previous studies (Cabeen et al., 2017; Jones et al.,

2005) showing that different smoothing parameters could influence the outcome

of VBM analysis; (c) the impact of the ROI-based approach to understand PD
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symptomatology from the DTI-derived measures as it has been shown to be most

sensitive (Langley et al., 2016); and (d) which among the skeletonwise, VBM, or

ROI-based analytical techniques can detect correlation with the clinical measures

such as Movement Disorder Society-Sponsored Unified Parkinson’s Disease Rating

Scale Part III scores (MDS-UPDRS-III), disease duration in PD patients, and Dopa-

mine Transporter Score (DaT) score in early stage PD participants. Both univariate

and multivariate statistical techniques were investigated to understand the impact of

these varying statistical approaches to the data as well.

We utilized the diffusion dataset of early PD and HC from the Parkinson Progression

Markers Initiative (PPMI) (“The Parkinson Progression Marker Initiative (PPMI).,”

2011) database for our study to test these techniques in a well-characterized and stan-

dardized PD population in an effort to establish a homogeneous baseline of DTI met-

rics for the field.
2. Materials and methods

2.1. Participants

All data utilized in the current study were obtained from the PPMI database. The

PPMI study was approved by the Institutional Review Board of all the participating

sites and written informed consent was obtained from all the participants by the site

investigators.

dMRI datasets acquired between 2011 and 2015 were downloaded in 2017 through a

standard application process from the PPMI website (http://www.ppmi-info.org).

The inclusion criteria for all PD participants in the study were: (a) all diagnostic

criteria for PD should be met; (b) the participant should be diagnosed within two

years before the initial visit; and (c) at baseline, the participant’s Hoehn and Yahr

score should be �2. In addition, all HC enrolled in the study should be free of

any significant neurological deficits. A comprehensive baseline clinical evaluation

of cognitive, behavioural, and motor assessment was performed for every

participant by the site investigators. Motor severity score and global assessment of

cognition were calculated for each participant using the Movement Disorder

Society sponsored-Unified Parkinson’s Disease Related Scale Part III scores

(MDS-UPDRS)-III and Montreal Cognitive Assessment (MoCA) respectively.

Only the demographic and clinical variables that were closest in time to the dMRI

scan were utilized in this study.
2.2. Image acquisition

The cardiac gated dMRI datasets used in the current study were acquired across 10

different scanning sites on 3T TIM Siemens scanners with a 12-channel head coil. In
on.2019.e01481
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addition, Dopamine Transporter (DaT) imaging was performed for all participants

using Single Photon Emission Computerized Tomography (SPECT). The details

of the scanning parameters are available at http://www.ppmi-info.org.

Briefly, a 2D echo-planar diffusion sequence with the following parameters was used

at each site for every participant to acquire a near-isotropic dMRI: number of diffu-

sion encoding directions¼ 64, b-value¼ 1000 s/mm2, number of non-diffusion (b0)

image ¼ 1, matrix size ¼ 112 � 112, slices¼ 72, in-plane resolution ¼ 1.98 � 1.98

mm2; slice thickness ¼ 2 mm, flip angle ¼ 90o, TR ¼ 900 ms, and TE ¼ 88 ms.

SPECT data for all participants were acquired 4 � 0.5 hours after injection of 5 mil-

licuries (mCi) of DaTscanTM. The imaging was performed with a 20% symmetric

photopeak windows-centered on 159 KeV and 122 KeV with the following param-

eters: matrix size¼ 128� 128; number of projections¼ 120 or 90, step size¼ 3o or

4o. The uptake was calculated in bilateral caudate and putamen and was shared for all

participants by the site investigators. Briefly, the following procedure was used to

compute the uptake in bilateral caudate and putamen: after spatial normalization

of SPECT images to a standard template, striatal binding ratio was computed in bilat-

eral caudate and putamen by counting the pixel density and was normalized to the

pixel density in the occipital regions for every HC and PD participant.

Only, the “first” available cardiac gated dMRI scan for each participant was used in

this study in an effort to emphasize early stage newly diagnosed PD. These criteria

yielded the dMRI scans of a total of 152 PD and 72 HC that were included for further

preprocessing and quality control.
2.3. Data preprocessing and quality control

Before preprocessing, each participant’s dMRI scans were visually inspected for

signal dropout or artifacts. After visual inspection, the dMRI scans were prepro-

cessed using FMRIB software library version 5.0.9 (FSL, http://www.fmrib.ox.ac.

uk/fsl/). Eddy current distortion correction was performed for each scan of every

participant by affine registering all diffusion-weighted imaging (DWI) volumes to

the b0 image using eddy_correct. Each participant’s movement in x, y, and z-direc-

tion in every volume was computed based on the output of eddy_correct. Single

tensor was linearly fitted for every voxel inside the brain using dtifit and FA, MD,

AD, and RD were estimated in each voxel for every participant. WM mask with a

fractional intensity threshold of 0.2 was computed using bet before tensor-fitting

to ensure the tensors were estimated only inside the brain voxels.

An estimate of total translational motion during the dMRI scan was calculated using

the output file of eddy_correct, an important standardization step in a motorically

symptomatic disease such as PD. Briefly, the estimated translation motion in x, y,

and z directions between each volume was summed across all the volumes by taking
on.2019.e01481
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the root mean square motion of the three directions for each participant. Participants

with a meanþ 1*standard deviation of diffusion motion during the scan greater than

a voxel movement in the slice encoding direction were identified and removed from

further analysis. Rotation motion was not included in our quality control as rotations

and translations are highly correlated during the scanning (Rae et al., 2012). This

rigorous quality control process reduced included dMRI scans to a total of 81 PD

and 44 HC that were then used in the study.
2.4. Tract-based spatial statistics (TBSS)

FSL’s TBSS (Smith et al., 2006) tool (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS/

UserGuide) was used to perform skeletonwise statistics on DTI-derived metrics

such as FA, AD, RD, and MD in HC and PD. The procedure is outlined at

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS/UserGuide. Briefly, each subject’s

individual FA map was first nonlinearly registered to FMRIB58_FA template

thereby transforming each subject’s FA map to a standard space with an isotropic

resolution of 1mm3. Next, the standard space FA maps were registered to the

MNI152 space for the convenience of display and reporting. Third, the mean FA

skeleton representing the centre of the WM tracts common to all subjects was

created and thresholded at FA>0.2. Fourth, each participant’s FA map in the

MNI152 space was projected onto the mean FA skeleton. A similar procedure

was conducted for MD, AD, and RD maps by using the registration parameters of

the previous step and projecting each participant’s diffusivity map onto the same

mean FA skeleton. Statistical comparisons were conducted on the skeletonized

projection DTI-derived voxelwise maps in the MNI152 space.
2.5. Tensor-based registration (DTI-TK)

Since DTI-TK has been shown to be more accurate than TBSS(Bach et al., 2014),

DTI-TK pipeline was used on the same dMRI scans as above to specifically evaluate

the acccuracy of FA-based registration against registering with the full tensor images

that incorporate local fiber orientations (Zhang et al., 2006). The steps are outlined at

http://dti-tk.sourceforge.net/pmwiki/pmwiki.php?n¼Documentation.HomePage.

Briefly, an initial population-specific template was bootstrapped with the tensor in-

puts of all participants. Second, the initial population-specific template was refined

with affine and deformable alignment to improve the quality of alignment by

removing differences in size and shape of local structures. Third, the improved

population-specific template was then resampled to isotropic 1mm3 resolution.

Fourth, each participant’s tensor map was registered to the isotropic population-

specific template using diffeomorphic alignments. The scalar diffusivity maps

from the template and the registered tensor maps were then obtained for each partic-

ipant using singular-value decomposition. Of note, once the co-registration of tensor
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maps of every subject was finished using DTI-TK, the same algorithm for TBSS was

used to generate the DTI-derived metrics at every dMRI voxel for all participants

following the guidelines outlined in DTI-TK’s user manual (http://dti-tk.

sourceforge.net/pmwiki/pmwiki.php?n¼Documentation.TBSS). A mean FA map

representing the centre of the WM tracts common to all subjects was created from

the population-specific template in MNI152 space using the TBSS tools, and the

skeleton was thresholded at FA>0.2. All the diffusivity maps were then projected

onto this mean FA skeleton map using the procedures outlined in TBSS, for statis-

tical comparisons.
2.6. Voxel-based morphometry (VBM) analysis

MD maps, at various smoothing levels from 0mm to 20mm, registered using full

tensor information (DTI-TK) in MNI152 space for each participant were then

further utilized to investigate the commonly used VBM-based approach in

comparing MD changes between PD and HC. In addition, the VBM-based

approach was also used to examine the correlation of the DTI-derived metrics in

PD with DaT score, disease duration, and disease severity. Similar to Jones

et al. (2005), the MD map of every participant was smoothed from 0mm to

20mm using a Gaussian filter with a kernel size ¼ smoothing size/2.3548 (http://

mathworld.wolfram.com/GaussianFunction.html) to investigate the effects of

smoothing on the VBM-based approach.
2.7. Region of interest (ROI) analysis

Anterior Thalamic Radiation (ATR: left and right), CST (left and right), Cingulum

(CGC: left and right), Cingulum-Hippocampal (CGH: left and right), Inferior

Frontal-Occipital Fasciculus (IFO: left and right), Inferior Longitudinal Fasciculus

(ILF: left and right), Superior Longitudinal Fasciculus (SLF: left and right), Supe-

rior Longitudinal Fasciculus-Temporal (SLFt: left and right), Uncinate Fasciculus

(UNC: left and right), and Forceps Major and Minor from Johns Hopkins Univer-

sity (JHU) (Hua et al., 2008) probabilistic white matter tract atlas in MNI152 space

were then used to derive a comprehensive mask for extracting FA, MD, AD, and

RD in each tract for each subject.

In addition, MD values in the 90 cortical and subcortical regions of the Anatomical

Atlas Labeling (AAL) template (Tzourio-Mazoyer et al., 2002), and six bilateral

subcortical regions of ATAG template (Keuken et al., 2014) were also extracted

for each participant. Both AAL and ATAG templates were in MNI152 space.

To validate previous studies including SN(Lenfeldt et al., 2015; Vaillancourt et al.,

2009), we also extracted FA, MD, AD, and RD in SN using its probabilistic mask

(Murty et al., 2014) in MNI152 space. Of note, we only utilized those voxels in
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this probabilistic SN mask where there was at least 90% probability of the mask be-

ing classified as SN.

2.8. Statistical analysis

Chi-square (c2) test was used to test the significance of categorical demographic var-

iables as well as head motion between groups. Kruskal-Wallis test was used to check

the statistical significance of continuous demographic and clinical variables. Signif-

icance was established at p < 0.05 and the values were reported as mean � standard

deviation for each variable.

Since nonparametric statistics have no dependency on the normal distribution of

either independent or dependent variables, nonparametric statistical analyses of skel-

etonwise, VBM-based, and ROI-based DTI-derivedmetrics were conducted using the

permutation analysis of linear models (PALM) toolbox in FSL (Winkler et al., 2014)

to evaluate the difference in DTI-derived metrics between HC and PD, along with

testing the correlation of DTI-derived metrics with disease duration, MDS-UPDRS-

III, and DaT scores in PD. Both two-sample univariate T-Test, andmultivariate Hotel-

ling T2 (Hotelling, 1931) statistics were conducted with PALM. Each participant’s

average motion during the dMRI scan and total brain volume were used as covariates.

Since disease duration might be collinear with age, and is an important determinate of

DTI signal, age was also used as a covariate in the statistical model. The statistical

tests were repeated with and without each participant’s scanning site as covariates,

in order to evaluate effects of the variance induced by the scanning site on DTI-

derived metrics which may be important for multi-site cohort analysis. Threshold-

free cluster enhancement (TFCE) (Smith and Nichols, 2009) with the same design

matrix was employed for every statistical test with 1000 random permutations.

Of note, all statistical comparisons were corrected for multiple comparisons in

PALM. Importantly, all analytical techniques utilized in this study such as skeleton-

wise, VBM or ROI-based, were independently controlled for multiple comparisons

within themselves. Also, skeletonwise statistical results generated from TBSS were

controlled independently from skeletonwise statistical results generated from DTI-

TK. Correction of multiple comparisons was performed for each analytical technique

and each hypothesis. Significance was established at pcorr<0.05. Cohen’s d which is a

measure of effect-sizes was also computed and reported where applicable.
3. Results

3.1. Demographics and clinical variables

Table 1 outlines the descriptive statistics as mean � standard deviation and p-values

wherever applicable for the demographics, clinical scores, and head motion in PD

and HC.
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Means of the participants demographics such as gender, age, years of education, and

handedness were not statistically significant (p > 0.05) between the groups. Simi-

larly, there was no statistically significant difference (p ¼ 0.12) in global cognition

assessed by MoCA between the groups. PD patients were very early in the disease:

mean disease duration was 11.46 � 13.85 months, disease severity assessed by

modified MDS-UPDRS-III score was 18.72 � 8.13, and 36 and 45 PD were identi-

fied to have Hoehn and Yahr score as 1 and 2 respectively. There was a statistically

significant difference (p < 0.001) in the cumulative DaT score between the HC and

PD, as expected.

The mean motion in HC and PD during the dMRI scan was 1.25� 0.43mm and 1.31

� 0.4mm respectively and was not found to be statistically significant (p ¼ 0.47).
3.2. Are DTI metrics in PD different than in HC?

None of the analytical techniques, namely skeletonwise, VBM or ROI-based found

any differences between HC and early stage PD in this cohort. The results were

consistent across various smoothing levels employed to test differences in MD be-

tween the groups. Further, we found no difference in any DTI-derived metrics be-

tween HC and early stage PD with either univariate or multivariate statistical

techniques and the findings were not influenced whether scanning site was added

as a covariate in the statistical model.
3.3. Is any DTI metric correlated with disease duration in early
PD?

Both skeletonwise techniques, namely TBSS and DTI-TK, revealed a statistically

significant negative correlation of FA with disease duration (Fig. 1). TBSS showed

that WM tracts in the left hemisphere encompassing left IFO, left CST, left ILF,

bilateral ATR, left SLF, along with corpus callosum and bilateral CGC exhibited

a significant negative correlation (Mean pcorr: 0.03 � 0.01, Mean d: 0.44 �
0.10). This lateralized correlation with disease duration was, however, lost with

DTI-TK and WM tracts encompassing corpus callosum, bilateral IFO, bilateral

CST, bilateral ILF, bilateral ATR, bilateral SLF, and bilateral CGC exhibited a sig-

nificant negative correlation (Mean pcorr: 0.02 � 0.01, Mean d: 0.38 � 0.11). In

addition, RD derived from DTI-TK showed a significant positive correlation

(Mean pcorr: 0.04 � 0.004, Mean d: 0.45 � 0.1) in WM tracts encompassing left

IFO, left CST, left ILF, left ATR, left SLF, left CGC, and corpus callosum with

disease duration. These significant correlations were only revealed when scanning

site was added as a covariate in the statistical model. Multivariate statistics on skel-

etonwise DTI metrics revealed no correlation with disease duration with either

TBSS or DTI-TK.
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Table 1. Participant demographics. Results of pairwise statistical comparisons are shown as p-values. Of

note, Dopamine Transporter (DaT) score of caudate and putamen in both hemispheres was integrated for

each subject. *Significance was established at p < 0.05. NS: Non-significant; NA: Not-applicable; means

are reported �SD.

Demographics Healthy Controls (HC)
(N [ 44)

Parkinson’s Disease (PD) patients
(N [ 81)

HC vs PD

Gender
Female: 15 29 NS(p ¼ 0.85)

Male: 29 52

Handedness
Left: 5 7 NS(p ¼ 0.1)

Right: 34 72

Mixed: 5 2

Age (years) 61 � 10.79 61.35 � 9.93 NS(p ¼ 1)

Years of education 15.86 � 3.17 15.44 � 3.03 NS(p ¼ 0.46)

Disease duration (months) NA 11.46 � 13.85 NA

Movement Disorder Society sponsored-
Unified Parkinson’s Disease Related
Scale Part III score (MDS-UPDRS-III)

NA 18.72 � 8.13 NA

Montreal Cognitive Assessment (MoCA)
Score

28.16 � 1.12 27.4 � 2.14 NS(p ¼ 0.12)

Hoehn and Yahr Score (1/2) NA 36/45 NA

Dominant affected side
Left: NA 31 NA

Right: NA 49

Mixed: NA 1

Diffusion motion (mm) 1.25 � 0.43 1.31 � 0.4 NS(p ¼ 0.47)

Site
Site 1: 3 12 NS(p ¼ 0.3)

Site 2: 5 7

Site 3: 2 7

Site 4: 6 10

Site 5: 3 5

Site 6: 6 12

Site 7: 1 1

Site 8: 5 13

Site 9: 9 14

Site 10: 4 0

Dopamine Transporter (DaT) score* 9.55 ± 1.67 5.08 ± 1.41 p < 0.001
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Fig. 1. Skeletonwise results of WM organization in PD. The location of the cluster showing a signifi-

cantly (pcorr<0.05) negative relationship between FA and disease duration using both TBSS (a) and

DTI-TK (b). The top and bottom panel of (b) shows the location of the cluster showing a significantly

(pcorr<0.05) negative and positive relationship between FA (top panel) and RD (bottom panel), and dis-

ease duration using DTI-TK. R and L represent the right and left hemispheres respectively. Color bar

represents the range of p-values in the overlaid cluster.
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No correlation of MD with disease duration was found regardless of smoothing and

whether scanning site was used as a covariate.

No association of any DTI-derived metric in WM tracts or MD in GM regions were

found with ROI-based processing technique. These results were consistent regard-

less of whether multivariate statistics were employed with DTI-derived metrics in

WM tracts and whether scanning site was added as a covariate in the statistical

model.
3.4. Is any DTI metric correlated with MDS-UPDRS-III in early
PD?

No correlation of MDS-UPDRS-III with any DTI-derived metric was found in our

cohort of early stage PD. These results were consistent regardless of analytical tech-

nique employed, namely skeletonwise (TBSS and DTI-TK), VBM, and ROI-based,

smoothing employed in VBM, multivariate or univariate statistics used, or whether

scanning site was added as a covariate in the statistical model.
3.5. Is any DTI metric correlated with cumulative DaT score?

Only MD in the right middle frontal gyrus showed a significantly negative correla-

tion with cumulative DaT score in HC (Fig. 2). This correlation was only revealed

when smoothing level was at least 13mm, and scanning site was not added as a co-

variate in the statistical model. The extent of cluster increased from 60 voxels to 853

voxels when smoothing was increased from 13mm to 20mm. The increase in the

cluster size was accompanied with a decrease in Cohen’s d, 0.74 � 0.02 to 0.6 �
on.2019.e01481
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Fig. 2. VBM-based results of the effect of smoothing before statistical analysis. (a) Top panel: Location

of the cluster, involving right middle frontal gyrus, where MD in HC was significantly (pcorr<0.05)

correlated with DaT score. Bottom panel: Scatterplot of the extent of the cluster and p-values as a func-

tion of spatial smoothing (left panel), along with scatterplot of the extent of the cluster and effect size as a

function of spatial smoothing (right panel) is shown. R and L represent the right and left hemispheres

respectively.
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0.03 albeit with not noteworthy increase in pcorr: 0.05 � 0.0001 to 0.05 � 0.002, as

the smoothing was increased from 13mm to 20mm (bottom panels of Fig. 2).

Neither skeletonwise (both TBSS and DTI-TK) nor ROI-based processing tech-

niques revealed correlation of any DTI-derived metric with DaT score in either

groups. The results were consistent regardless of whether univariate or multivariate

statistics was used and whether scanning site was added as a covariate in the statis-

tical model.

Tables 2 and 3 summarizes these results in the tabular format.
4. Discussion

While carefully controlling for important confounds with stringent standardized

criteria in a well-characterized and publicly available multi-site dMRI database of

early PD, our study suggests: (i) either skeletonwise approach utilizing different

registration techniques such as DTI-TK or TBSS could be utilized (Cabeen et al.,

2017) to understand the association of disease duration and DTI-derived metrics,

however DTI-TK was found to be more sensitive to disease progression (Fig. 1);

(ii) although the VBM-based approach revealed a significant negative correlation

of MD with cumulative DaT score in HC, it should be reported with caution as

the amount of spatial smoothing could bias the conclusion (Fig. 2); and (iii) care

should be taken with ROI-based techniques as no differences in any DTI-derived

metrics were found between HC and PD. Furthermore, the findings of our study

were sensitive to imaging site but were not sensitive to the choice of univariate
on.2019.e01481
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Table 2. Summary of findings. Regions that were found to be significantly different between groups or correlated with clinical variables are listed for

each analysis technique to compare DTI-derived measurements in early stage PD. NA: Not-applicable.

Hypotheses tested Skeletonwise Voxelwise ROI-based

TBSS DTI-TK

Are DTI-derived measures
in PD different than HC?

Findings No regions found to be
significantly different.

No regions found to be
significantly different.

No regions found to be
significantly different.

No regions found
to be significantly
different.

Effect of Smoothing NA NA No effect of smoothing NA
Effect of Scanning Site No effect of scanning site No effect of scanning site No effect of scanning site No effect of

scanning site
Univariate or Multivariate? Both Both NA Both

Are DTI-derived measures
correlated with
clinical scores?

Findings Negative correlation with
disease duration and FA in the
WM tracts of left IFO, left
CST, left ILF, bilateral ATR,
left SLF, bilateral CGC, and
corpus callosum

Negative correlation with
disease duration and FA in the
WM tracts of corpus
callosum, bilateral IFO,
bilateral CST, bilateral ILF,
bilateral ATR, bilateral SLF,
and bilateral CGC.
Positive correlation with
disease duration and RD in
the WM tracts of left IFO, left
CST, left ILF, left ATR, left
SLF, left CGC, and corpus
callosum

MD of right middle frontal
gyrus negatively associated
with DaT score in HC

No regions found
to be significantly
different.

Effect of Smoothing NA NA Smoothing>¼13mm>¼5mm NA
Effect of Scanning Site Only when scanning site was

used as a covariate
Only when scanning site was
used as a covariate

Only when scanning site was
not used as a covariate

No effect of
scanning site

Univariate or Multivariate? Univariate Univariate NA NA
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nor multivariate statistical analysis (Tables 2 and 3). Overall, our findings suggest

that the conclusions for the hypothesis being tested are strongly dependent upon

the choice of analytic techniques as different analytical techniques can lead to

different conclusions (Tables 2 and 3). In addition, our findings also suggest that

there does not appear to be a single brain region (e.g. SN) that could be chosen a

priori using scalar DTI-derived metrics that could explain both disease duration

and severity in early PD.

There have been conflicting studies with FA of SN as a diagnostic imaging

biomarker (Lehericy et al., 2017; Lenfeldt et al., 2015; Menke et al., 2010;

Schwarz et al., 2013). Increased MD has also been reported in SN of PD

(Eidelberg, 2011; Schwarz et al., 2013). However, the present study does not indi-

cate that any of the DTI-derived scalar metrics of SN or several other subcortical

nuclei such as caudate and putamen are significantly different between HC and early

PD.

Previous studies (Cabeen et al., 2017; Jones et al., 2005) have shown that results

from the conventional VBM-based approach may be affected by spatial smoothing

employed before statistical analysis. Similarly, our study also found a smoothing-

related correlation of MD and cumulative DaT score in the middle-frontal gyrus

of HC using the conventional VBM-based approach: although no statistical differ-

ence was observed in MD between HC and PD. We observed a significant negative

correlation of MD in HC only when smoothing was greater than or equal to 13mm.

This smoothing-related correlation of MD with cumulative DaT score was only re-

vealed when scanning site was not used as a covariate in the statistical model. Over-

all, this finding warrants further investigation with a longitudinal dataset to further

understand the meaning of microstructural pathologic variability across patients

including in relationship to motor and non-motor symptoms. Indeed, further under-

standing of this finding may lead to important and novel insight into the clinically

heterogeneous nature of PD. This finding also suggests that data harmonization

(Fortin et al., 2017) is necessary while comparing DTI-derived metrics across

different scanning sites.

Correlation of DTI-derived metrics with disease progression has been previously re-

ported (Pozorski et al., 2018), but that study was a single-site, not controlled for

medication status, and not controlled for early-stage disease. To the best of our un-

derstanding, the negative association of disease duration reported here with FA in

WM tracts implicated in early PD has not been previously reported. Importantly,

the present study revealed preference for DTI-TK based registration technique

before statistical analysis. Further, DTI-TK demonstrated a significantly positive

correlation of disease duration with left lateralized RD in the same regions as FA

suggesting that tensor-based registration may be more accurate than FA-based regis-

tration as has been previously hypothesized (Bach et al., 2014). Neither ROI-based
on.2019.e01481
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Table 3. Consistency of findings across different analytical techniques. Hypotheses were tested for four different analytic technique, namely TBSS

skeletonwise, DTI-TK skeletonwise, voxelwise, and ROI-based under two different conditions, (a) when scanning site was used as a nuisance regressor

and (b) when scanning site was not used as a nuisance regressor. False-positive rate was controlled for every hypothesis within every DTI-derived metric

using non-parametric statistics, and independently controlled for whether scanning site was used a nuisance regressor.U is shown for the columns when

the observed conclusion is in accordance with the hypothesis being tested, otherwise they are shown as ✕. For example: Only DTI-TK based skel-

etonwise analytical technique showed a negative correlation between RD and disease duration for PD participants but only when scanning site was used

as a covariate in the statistical model. This finding is indicated by “Only when scanning site was used as a covariate” in the Scanning site used as a
covariate column, ✕ in TBSS column within Skeletonwise column, U in DTI-TK within Skeletonwise column, NA for voxelwise (as no voxelwise

comparison was conducted for RD), and ✕ for ROI-based technique. NA: Not-applicable.

Hypothesis Tested DTI-derived metric Findings Scanning site used as a covariate in the
statistical model

Analytic technique used

Skeletonwise Voxelwise ROI-based

TBSS DTI-TK

HC vs PD FA No difference Irrespective of whether scanning site was
used as a covariate

U U NA U

MD No difference Irrespective of whether scanning site was
used as a covariate

U U U U

AD No difference Irrespective of whether scanning site was
used as a covariate

U U NA U

RD No difference Irrespective of whether scanning site was
used as a covariate

U U NA U

Multivariate No difference Irrespective of whether scanning site was
used as a covariate

U U NA U

Disease duration FA Negative correlation Only when scanning site was used as a
covariate

U U NA ✕

MD No correlation Irrespective of whether scanning site was
used as a covariate

U U U U

AD No correlation Irrespective of whether scanning site was
used as a covariate

U U NA U

(continued on next page)
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Table 3. (Continued )
Hypothesis Tested DTI-derived metric Findings Scanning site used as a covariate in the

statistical model
Analytic technique used

Skeletonwise Voxelwise ROI-based

TBSS DTI-TK

RD Positive correlation Only when scanning site was used as a
covariate

✕ U NA ✕

Multivariate No difference Irrespective of whether scanning site was
used as a covariate

U U NA U

MDS-UPDRS-III FA No correlation Irrespective of whether scanning site was
used as a covariate

U U NA U

MD No correlation Irrespective of whether scanning site was
used as a covariate

U U U U

AD No correlation Irrespective of whether scanning site was
used as a covariate

U U NA U

RD No correlation Irrespective of whether scanning site was
used as a covariate

U U NA U

Multivariate No difference Irrespective of whether scanning site was
used as a covariate

U U NA U

Cumulative DaT Score FA No correlation Irrespective of whether scanning site was
used as a covariate

U U NA U

MD Negative correlation in HC (only when
smoothing >¼13mm)

Only when scanning site was not used as a
covariate

✕ ✕ U ✕

AD No correlation Irrespective of whether scanning site was
used as a covariate

U U NA U

RD No correlation Irrespective of whether scanning site was
used as a covariate

U U NA U

Multivariate No difference Irrespective of whether scanning site was
used as a covariate

U U NA U

17
https://doi.org/10.1016/j.heliyon.2019.e01481

2405-8440/�
2019

T
he

A
uthors.Published

by
E
lsevier

L
td.T

his
is
an

open
access

article
under

the
C
C
B
Y
-N

C
-N

D
license

(http://creativecom
m
ons.org/licenses/by-nc-nd/4.0/).

A
rticle

N
ow

e01481

https://doi.org/10.1016/j.heliyon.2019.e01481
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 https://doi.org/10.1016/j.heliy

2405-8440/� 2019 The Auth

(http://creativecommons.org/li

Article Nowe01481
nor VBM-based approaches found any association with disease duration in this well-

characterized cohort of early PD patients. Our findings thus suggest that DTI-derived

FA measurement in the WM skeleton could be used as a potential imaging

biomarker to evaluate PD. Of note, extra-axonal diffusion (as measured by RD)

spanning WM tracts might also lend support to the recent findings of the sensitivity

of “free-water” to monitor (Burciu et al., 2017) and classify typical and atypical

Parkinsonism (Planetta et al., 2016), and hence warrants further investigation into

the understanding the role of “free-water” in early stage PD beyond SN.

There are several limitations to this study. The distortion correction was only per-

formed using the affine registration of the diffusion-weighted volumes to the non-

diffusion-weighted b0 map. Our findings need to be validated with advanced distor-

tion correction techniques to investigate the potential bias induced by off-resonance

effects. Importantly, our study did reveal a trend of higher FA in HC in the same

tracts where FA was significantly correlated with disease duration in PD participants

(70% of the voxels, mean uncorrected p-value: 0.21 � 0.14; range of uncorrected

pevalues: 0.0005e0.5). However, the effect size to observe this change was low

(Cohen’s d: 0.19 � 0.12). A similar trend was observed with RD in PD (RD in

PD > RD in HC) in the same tracts where RD was significantly correlated with dis-

ease duration in PD participants (64% of the voxels, mean uncorrected p-value: 0.24

� 0.14; range of uncorrected pevalues: 0.0004e0.5). However, the effect size to

observe this change was also low (d: 0.17 � 0.13). These findings suggest that

our cross-sectional analysis was limited by sample size, and longitudinal analysis

may reveal steeper changes in FA, MD, and RD in PD than HC over time. However,

no longitudinal analysis was conducted as this was beyond the scope of this baseline

early PD study. Potential bias introduced by not rotating the gradient vectors after

eddy_correct operation (Leemans and Jones, 2009) should be investigated to under-

stand its influence on the overall findings of the study. We did not correct for “free-

water” contamination before fitting the tensors (Burciu et al., 2017), as we have used

MD as a surrogate of “free-water” (Mishra et al., 2015). Future validating studies

should estimate the influence of different analytic techniques on DTI-derived metrics

after correcting for “free-water” contamination. Future studies should also evaluate

correlations between tract-specific DTI-derived (Mishra et al., 2015) measures and

disease duration and severity in PD. Our study found that site influenced the findings

when its effects are regressed out as a linear cofactor. However, future studies could

evaluate whether harmonization techniques (Fortin et al., 2017) could prove benefi-

cial in improving our understanding of the differences in scalar DTI-derived metrics

in early PD as compared to HC, and regarding association with disease severity or

duration. Future studies could also evaluate the effect of tissue-specific smoothing

(Lee et al., 2009) to understand the bias introduced by spatial smoothing approaches

used in our study.
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5. Conclusion

The present study found that scalar DTI-derived measures such as FA, MD, and RD

should be used as imaging biomarkers but with caution in early stage PD as the con-

clusions derived are influenced by the choice of the analytic technique used. Further-

more, our study revealed that DTI-TK can detect WM organizational changes

evaluated through DTI-derived metrics in early PD, including earlier as compared

to TBSS. Longitudinal studies investigating tractography, harmonization, and the

role of “free-water” contamination in the DTI-derived metrics are warranted based

on our findings. We hope that this study will help standardize the utilization of

DTI-derived measures in PD in an effort to improve comparability across studies

and time and to minimize variability in reported results as a result of variation in an-

alytic techniques.
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