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Abstract: Cancer cells frequently overexpress specific surface receptors providing tumor growth and
survival which can be used for precise therapy. Targeting cancer cell receptors with protein toxins is
an attractive approach widely used in contemporary experimental oncology and preclinical studies.
Methods of targeted delivery of toxins to cancer cells, different drug carriers based on nanosized
materials (liposomes, nanoparticles, polymers), the most promising designed light-activated toxins,
as well as mechanisms of the cytotoxic action of the main natural toxins used in modern experimental
oncology, are discussed in this review. The prospects of the combined therapy of tumors based on
multimodal nanostructures are also discussed.
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1. Introduction

Cancer treatment has traditionally been based on surgery, radiation, and chemother-
apy, which have shown limited therapeutic benefits in patients with metastatic disease. De-
spite significant advances in the development of systemic treatment, traditional chemother-
apeutic agents cause serious side toxicity, restricting treatment to certain therapeutic
dosages. In light of this, new approaches to selective treatment are urgently needed.

Protein toxins possessing such features as high cytotoxicity and efficiency have become
promising components for anticancer therapy. Cancer cells frequently upregulate surface
receptors that promote growth and survival, that is why various antigen-specific proteins
including antibodies, antibody fragments (e.g., Fab and scFv), and other protein scaffolds
(e.g., affibody and DARPin) have been developed as a moiety to target cancer cells [1,2]. Be-
ing genetically encoded, toxins can be expressed as fusion proteins with targeting moieties
mentioned above and can have a wide range of modifications to prolong circulation in the
bloodstream and increase tumor retention. Complete biodegradation within an organism
is also an important advantage of protein toxins as anticancer agents [3,4].

Given these advantages, a number of tumor antigen-specific proteins consisting of a
targeting domain that recognizes a tumor marker, and a toxic domain based on protein
toxin have been developed as potent antitumor agents [4–7].

In addition to natural protein toxins, designed toxins are also used in experimental
oncology, for example, as an alternative to chemical photosensitizers [8–11]. The main
advantage of protein photosensitizers is the opportunity to use a genetic engineering
approach to combine cytotoxic and targeting moieties, avoiding chemical conjugation.

The review discusses the methods of toxins delivery to cancer cells and the compati-
bility of delivery strategy with mechanisms of protein toxins cytotoxic action.
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2. Soluble Targeted Toxins
2.1. Targeting and Toxic Modules Coupling Strategies

The history of targeted toxins began with the chemical conjugation of natural diph-
theria toxin (DT) with anti-lymphocyte antibodies or their F(ab)2 fragments to produce
agents for killing lymphoblastoid tumor cells [12]. This strategy helped to couple cell-
specific delivery of antibodies with extremely high toxicity of DT, previously shown for
mammalian cells [13]. The first generation of immunotoxins used chemical conjugation
to couple natural toxins with full-length antibodies [14]. The introduction of hybridoma
technology [15] enabled the production of precisely characterized bifunctional agents with
a certain specificity. The second generation of immunotoxins arise due to the use of trun-
cated fragments of protein toxins, lacking natural tropism, which helped to reduce in vivo
side toxicity [16].

Over time, the variety of toxins used in the design of targeted therapy has grown [17,18],
but the next breakthrough was made due to molecular cloning, which allowed for the
production of the third-generation immunotoxins: fusion proteins consisting of antibody
fragments linked to enzymatically active toxin domains [5,19]. Antibodies are mostly used
in a single-chain form (scFv); however, over the past 20 years, a variety of nonclassical
antibodies have been introduced in biotechnology [1], as well as scaffold proteins of
different origin [2,20].

Since the development of molecular cloning, the use of protein toxins in recombinant
bifuctional and multifunctional proteins has become a straightforward way for targeted
agents design. This preference can be explained by the difficulties of precise protein-protein
conjugation including the loss of toxin activity or antibody affinity. If we compare the
similar targeted toxins reaching the same target we will notice that fused toxins demon-
strate higher specific toxicity. For example, we can consider the targeted toxins based on
Pseudomonas aeruginosa exotoxin A (The 40-, 38-, or 24-kDa portions of the PE without
the cell binding domain, are designated as PE40, PE38, and PE24, respectively [21]). The
genetically fused 4D5scFv-PE40, containing single HER2-specific trastuzumab variant
4D5scFv as a targeting module, killed HER2-positive cancer cells with IC50 value as low as
10–20 pM [22]; at the same time, the IC50 value for trastuzumab-PE40 chemical conjugate
was about 100 nM [23], although the affinity of trastuzumab alone is higher than that of
4D5scFv: the estimated KD are 1.8 nM and 5.2 nM, respectively [24,25]. Still, the precise
chemical conjugation can be achieved by gene engineering. In the recent work a sophisti-
cated modification technology was used. The trastuzumab antibody was engineered to
contain unpaired cysteine in the heavy chain, and the unnatural amino acid with an azido
group was incorporated into an engineered Pseudomonas exotoxin A (PE24). The two
protein molecules were then conjugated site-specifically using a bifunctional linker. The
resulting construct demonstrated specific toxicity towards HER2-positive cancer cell in a
picomolar range of concentrations [26]. In some cases, the coupling of antibody with a pro-
tein toxin can be provided by non-covalent binding of pre-modified modules, for example,
with the use of streptavidin and biotin [27]. The proper orientation and stoichiometry can
also be provided by design of separate targeting and effector modules, fused to barnase
and barstar [28].

2.2. Factors Affecting a Targeted Toxin Efficiency

Soluble targeted toxins are thought to be the embodiment of a “magic bullet” idea.
Being applied systemically, these agents can reach disseminated, metastatic, or inoperable
tumors and kill cancer cells. Still, there are several factors affecting the efficiency of targeted
toxins (summarized in Figure 1).
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cluding B-cell lymphomas, as well as testicular and colon tumors [30]. StxB was used as a 
targeting module for fluorescent imaging of human colon cancer cells xenografts in mice, 
though the accumulation in normal tissues was also considerable [31]. The injections of 
natural holotoxin were successfully used to kill human cancer cells in murine xenograft 
models [30]. The anthrax toxin protective antigen (PA) also targets receptors that can be 
upregulated in tumors, namely tumor endothelial marker 8 (TEM8, ANTXR1) that is in-
volved in tumor angiogenesis [32]. This feature can be used for targeting recombinant 
toxins to tumors in vitro and in vivo [33]. Yet, the anthrax toxin PA has another major tar-
get, the receptor encoded by capillary morphogenesis gene 2 (CMG2, ANTXR2), that is 
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The first and the foremost factor is the agent’s affinity for the tumor antigen. Some-
times the natural tropism of the toxin can be used in cancer therapy, for example, it is
possible for the Shiga toxin. Shiga toxin consists of two non-covalently attached parts,
the enzymatically active moiety A (StxA) and the non-toxic pentameric binding moiety
(StxB) that binds to the glycosphingolipid globotriaosylceramide (Gb3) at the surface of
target cells and is then internalized by endocytosis [29]. The expression of Gb3 is relatively
restricted in normal human tissues, but it is highly expressed in many types of cancers,
including B-cell lymphomas, as well as testicular and colon tumors [30]. StxB was used as
a targeting module for fluorescent imaging of human colon cancer cells xenografts in mice,
though the accumulation in normal tissues was also considerable [31]. The injections of
natural holotoxin were successfully used to kill human cancer cells in murine xenograft
models [30]. The anthrax toxin protective antigen (PA) also targets receptors that can
be upregulated in tumors, namely tumor endothelial marker 8 (TEM8, ANTXR1) that is
involved in tumor angiogenesis [32]. This feature can be used for targeting recombinant
toxins to tumors in vitro and in vivo [33]. Yet, the anthrax toxin PA has another major target,
the receptor encoded by capillary morphogenesis gene 2 (CMG2, ANTXR2), that is more
widely expressed in normal tissues [34]. To decrease side toxicity the mutated PA variants
with predominant binding to TEM8 were obtained [35].

However, the accumulation of most natural protein toxins in the tumor is insignificant,
and targeting moieties or tumor-accumulating nanostructures are used to improve drug
delivery. If a toxin has natural tropism to surface molecules of human cells, the receptor-
binding domains are usually removed. Cancer antigen targeting is usually provided by
antibodies, antibody fragments or alternative scaffolds [1,2]. Proper tumor accumulation
can be achieved by the selection of targeting molecules with high affinity to the antigen,
though the optimal range of affinity can depend on the biology of the target. For example,
in case of tumors expressing epithelial cell adhesion molecule (EpCAM), it is better to use
antibodies with moderate affinity rather than with high affinity, otherwise the treatment
can cause serious side effects [36].

Another feature that is important for reaching the tumor is the circulation time. It
is affected by several factors, including molecule or complex size, charge (the optimal pI
range is 5 to 9 [37]), and immunogenicity [38,39]. The renal filtration cutoff is estimated
at 60–65 kDa [40], smaller proteins are cleared quickly and are less likely to reach the
target. Increasing the size of the artificial protein or complex can be accompanied by the
introduction of multivalency. For example, the use of barnase–barstar modules fused to
4D5scFv made it possible to assemble di- and trimeric complexes with increased avidity
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and molecular weight (81 kDa and 132 kDa versus 30 kDa of 4D5scFv monomer) [41].
Another strategy involves the use of protein motifs that increase circulation time of a
fuse protein. Antibody Fc efficiently recirculates due to neonatal receptor FcRn [42] and
introduction of Fc into fuse protein can increase the circulation time of a construct. A
similar effect can be achieved by the use of serum albumin or albumin-binding proteins in
a fuse construct [42–44].

The immunogenicity of a toxin is a complex characteristic that usually decreases the
circulation time. On the one hand, molecules that are efficiently recognized by macrophages
of reticuloendothelial system are rapidly cleared from blood. On the other hand, the
subsequent presentation leads to the production of toxin-specific antibodies, which limits
the toxin efficiency in case of repeated treatment. The reduction in immunogenicity can
be reached either by gene engineering or by chemical modification of fusion toxins, such
as PEGylation or the removal of compounds recognized by macrophages [45]. For ricin
it was shown that oligosaccharides facilitate the toxin uptake by macrophages through
binding to CD206 mannose receptor [38,46], which reduces circulation time and may
contribute to successful protein presentation. Ricin oligosaccharides were also shown
to interact with glycosylated IgA and IgM [47], and this can also contribute to toxin
clearance from circulation and better presentation due to enhanced macrophage uptake of
the immune complexes. In case of ricin the circulation time can be increased by chemical
deglycosylation of the toxin [39,48]. As for the protein part of a toxin, it can be modified
for worse recognition and activation of immune cells through the gene engineering. This
strategy was successfully used for modifying DT and PE. To reduce the immunogenicity of
DT seven point mutations were introduced to the surface highly hydrophilic amino acids
that were located away from the catalytic site according to the X-ray structure. The resulting
modified truncated diphtheria toxin triggered the production of lower levels of antibodies
comparing to non-modified protein in mice without losing more than a log of activity [49].
In case of PE the more sophisticated method was used. B-cell epitopes were identified
by using a panel of antibodies derived from immunized mice and the human antibodies
present in the sera of patients treated with PE38-based recombinant immunotoxins (IT) [50].
The exact location of the epitopes was determined by introducing individual alanine
replacement of bulky amino acids and subsequent loss of binding analyzing a panel of
monoclonal antibodies [51]. The PE immunogenicity was further reduced by removing a
large part of PE38 domain II [52]. Furthermore, an immunodominant T-cell epitope in PE-
based recombinant ITs was identified and eliminated. This was achieved by incubation of
peripheral blood mononuclear cells with a toxin to stimulate T-cell activation, subsequent re-
stimulation to overlapping peptides derived from PE38, and quantitation of the responses in
an IL2-enzyme-linked immunospot assay. The low immunogenic toxin has good cytotoxic
and anti-tumor activity towards human cell lines, patient-derived cells, and mouse tumor
models [53].

Sustained circulation is important because it provides an efficient accumulation of
a targeted toxin in the tumor. In many cases penetration into a solid tumor is facilitated
due to malformation of the capillary network. This phenomenon is called the enhanced
permeability and retention (EPR) effect [54]. However, this effect is not always sufficient
to ensure a required drug penetration, which is impeded by intercellular junctions of
both endothelial and cancer cells. There are a number of other factors preventing proper
drug penetration into a tumor, including tumor stroma that provides physical barriers for
therapeutic agents and a poor vascularization of the tumor. Furthermore, the lymphatic
network is rather weak in solid tumors, and an enhanced permeability of blood vessels
together with proliferation of cancer cells leads to an increased intratumoral pressure [55].
Still, nowadays a number of virus protein-based strategies for enhancing the intratumoral
diffusion exist, including cell junction targeting and induction of temporal epithelial-to-
mesenchymal transition [55,56]. It was also demonstrated that botulinum neurotoxin
(BoNT) briefly opens tumor vessels, allowing more effective destruction of cancer cells by
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radiotherapy and chemotherapy [57,58], but the possible benefit of tumor treatment with
botulinum toxin in complex with other protein toxins is yet to be investigated.

The next step is to provide a contact of an effector module with its target cellular
compartment in a tumor cell. For photosensitizers plasma membrane itself can serve as a
target, and in this case a delivery of an agent to a cancer cell surface marker is sufficient
to kill the cell [10]. In this case the targeting module should have high affinity to a target
receptor and its interaction with the tumor antigen should not decrease the phototoxin
efficiency [59–61].

Nevertheless, if an effector module needs to interact with cytoplasmic or nuclear
compounds, its internalization and intercellular transport is required for efficient work.
The most dangerous toxins have evolved to cheat cell trafficking systems or cross cell
membrane, and the targeted agents based on these toxins can cope with cytoplasm delivery
themselves [7]. For some proteins, mainly DT, PE, Stx, and ribosome inactivating toxins,
the intercellular trafficking is well studied [30,62,63]. In some cases, parts of these toxins
responsible for cytoplasm delivery are precisely mapped and can be used for improvement
of the endosome escape efficacy of other therapeutic agents. For example, StxB can be used
as a tool for cell delivery of various cargo through endocytosis and retrograde traffic [64].
In turn, the translocation domain of PE was used to enhance cytoplasm delivery of hybrid
agents based on Shiga-like toxin 2; the resulting fusion protein N8A-TDP-Stx2B inhibited
the growth of hepatocellular carcinoma cells HepG2 with a half-maximal inhibitory concen-
tration (IC50) of approximately 1 nM and was further tested in mouse xenograft model [65].
For other protein types the introduction of cell-penetrating peptides into fuse protein was
proven to be useful. These short 30–35 amino acid peptides, mainly HIV-derived TAT,
Drosophila’s penetratin, and VP22 from Herpes simplex virus [66] can be easily introduced
into fuse proteins and enhance their delivery into the cytoplasm [66,67]. Pore-forming
proteins can also enhance penetration into tumor cells and were successfully used in dual
targeting strategy to improve cytoplasmic delivery of the type I ribosome-inactivating toxin
Gelonin [68].

3. Targeted Toxins as Components of Nanoagents

Despite the successful use of immunotoxins, immunotherapy strategies are still expen-
sive, mainly due to the complicated preparation process. Immunotoxins can also stimulate
the host immune system and trigger the production of neutralizing antibodies. Intravenous
administration of targeted protein toxins may be characterized by poor pharmacokinetic
profiles in addition to non-specific distribution in tissues and organs of the body and can
cause serious side effects including systemic toxicity. Besides, the penetration of anticancer
drugs into tumor tissues is usually low and the high doses of drugs are required for treat-
ment [69,70]. The use of nanocarriers, especially the targeted ones, for delivering toxins to
tumor foci may improve the pharmacokinetics and pharmacodynamics of agents, control
drug release, improve the specificity, increase internalization and intracellular delivery, and
reduce systemic toxicity [71]. Nanocarriers can facilitate selective accumulation in tumors
via the enhanced permeability and retention (EPR) effect and active cellular uptake [72].
Among various nanoscale drug carriers, liposomes, polymeric nanoparticles and noble
metal nanoparticles have demonstrated the greatest potential in clinical application [73–75].

The nanocarrier size should be somewhere between 10 and 100 nm for efficient
extravasation from the fenestrations in leaky vasculature and for the avoidance of the
filtration by the kidneys and the unspecific capture by the liver. The charge of the particles
should be neutral or anionic for efficient evasion of the renal elimination. Besides, the
nanocarriers should be hidden from the reticuloendothelial system (RES), which destroys
any foreign material through opsonization followed by phagocytosis [76]. Recent works on
reversible RES blockade either by nanoparticles or by opsonized red blood cells provides
additional strategies for prolongation of circulation [77,78].

Liposomes are closed spherical vesicles formed by one or several phospholipid bilay-
ers surrounding an aqueous core, in which hydrophilic drugs can be entrapped. Numerous
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factors define liposome properties, such as lipid composition, a number of lipid bilayers,
size, surface charge, and the method of preparation [79]. They can be also coated with
inert and biocompatible hydrophilic polymers, such as polyethylene glycol (PEG), to avoid
rapid elimination from the systemic circulation by the RES after opsonization with serum
proteins and grafted with targeting ligands [76].

Pilot studies on liposomal delivery of toxins to cancer cells in vitro were published back
in the early 80s of the last century. In 1982, McIntosh and Heath studied the cytotoxic effect
of Gelonin, a potent inhibitor of protein synthesis from Gelonium multiflorum, delivered
to different tumor and normal cell lines using liposomes of various compositions [80].
Jansons and Panzner in 1983 managed to carry out passive liposomal delivery of fragment
A of diphtheria toxin (DTA) without losing its cytotoxic properties [81]. To enhance
target cell specificity, Collins and Huang have proposed pH-sensitive immunoliposomes
coated with fatty acid-derivatized antibody against the mouse major histocompatibility
antigen H-2Kk for targeted delivery of a DTA to free toxin-resistant murine cells and
demonstrated its high cytotoxicity [82]. Later the targeted delivery of DTA via tumor-
specific immunoliposomes and high anti-tumor activity on human ovarian carcinoma cells
even in the presence of neutralizing anti-diphtheria toxin antibodies was demonstrated [83].
Circulating neutralizing anti-toxin antibodies protect against non-specific action of toxin
and considerably limit the therapeutic use of immunotoxins due to early inactivation and,
in particular, in case of multiple injection schemes [84].

The toxin delivery system based on pH-sensitive non-targeted liposomes simulta-
neously loaded with a pore-forming protein listeriolysin O and Gelonin, was quite effec-
tive [85]. Listeriolysin O mediated escape of the toxin molecules from the endosome into
the cytosol after liposome internalization. Proteoliposomes killed B16 melanoma cells
in vitro with a Gelonin IC50 in subnanomolar range. The treatment by direct intratumor
injection into subcutaneous solid tumors of B16 melanoma in a mouse model showed that
the proposed pH-sensitive liposomes were more effective in curtailing tumor growth rates
than control ones.

Liposomes have proven to be an efficient vehicle for delivering a high molecular
weight neurotoxin botulinum toxin A to treat hypersensitive bladder and overactive blad-
der (OAB) without systemic injection [86]. Intravesical lipotoxin administration cleaved
SNAP-25, inhibited calcitonin gene-related peptide release from afferent nerve terminals,
and blocked rat bladder hyperactivity induced by acetic acid [87]. Besides, intravesical lipo-
toxin instillation effectively reduced frequency episodes 1 month after treatment in OAB
patients without any increase in postvoid residual or the risk of urinary tract infection [88].

Yaghini and colleagues proposed the use of liposomes for passive simultaneous
delivery of protein toxin saporin and photosensitizer disulfonated tetraphenylporphine for
light-triggered cytosolic release [89]. They showed that liposomes loaded with saporin and
functionalized with cell penetrating peptides (Tat 48-57, cell-permeable peptide, derived
from HIV-1 transactivator of transcription (Tat) protein residue 48-57), some of which are
connected via a flexible linker with photosensitizers, effectively bind to and are internalized
into tumor cells in vitro. When exposed to light, ROS-mediated damage of internalized
liposomes was induced, toxin molecules were released into the cytosol and cytotoxicity of
saporin was significantly enhanced in comparison with the effect of free toxin exposure.
The two-modal photodynamic and cytotoxic effects of the described proteoliposomal
system led to almost 100% death of the irradiated cells at nanomolar concentrations of
saporin with short exposure times.

The potential of thermosensitive liposomes as nanocarriers for high-molecular weight
cytotoxins have been recently demonstrated [90]. The presence of 10% mol 1-stearoyl-2-
hydroxy-sn-glycero-3-phosphatidylcholine (MSPC) in the liposomes provided them with a
homogeneous size, a suitable temperature range for hyperthermia, and effective release
of their cargo after heating. In vitro experiments with mouse CT26 colon carcinoma cells
confirmed that proteoliposomes contained a ribosome-inactivating protein toxin Mistletoe
lectin-1 (ML1), strongly inhibited tumor cell viability upon mild hyperthermia treatment,
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and this approach represents a promising strategy for local passive tumor delivery for
macromolecular cytotoxins.

Gao and co-authors developed the PEGylated immunoliposomes conjugated with
anti-HER2 Fab and loaded with PE38KDEL for targeted delivery of protein toxin to HER2-
positive cells [91]. PE38KDEL is a 38 kDa mutant form of PE and exhibits superior anti-
tumor activity and low non-specific toxicity [92]. The immunoliposomes were less than
200 nm in diameter, had a high drug loading capacity and antibody conjugation efficiency
and could be efficiently bound to and were internalized into HER2-overexpressing breast
cancer cells, resulting in potent cytotoxicity in vitro in a picomolar concentration of toxin. It
is worth noting that targeted immunoliposomes were more cytotoxic than non-targeted
ones in HER2-overexpressing tumor cells.

Recently, a new method has been proposed for the preparation of small (80–90 nm)
unilamellar antigen-targeted liposomes containing large amounts (thousands of protein
molecules per liposome) of highly toxic PE40 [93] (Figure 2a). Efficient encapsulation of the
proteins was achieved through electrostatic interaction between positively charged toxin
proteins at pH lower than pI and negatively charged liposome membrane. The external
surface of proteoliposomes were functionalized with covalently coupled DARPin_9-29
using “click chemistry” through a relatively long flexible linker. Functionalized proteolipo-
somes specifically bind to HER2-positive cells and after internalization cause cell death at
subnanomolar concentrations [94].

Furthermore, this method was used for obtaining DARPin_9-29 functionalized lipo-
somes loaded with ribonuclease barnase [95,96]. Targeted liposomes loaded with barnase
effectively inhibit the viability of HER2-positive cells, and the severity of the cytotoxic
effect correlates with the expression level of the HER2 receptor.
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nanocomplex based on radioactive 90Y bearing core-shell UCNP and functionalized with targeted
toxin DARPin-PE40 [97].

Nanoparticles (NP) have considerable potential for cancer imaging and therapy due
to their small size and prolonged circulation. In addition, synthesis and formulation of
NPs are simple and cost-effective, and because of their small size, NPs are not antigenic
or immunogenic themselves. Polymeric NPs also turned out to be very promising as
effective nanocarriers of protein toxins. Chen and co-authors proposed to use poly(lactic-co-
glycolic acid) (PLGA) biodegradable and biocompatible polymeric NPs to targeted delivery
of PE38KDEL to cancer cells [98]. PE38KDEL-loaded PLGA NPs were functionalized
using Fab’ fragments of a humanized anti-HER2 monoclonal antibody to target the HER2
antigen. In vitro experiments demonstrated the specific high-affinity binding of PE38KDEL-
loaded PLGA Nps to breast cancer cells overexpressing HER2; the antitumor activity of
PE38KDEL-loaded PLGA Nps was higher and nonspecific toxicity was lower than that of
free PE38KDEL immunotoxin. In the developed xenograft model of HER2-overexpressing
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tumor, administration of immunonanoparticles showed a much better therapeutic efficacy
in inhibiting tumor growth and reducing systemic toxicity of PLGA NPs as compared with
free immunotoxin.

In another work [99], silver nanoparticles (Ag NP) for PE38 non-targeted delivery
to human adenocarcinoma cells in vitro were proposed. The Ag NPs loaded with toxin
demonstrated a severe cytotoxic effect on the proliferation of the breast cancer cells and
the P53-dependent apoptosis mitochondrial pathway was the major pathway of cell death
induced by this nanotoxin.

A successful use of gold nanoparticles (GNP) as carriers of protein toxins has been
demonstrated in the work by Bhowmik et al. [100]. They showed that PEGylated gold
nanoparticles conjugated with Naja Kaouthia Cytotoxin 1 (NKCT1), a protein toxin from
the Indian cobra (Naja kaouthia) venom, work synergistically and lower the application
dose and duration of action for NKCT1, ensuring that NKCT1 is released by GNPs into
the target cells in a controlled manner, the cytotoxic effect of NKCT1 is two to threefold
stronger and its side toxic effects are minimized as compared to the unconjugated NKCT1.
These conjugated GNPs-NKCT1 exhibited high anti-leukemic activity in vitro, induced cell
cycle arrest, and promoted apoptosis-regulating activities, such as nuclear fragmentation.
It was later shown that GNPs-NKCT1 inhibits growth of different cancer cell lines, and
that in the case of normal cell lines treated with GNPs-NKCT1, cell death was significantly
less than in the treated cancer cells [101]. In immunocompetent mice with liver tumors
induced by diethylnitrosamine (DEN) injection, the number and size of tumors were much
smaller in mice treated with GNPs-NKCT1 than in mice treated with NKCT1, and were
comparable to the results of 5-F fluorouracil therapy.

It is known that combining multiple synergistic therapeutics may reduce the dosage
requirements and be beneficial in cases of tumors resistant to a single drug therapy. It was
realized that the best outcome is achievable when both toxic agents enter target cancer
cells at the same time in the form of a single supramolecular structure or two agents are
targeted at different sites of the same oncomarker on the target cell but do not compete
for binding. To implement the first approach in combined radio- and chemotherapy,
up-conversion nanoparticles (UCNP) coupled to two therapeutic agents were proposed:
beta-emitting radionuclide yttrium-90 (90Y) fractionally substituting yttrium in UCNP, and
a fragment of the exotoxin A derived from Pseudomonas aeruginosa genetically fused with
a targeting DARPin specific to HER2 receptors (Figure 2b) [97]. The synergistic effect of
multifunctional nanocomplexes is markedly enhanced in comparison with monotherapy
carried out separately in vivo, which allows reducing the concentration of both toxic agents
(radioisotope and immunotoxin) by about 2200 times. The photophysical properties
of UCNPs made it possible to perform background-free imaging of the distribution of
therapeutic nanoparticles in the body and non-invasively record the response to treatment
in real time.

Another work proposed a new cancer therapy strategy that selectively targets two dif-
ferent binding sites for HER2 with therapeutic compounds, which act through completely
different mechanisms of action, for bimodal chemotherapy and immunotherapy [102].
PLGA NPs functionalized with affibody Z HER2:342 for targeting subdomain III and IV of
HER2 and immunotoxin containing a low-immunogenic modification of PE (LoPE) and
DARPin_9-29 for targeting subdomain I of HER2 were used. PLGA NPs were loaded with
an imaging fluorescent dye Nile Red and a chemotherapeutic drug doxorubicin. The pro-
posed dual targeting strategy can drastically enhance anticancer therapy of HER2-positive
cells, which made possible a 1000-fold decrease in the effective drug concentration in vitro
and a significant enhancement of HER2 cancer therapy compared to monotherapy in vivo.

In support of the new nanomedical concept of self-assembling self-delivered drugs
that act in the absence of any external vehicle, self-assembling toxin-based nanoparticles
were designed [103]. Conveniently engineered, the protein toxins, namely segments of
the diphtheria toxin and the Pseudomonas aeruginosa exotoxin, targeted to CXCR4+ cancer
stem cells, have been successfully produced and purified in bacteria. Protein toxins self-



Int. J. Mol. Sci. 2021, 22, 4975 9 of 24

organized as toroid nanoparticles of 30–90 nm. In this form, they penetrated into CXCR4+
target cells and promoted receptor specific cell killing both in vitro and in vivo, playing
a dual role as a drug and a carrier, and causing programmed cell death and destruction
of tumoral tissue after administration of a single dose. The systemic administration of
both nanostructured drugs in a mouse xenograft model of colorectal cancer promoted
efficient and specific local destruction of the tumor tissues and a significant reduction in
the tumor volume. The developed self-assembling system of toxin-based protein NPs has
subsequently proven itself well in the treatment of colorectal cancer [104] and diffuse large
B-cell lymphoma [105].

4. Cytotoxic Mechanisms of Natural Toxins

The killing mechanisms of protein toxins can vary, but they differ from the mechanisms
that are implemented in conventional chemotherapy [4], so an obtained resistance to
chemotherapeutic agents does not affect the effectiveness of protein toxins. Furthermore,
the mechanism complementation can provide a synergistic effect of combined therapy. In
addition, protein toxins are not mutagens and should not accelerate tumor progression due
to enhanced mutagenesis. They can be mass-produced cheaply in bacteria as homogeneous
proteins [5].

Toxins of bacterial and plant origin commonly used as cytotoxic component in chimeric
proteins in anticancer therapy are summarized in Table 1. The most toxic proteins include
enzymes that inhibit translation at the elongation step. Unsurprisingly, most of them arise
from natural toxins that have been effectively preselected by evolution.

Table 1. Protein moieties commonly used in experimental anticancer therapy.

Mechanism of Action Details Examples References

eEF2 inactivation Pseudomonas exotoxin A (PE, ETA) [62,106]ADP-ribosylates elongation factor 2 (eEF2) and
halt protein synthesis at the elongation step Diphtheria toxin (DT) [12,83]

Ricin [63,107,108]
Shiga toxin (Stx) [30]

Ribosome inactivation

N-glycosidase depurinates a critical adenine in
28S rRNA, which results in the inability of the
ribosome to bind elongation factor 2, thereby

blocking protein translation Abrin [109–111]

Barnase [112,113]RNA degradation Nonspecific RNA cleavage blocks protein
synthesis and leads to apoptosis Binase [114]

Cell signaling disruption
The cleavages of the MAP kinase family
members leading to their inactivation;

uncontrolled conversion of ATP to cAMP
Anthrax toxin [115]

KillerRed [116,117]Photoinduced ROS
production

The proteins absorb exciting light and produce
reactive oxygen species miniSOG [6]

Direct apoptosis induction Effector caspases cleavage Granzyme B [118]
Vascular network modulation Botulinum neurotoxin [57,58]

Listeriolysin O [68,85]
Enhanced diffusion of

anticancer drug Pore formation for better intracellular delivery
Streptolysin-O [119,120]

4.1. Toxins Inhibiting Protein Synthesis

Enzymes such as diphtheria toxin (DT), pseudomonas exotoxin A (PE), ricin, Shiga
toxin (Stx), abrin, and similar agents can be considered as the most versatile toxic modules,
as they exhibit not only toxic properties, but also the ability to penetrate into a target cell
and reach its cytoplasm [62,111,113]. These features make natural toxins compatible with
most delivery strategies used in experimental cancer therapies. On the other hand, these
protein toxins have some disadvantages that should be considered developing therapy,
mainly the side effects including vascular leak syndrome, hepatotoxicity, and kidney
damage [84,121,122]. In addition, Shiga toxin is notorious for its ability to cause hemolytic
uremic syndrome (HUS), potentially leading to life-threatening complications [123,124].
Bacterial and plant toxins in their natural forms can also show high immunogenicity, which
limits the safety and effectiveness of therapy. Nevertheless, all these issues can be solved
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with the help of contemporary modification techniques and toxin delivery methods, which
we are discussing later.

Another promising class of protein toxins are ribonucleases like barnase [112,113] and
binase [114]. Cleavage of messenger RNA is a universal mechanism of cell killing, as any
human cell depends on protein synthesis. These enzymes should be most active when
delivered to the cytoplasm, but experimental data demonstrate that barnase in the form of
a targeted recombinant protein that binds to the surface HER2 receptor enters the cell via
receptor-mediated endocytosis and can induce apoptosis in cancer cells [112,113], although
the mechanism of its escape from endosome remains unclear. Similar results were obtained
for conjugates of mammalian RNAse A with antibodies to transferrin receptor or CD5
tested on cancer cells expressing respective target molecules [125]. Cytotoxic activity was
even shown for untargeted ribonucleases, namely RNAse A, and its homolog onconase,
which are likely to be transported to cancer cells in a non-specific manner [126]. Thus, at
least some RNAses are capable of crossing cytoplasmic or vesicular membrane and reach
cytosol, so these agents are also compatible with a variety of delivery techniques.

4.2. Toxins Disrupting Cell Signaling

Anthrax toxin (AT) causes cell death due to disruption of kinase signaling and uncon-
trolled generation of cAMP. It consists of three proteins: protective antigen (PA, 83 kDa),
lethal factor (LF, 90 kDa) and edema factor (EF, 89 kDa) that are non-toxic alone in mouse
models, but form active bipartite combinations. The combination of LF and PA generates
lethal toxin (LT), while EF combined with PA comprises edema toxin (ET) [115,127]. PA
binds to either of the two known natural receptors, tumor endothelial marker 8 (TEM8
or ANTXR1) or capillary morphogenesis gene 2 (CMG2 or ANTXR2). Upon binding to
cell surface PA is cleaved by furin protease and its C-terminal 63-kD moiety (PA63) can
form heptamer or octamer [128]. The oligomerization of PA provides the binding site for
LF or EF and also triggers internalization of the toxin complex via a lipid raft-dependent
clathrin-mediated process [129]. In the endosome acidic environment PA oligomer inserts
into lipid bilayer forming cation-selective pore that also provides the translocation of the
unfolded LF and EF into cytosol [130].

Once in the cytoplasm, EF acts as a calmodulin-dependent adenylate cyclase which
increases the cAMP concentration in cells [131]. LF is a zinc metalloproteinase that cleaves
mitogen-activated protein kinase kinases (MAPKK) in their N-terminal regions and Nlrp1.
The cleavage of MAPKKs disrupts several signaling pathways, including the ERK1/2,
JNK/SAPK, and p38 pathways, which are important for cell survival, proliferation and cell
cycle regulation [132]. The cleavage of Nlrp1 by LT causes toxin-induced inflammasome
activation and IL-1β release [133].

The three components of AT are individually non-toxic, and the PA component must
be proteolytically activated prior to cell intake. These unique features render anthrax toxin
attractive for tumor therapy. As it was already mentioned in Section 2.2 the PA target TEM8,
can be upregulated in several types of tumors, [32]. This feature can be used for targeting
recombinant toxins to tumors in vitro and in vivo. A number of melanoma cell lines are
sensitive to LF, especially those bearing the activating V600E B-RAF mutation [134,135].
This selective toxicity was also observed in vivo: intraperitoneal injections of LT caused
partial and complete regressions of subcutaneous tumor xenografts [136]. The selectivity
of the toxin was further improved by replacing the original furin cleavage site by matrix
metalloproteinase (MMP) cleavage site. The resulting MMP-activated PA with LF efficiently
treated melanoma xenografts, and lung and colon carcinoma xenografts irrespective of
the B-RAF status [137]. The idea of retargeting was also used in MMP- or urokinase plas-
minogen activator (uPa)-activated PA in combination with FP59 toxin consisting of anthrax
toxin lethal factor residues 1-254 fused to the ADP-ribosylation domain of Pseudomonas
exotoxin A [138,139]. This approach was further improved by engineering PA variants that
can only form octamers after activation by both of the tumor-selective proteases, uPa and
MMPs and, thus, achieved a safe dual-activity dependent delivery system [140].
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The use of different toxins fused to LF has proven to be useful: many types of tumors
are not sensitive to MAPK signaling inhibition and LT itself is not efficient, but LF can pro-
vide targeting and cytoplasmic delivery of other protein toxins, such as tetanus toxin [141],
pseudomonas exotoxin A [138,139,142], diphtheria toxin A [143,144], and Shiga toxin [144]
(summarized in [115]).

Retargeting of PA with the help of fused proteins can also be achieved. An elegant
approach based on PA–LF complex formation was published in 2012 [145]. The authors
used a mutant PA that is unable to bind either TEM8 or CMG2 due to two point mutations,
N682A and D683A. This mutant PA (mPA) was fused C-terminally to human epidermal
growth factor (mPA-EGF). Working as a pre-targeting module mPA-EGF bound to EGFR-
positive cells and, in turn, attracted LFn-DTA protein (LF fused to receptor-binding domain
of diphtheria toxin) to the cells. The use of mPA-EGF/LFn-DTA combination resulted
in high protein synthesis inhibition (IC50 0.01 nM LFn-DTA) on epidermal growth factor
receptor-positive human A431 tumor cells while protein synthesis in receptor-negative
CHO cells was not affected at concentrations of up to 10 nM LFn-DTA. mPA was also used
as an effector module in fuse with HER2-specific affibody ZHER2 [146]. The resulting
mPA-ZHER2 protein was combined with either LFn-DTA or LFn-RTA which resulted in
strong inhibition of protein synthesis and high cytotoxicities on HER2-positive cells, while
HER2-negative cells were not affected.

To sum up, we can conclude that anthrax toxin provides a variety of tools for tumor
targeting both through the natural tropism and toxicity and through the ability to translo-
cate to cytoplasm thus delivering other toxins to cancer cells. To date, the dual-targeting
strategies involving cell surface receptor recognition and tumor-specific activation look the
most promising.

4.3. Proteins Inducing Oxidative Stress

Another intriguing application of protein toxins is their use as photosensitizers
(molecules capable for reactive oxygen species production (ROS) upon irradiation) in
deep-penetrating photodynamic therapy (PDT).

Photodynamic therapy (PDT) has been considered as a potential therapeutic interven-
tion against diseases due to its minimally invasive nature, localized therapy with minimal
or no damage to healthy tissues, and fast healing process [147–149]. In PDT, three elements
are required simultaneously: a light-activated photosensitizer (PS), a light source with an
appropriate wavelength, and surrounding oxygen [150]. When illuminated by light at
a specific wavelength, PS absorbs the light energy and can be promoted into an excited
singlet state. The energy of the excited singlet state can be dissipated either by thermal
decay, or the emission of fluorescence, or moving to a lower energy excited triplet state
via intersystem crossing. At the excited triplet state, the PS can undergo a photochemical
reaction with the surrounding molecules to generate reactive oxygen species, such as
superoxide anion, hydroxyl radical, hydrogen peroxide, or singlet oxygen [151]. As ROS
have a short range of action and a short lifetime, the primary targets of photodamage are
molecules and cells that are proximal to the area of ROS production after irradiation. Thus,
PDT is a minimally invasive technique that allows specific and localized therapeutic effects
on cancer cells. However, the need of external light source for PS activation hinders the
application of PDT for deep-seated neoplasm due to the limited penetration depth of the
external light in biological tissue [150] (Figure 3a).

Fluorescent proteins capable of reactive oxygen production (ROS), a new type of
biological photosensitizers, are considered to be a promising substitute for current synthetic
photosensitizes used in photodynamic therapy (PDT).

There are only two genetically encoded PSs reported so far: dimeric GFP-like far-red
fluorescent protein KillerRed [8] (with its monomeric version SuperNova [152] and green
fluorescent flavoprotein miniSOG [153] (Figure 3b). The main mechanism of KillerRed
phototoxicity includes free radical formation (mainly O2

−) through one electron reduction
in O2. Mini-SOG is capable of producing primarily but not exclusively O2

− [6,154,155].
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This new type of biological PSs is considered as a promising substitute for current syn-
thetic photosensitizes used in PDT, and as it was shown in a series of in vitro investigations,
miniSOG and KillerRed possess phototoxicity equal or exceeding that of commonly used
PSs or other fluorescent chromoproteins [8,9,156]. Remarkable phototoxicity, in addition to
water solubility and biocompatibility, has placed genetically encoded PSs among the top
ideal hydrophilic candidates for PDT, which has been successfully proven for photoablation
in cell models [9,157–160].

Although genetically encoded PSs exhibited high phototoxicity in cultured tumor
cells in vitro, as well as in transparent animals [161–164], the achievement of substantial
photoablation effect in a tumor xenograft in in vivo model is a complicated task [157]. For
example, Ryumina and coworkers have shown that miniSOG, a 106 amino acid green
fluorescent flavoprotein generated from Arabidopsis phototropin, stably expressing in
xenograft tumor model, does not cause substantial photoablation of the tumor under
irradiation due to limited penetration of excitation light deep into tissues [157].

To overcome this challenge, a new elegant approach based on non-radiative energy
transfer from donor luciferase-substrate reaction to the acceptor-fluorophore was pro-
posed [165,166]. miniSOG and NanoLuc form a good BRET (bioluminescence resonance
energy transfer) pair, in which the emission peak of NanoLuc (in the presence of its specific
substrate furimazine) at 460 nm is well matched with the absorption peak of miniSOG at
448 nm (Figure 4) [165]. Using in one genetic construct, the genes encoding phototoxic
protein miniSOG (as a PS [153]) and NanoLuc luciferase (as a light source [167]) it was
shown that the NanoLuc-miniSOG system is an efficient tool for PDT therapy, where
NanoLuc serves as a deep tissue flashlight in the absence of external physical stimuli
and chemical co-factors. This system was comprehensively characterized in vitro and it
was shown that the intensity of the light emitting by NanoLuc-furimazine biolumines-
cence system is sufficient to activate miniSOG leading to ROS production in cancer cells,
and the photodynamic effect caused by BRET-induced PDT is comparable with that of
light-induced PDT [166]. In vivo experiments on animals with xenograft tumors stably
expressing NanoLuc-miniSOG gene and treated with luciferase substrate showed apparent
tumor growth inhibition. On day 25 after treatment, the tumor volumes in the control
groups were increased approximately sixfold, while in the PDT group tumor growth was
strongly inhibited, with TGI (tumor growth inhibition coefficient) equal to 71% [168]. To
date, this is the only fully genetically encoded system based on bioluminescence resonance
energy transfer for PDT in vivo, which opens up new prospects for the application of PDT
in model organism, regardless of the depth of the tumor.



Int. J. Mol. Sci. 2021, 22, 4975 13 of 24

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 13 of 25 
 

 

photoablation effect in a tumor xenograft in in vivo model is a complicated task [157]. For 
example, Ryumina and coworkers have shown that miniSOG, a 106 amino acid green 
fluorescent flavoprotein generated from Arabidopsis phototropin, stably expressing in 
xenograft tumor model, does not cause substantial photoablation of the tumor under 
irradiation due to limited penetration of excitation light deep into tissues [157].  

To overcome this challenge, a new elegant approach based on non-radiative energy 
transfer from donor luciferase-substrate reaction to the acceptor-fluorophore was 
proposed [165,166]. miniSOG and NanoLuc form a good BRET (bioluminescence 
resonance energy transfer) pair, in which the emission peak of NanoLuc (in the presence 
of its specific substrate furimazine) at 460 nm is well matched with the absorption peak of 
miniSOG at 448 nm (Figure 4) [165]. Using in one genetic construct, the genes encoding 
phototoxic protein miniSOG (as a PS [153]) and NanoLuc luciferase (as a light source 
[167]) it was shown that the NanoLuc-miniSOG system is an efficient tool for PDT therapy, 
where NanoLuc serves as a deep tissue flashlight in the absence of external physical 
stimuli and chemical co-factors. This system was comprehensively characterized in vitro 
and it was shown that the intensity of the light emitting by NanoLuc-furimazine 
bioluminescence system is sufficient to activate miniSOG leading to ROS production in 
cancer cells, and the photodynamic effect caused by BRET-induced PDT is comparable 
with that of light-induced PDT [166]. In vivo experiments on animals with xenograft 
tumors stably expressing NanoLuc-miniSOG gene and treated with luciferase substrate 
showed apparent tumor growth inhibition. On day 25 after treatment, the tumor volumes 
in the control groups were increased approximately sixfold, while in the PDT group tumor 
growth was strongly inhibited, with TGI (tumor growth inhibition coefficient) equal to 
71% [168]. To date, this is the only fully genetically encoded system based on 
bioluminescence resonance energy transfer for PDT in vivo, which opens up new 
prospects for the application of PDT in model organism, regardless of the depth of the 
tumor. 

 
Figure 4. Bioluminescence system based on luciferase, furimazine, and miniSOG. (a) Normalized 
emission spectrum of furimamide (NanoLucem) and normalized absorption (miniSOGabs) and 
emission (miniSOGem) spectra of miniSOG. (b) Scheme of BRET-mediated system for deep PDT 
[165,166]. 

Another known to date genetically encoded PS capable of ROS production under 
exposure to visible light is KillerRed (Figure 3a). When irradiated with yellow-orange 
light (~582 nm), KillerRed demonstrated efficient production of ROS, the phototoxicity of 
which was at least 1000 times higher than that of other fluorescent chromoproteins [8,156]. 
To overcome the shallow penetration depth of excitation light and make possible to use 
KillerRed in deep-seated tumors, the photosensitizing bio-nanohybrids based on 
KillerRed and upconversion nanoparticls (UCNP) have been developed (Figure 5) [116]. 
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Another known to date genetically encoded PS capable of ROS production under
exposure to visible light is KillerRed (Figure 3a). When irradiated with yellow-orange
light (~582 nm), KillerRed demonstrated efficient production of ROS, the phototoxicity of
which was at least 1000 times higher than that of other fluorescent chromoproteins [8,156].
To overcome the shallow penetration depth of excitation light and make possible to use
KillerRed in deep-seated tumors, the photosensitizing bio-nanohybrids based on KillerRed
and upconversion nanoparticls (UCNP) have been developed (Figure 5) [116]. UCNPs used
in this work are able to convert deep-penetrating near infrared (NIR) light to yellow light
to excite KillerRed locally. It was shown that being excited by UPNPs, KillerRed efficiently
generates ROS that cause cancer cells killing. The KillerRed-UCNPs exhibit excellent
colloidal stability in biological buffers and low cytotoxicity in the dark. Cross-comparison
between the conventional KillerRed and UCNP-mediated KillerRed PDT demonstrated
superiority of KillerRed-UCNPs photosensitizing by NIR irradiation, manifested by the
fact that about 70% PDT efficacy was achieved at 1-cm tissue depth, whereas that of the
conventional KillerRed dropped to about 7%. Bio-nanohybrids proposed in this work
prompts investigation of phototoxic potential of proteins in the visible and even ultraviolet
spectral ranges towards their potential utilization in PDT.
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4.4. Direct Apoptosis Induction

The human proteins that work as apoptosis inducers can also be used as effector
modules for cancer therapy. Granzyme B (GzmB) is secreted by cytotoxic T cells and
NK and cause apoptosis in target cells [169]. In normal immune synapses the release of
granzyme B is accompanied by perforin that forms a pore in a cell membrane and lets
granzyme B in [170]. Thus, it was expected that the GzmB would kill target cells only in the
presence of permeabilizing or endosmolytic substances, such as chloroquine [171], which
is consistent with a natural way of the GzmB delivery into a cell. Nevertheless, GzmB and
GzmB-based immunotoxins, used in a number of works without additional permeabilizing
agents, exhibited a considerable antitumor efficiency [118]. The main argument against
GzmB, apart from the lack of translocation signal, is the risk of injecting an active protease
into the circulation, normally not found in this environment.

4.5. Enhanced Diffusion of Other Anticancer Drug

One more group to mention includes protein toxins that are not effective against
cancer themselves, but can provide a synergistic effect with other anticancer drugs due to
enhanced tumor or cell penetration. We have already mentioned junction opener and cell-
penetrating peptides as means of drug delivery [56], but protein toxins can also contribute
to drug diffusion enhancement, mainly cholesterol-dependent cytolysins (CDC) [172].
The Listerilysin O (LLO) produced by the bacterium Listeria monocytogenes is noticeable
because of its reversible activation: this pH-sensitive protein acts as cytolysin in acidic
environment of endosomes and lysosomes and is inactivated in extracellular media and
cytoplasm mainly due to pH [173,174]. LLO in a form of recombinant targeted protein was
shown to facilitate the action of gelonin-based targeted toxin in vitro and decrease IC50
by several orders of magnitude due to enhanced endosome release of the toxin [68]. LLO
was also used in vitro for the cytoplasm delivery of liposome-encapsulated gelonin [85].
Another CDC protein, the Streptolysin-O (SLO) produced by Streptococcus pyogenes was
shown to increase cytoplasmic delivery of various proteins including active domains of
large clostridial toxins from Clostridium difficile B-toxin, Clostridium sordelli lethal toxin, and
Clostridium botulinum C2 toxin [119]. SLO was also used in vitro to increase sensitivity
of head and neck squamous cell carcinoma cells to Telomelysin (OBP-301), a telomerase-
specific replication-competent adenovirus with a human telomerase reverse transcriptase
(hTERT) promoter [120].

Enhanced tumor penetration can also be achieved due to the better blood supply. It
was shown that botulinum neurotoxin A (BoNT-A) causes tumor blood vessels dilatation
thus providing better tumor perfusion and oxygenation. The local intratumor adminis-
tration of BoNT-A caused significant reoxygenation and reperfusion of tumors in vivo
leading to a significant increase in the efficacy of X-ray radiotherapy and cyclophosphamide
therapy at the time of maximal reoxygenation and reperfusion [175]. In another work the
increase in the delivery of gemcitabine into tumors following treatment with BoNT-A was
observed [176]. It is interesting, that BoNT alone did not alter apoptosis in tumor cells or
induce any radio-sensitizing effect in vivo and the benefit from BoNT was directly related
to a change in the tumor microenvironment [175].

5. Reducing Protein Toxins Side Toxicity

The protein toxins high toxicity is one of main advantages of these molecules but
at the same time it increases the risk and severity of side effects. The side toxicity of
a protein can be based on a direct cell killing and inflammation induction [177]. The
most common side effects caused by DT, PE, and ricin include vascular leak syndrome,
hepatotoxicity, and kidney damage [84,121,122]. In addition, Shiga toxin is notorious for its
ability to cause hemolytic uremic syndrome (HUS), potentially leading to life-threatening
complications [123,124]. The production of neutralizing antibodies can also serve as a cause
on side effects due to anaphylaxis reactions.
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To date the number of strategies were developed to reduce protein drug off-target
toxicity, the main tools are summarized in Table 2.

Table 2. The strategies for reduction protein toxin side toxicity.

Strategy Used for Side Toxicity Reduction Principle References

Removing the natural targeting domains of AB toxins [35]Impairment of natural tropism
Introduction of point mutations attenuating the target binding [145]

Construction of miniaturized toxin variants
Deletion of protein parts not directly involved in toxin mechanism

of action to reduce any non-specific interaction
and immunogenicity

[52,53,178]

Tumor-specific activation of a toxin The replacement of furin cleavage site to tumor-specific proteases
cleavage sites (MMP, uPA) [138–140]

RES cells inactivation Macrophages blockade decreasing toxic nanoparticles uptake [78,179]

The natural tropism of a toxin can sometimes be used to target a tumor, as we have
already discussed for anthrax toxin and Shiga toxin, but for the majority of protein tox-
ins the natural tropism provides an off-target activity. To reduce the unwanted effects
it is desirable to impair the targeting moieties. It was first implemented for the toxins
consisting of targeting and effector modules, which predisposes them to be used in the
truncated form. The truncated forms of protein toxins were used in the second generation
of immunotoxins, which helped to reduce their in vivo side toxicity retaining their effi-
ciency [16]. The targeted proteins with truncated toxins were first acquired with the use of
DT and ricin [16], then the promising specific toxicity was proven for PE40, the engineered
ETA [180,181]. Further miniaturization of PE led to the remarkable success in reducing both
its immunogenicity and side toxicity. The PE-fused antibodies and other targeting proteins
efficiently kill cancer cells in vitro [94,178,182] and reduce or stop the growth of tumors of
various origin in vivo [22,94,183]. However, PE is notorious for its high immunogenicity:
PE is a bacterial protein that can induce antibody responses and has a considerable side
toxicity [184,185]. Although PE-based agents can be used successfully in combination
with immunosuppressive chemotherapy [184] or in the treatment of hematologic malig-
nances [186,187], the production of neutralizing antibodies reduces the efficiency of the
PE-based therapy in patients with intact immune system and increases the probability of
hypersensitivity reactions. The removal of domain II leads to a decrease in immunogenicity
and, at the same time, reduces the protein degradation in the lysosomes. In addition, it
helps to reduce off-target side toxicity in animal models [188]. Further investigation of PE
helped to map the immunodominant epitopes of the catalytic domain and make them less
visible to immune cells by deletions and point mutations [45]. The resulting toxin variants
demonstrate high anti-cancer activity comparable to the activity of the initial variants of
PE40 and PE38 and have decreased side toxicity and are less immunogenic [52,53,178].

For the anthrax toxin the introduction of point mutations impairing natural targets
binding has proven to be effective: a double mutation in domain 4 of protective antigen
(PA) led to the ablation of the protein native receptor-binding function. The resulting mPA
fuse with EFG in a complex with LFN-DTA efficiently inhibited protein synthesis in EGFR-
positive A431 cells in vitro (IC50 = 10 pM) not affecting the protein synthesis of CHO-K1
cells lacking EGFR. This variant was also used to target cells expressing HER2 [146,189],
and both EGFR and carcinoembryonic antigen [190]. Still, the tumor-killing activity and
side toxicity of these proteins in vivo are yet to be investigated.

In case of glycoproteins, the oligosaccharides involved in off-target binding can be
chemically removed. The ricin oligosaccharides bind to CD206 mannose receptor on
macrophages [38,46], and interact with glycosylated IgA and IgM [47]. The circulation
time and anti-tumor activity of ricin-based immunotoxins can be increased by chemical
deglycosylation of the toxin [39,48], but unfortunately, these forms are more toxic to mice
than the glycosylated ones [39].
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Another promising strategy relies on tumor-specific activation of a toxin that requires
proteolytic cleavage for toxin functioning. Several toxins, namely DT, PE, and ricin are
digested in endosomes by furin protease thus releasing active protein fragments. By means
of gene engineering the furin cleavage site can be replaced by the sequences recognized by
the proteases that are upregulated in tumors. This strategy was realized for anthrax toxin
protective antigen (PA): it was obtained in matrix metalloproteinase-dependent and uroki-
nase plasminogen activator-dependent variants [138,139] which were selectively activated
by tumor cells expressing respective proteases. The MMP-activated PA in combination
with anthrax toxin lethal factor efficiently treated melanoma xenografts, and lung and
colon carcinoma xenografts irrespective of the B-RAF status, targeting not only tumor cells,
but also tumor vasculature [137]. This engineered toxin was less toxic than wild-type LT to
mice because of the limited expression of MMPs by normal cells and also displayed lower
immunogenicity compared with the wild-type toxin. The systemically administered toxin
produced greater anti-tumor effects than wild-type LT toward human xenograft tumors.
Both types of activated PA molecules were used to obtain dual-activity dependent delivery
system based on PA variants that can only form octamers after activation by both of the
tumor-selective proteases, uPa and MMPs. This complex agent completely stopped tumor
growth in mice and its components were well tolerated in higher doses, than the wild-type
PA and LT [140].

The most recent strategy for prevention of toxic agents intake by macrophages is
based not on a toxin modifications, but on a transient reticuloengothelial (RES) cells
inactivation. It can be achieved either by injection if blocking nanoparticles [179] or by
enhanced clearance of erythrocytes caused by anti-erythrocyte antibodies [78]. These
methods were successfully used to prolong nanotherapeutic agents circulation time and
can be possibly applied for toxin-based therapy.

6. Conclusions

Cancer treatment has been revolutionized due to antigen-targeting drugs that specifi-
cally deliver a cytotoxic component to cancer cells, and advances in genetic engineering and
biotechnology, making it possible to produce any fusion proteins needed. Potent cytotoxic
components include enzymatically active protein toxins based on plant or bacterial toxins.
Here, we have summarized several decades of research devoted to targeting internalizing
receptors of cancer cells with chimeric therapeutic molecules. The targeting approach can
also be applied to drug carriers such as liposomes, polymers, and nanoparticles. The design
of complex targeted agents or several drug application regimens that allow achieving a
synergistic effect is also a promising area of anticancer therapy.

The use of several toxic mechanisms or several target molecules makes it possible to
compensate for the deficiencies of effector molecules, increase their efficiency and avoid
selection of resistant cells. The designed toxic proteins capable of ROS production and
fused to UCNP or luciferase make it possible to overcome the shallow depth of excitation
light penetration, thus providing a novel approach to PDT of deeply located tumors.

Despite the numerous breakthrough solutions in cancer treatment, the problem is still
far from being solved. It is worth mentioning that only two toxin-based molecules, namely
Diphtheria toxin-based DAB389IL2 and DAB389IL3 [191,192], have been approved in late-
stage clinical evaluation. Recently, a PE-based immunotoxin Moxetumomab Pasudotox
(Lumoxiti), targeting CD22, has been approved for the treatment of patients with hairy
cell leukemia [53]. In the future, new targeted therapies and combinations with increased
selective anticancer activity and minimal side effects will be studied, which will increase
the clinical efficacy of patients with various types of cancer.
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Abbreviations

DT Diphtheria toxin
PE Pseudomonas aeruginosa exotoxin A
RIT Ribosome inactivating toxin
Stx Shiga toxin
HER2 Human epidermal growth factor receptor 2
EpCAM Epithelial cell adhesion molecule
FcRn the neonatal immunoglobulin Fc receptor
MMP Matrix metalloprotease
uPA Urokinase plasminogen activator
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