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Abstract

Background: School absenteeism data have been collected daily by the public health unit in Wellington-Dufferin-
Guelph, Ontario since 2008. To date, a threshold-based approach has been implemented to raise alerts for
community-wide and within-school illness outbreaks. We investigate several statistical modelling approaches to using
school absenteeism for influenza surveillance at the regional level, and compare their performances using twometrics.

Methods: Daily absenteeism percentages from elementary and secondary schools, and report dates for influenza
cases, were obtained from Wellington-Dufferin-Guelph Public Health. Several absenteeism data aggregations were
explored, including using the average across all schools or only using schools of one type. A 10% absence threshold,
exponentially weighted moving average model, logistic regression with and without seasonality terms, day of week
indicators, and random intercepts for school year, and generalized estimating equations were used as epidemic
detection methods for seasonal influenza. In the regression models, absenteeism data with various lags were used as
predictor variables, and missing values in the datasets used for parameter estimation were handled either by deletion
or linear interpolation. The epidemic detection methods were compared using a false alarm rate (FAR) as well as a
metric for alarm timeliness.

Results: All model-based epidemic detection methods were found to decrease the FAR when compared to the 10%
absence threshold. Regression models outperformed the exponentially weighted moving average model and
including seasonality terms and a random intercept for school year generally resulted in fewer false alarms. The
best-performing model, a seasonal logistic regression model with random intercept for school year and a day of week
indicator where parameters were estimated using absenteeism data that had missing values linearly interpolated,
produced a FAR of 0.299, compared to the pre-existing threshold method which at best gave a FAR of 0.827.

Conclusions: School absenteeism can be a useful tool for alerting public health to upcoming influenza epidemics in
Wellington-Dufferin-Guelph. Logistic regression with seasonality terms and a random intercept for school year was
effective at maximizing true alarms while minimizing false alarms on historical data from this region.
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Background
Influenza is one of the leading causes of death in Canada,
with seasonal influenza resulting in 6000 - 20,000 hos-
pitalizations and an average of 11.3 deaths per 100,000
population each year [1, 2]. Early detection of the onset
of a seasonal influenza epidemic at the community level is
important so that appropriate public health intervention
measures can be taken. For example, the World Health
Organization suggests several behavioural interventions
for preventing the spread of influenza A (pH1N1) such
as staying at home when ill and hand-washing [3]. Pub-
lic health units can increase communications of these
messages if they receive warning sufficiently early in an
influenza epidemic [3], which may mitigate the sever-
ity of the epidemic due to public awareness. Ideally, the
timing of this messaging should occur close enough to
influenza season so that the public feels there is cause to
follow suggestions, but as early as possible to maximise
the effectiveness of mitigation measures.
Syndromic surveillance uses non-traditional indicators,

such as over-the-counter medication sales [4, 5], ambu-
lance dispatch data [6–8], and emergency department
data [9, 10] for early detection of outbreaks or epidemics.
Indirect health-related indicators such as these have been
found to improve timeliness (or sensitivity) of surveillance
systems, often resulting in an epidemic being detected
sooner than it would have been if only clinical data were
monitored [11]. However, the non-specific nature of this
type of data can also lead to an increase in alarms that are
not related to the disease of interest, reflecting decreased
specificity for the surveillance system [11]. Therefore, the
challenge of syndromic surveillance lies in finding an epi-
demic detection method that can produce a manageable
number of false positive alarms, while still remaining sen-
sitive enough to provide public health units with warning
far enough in advance of the reporting of laboratory-
confirmed cases to be useful.

Influenza surveillance with school absenteeism
School absenteeism surveillance is of particular impor-
tance to public health because children aged five to fif-
teen years have been found to have the highest rates
of influenza infection [12], and children under eighteen
years old are the most likely family members to transmit
influenza to the home [13]. Since most children spend a
significant part of their time at school, schools likely play
a significant role in spreading influenza to the wider com-
munity [13]. Furthermore, school absenteeism has been
found to be significantly higher during influenza season
than during the rest of the winter [14].
Several studies have used different epidemic detection

techniques within influenza surveillance systems using
school absenteeism data. These studies are often inter-
ested in either raising an alarm for the beginning of a

seasonal influenza outbreak or epidemic, or measuring
correlation between absenteeism and influenza. The stud-
ies that attempt to detect the start of an outbreak generally
use techniques from one of three categories: thresholds
(either fixed or individualized), models adapted from
techniques traditionally used in statistical process control,
and regression models.
In the first category, a study conducted in Quebec dur-

ing the 2009 pH1N1 pandemic found the 10% threshold
across all schools failed to detect outbreaks early enough
for an intervention to be executed, either at the school-
level or for the surrounding community [15]. The study
also found that during an early wave of the pandemic, only
around one third of schools met the absenteeism thresh-
old, despite it being unlikely that none of the remaining
schools had experienced an outbreak, indicating the 10%
threshold may be too high for many schools and is not
effective for early outbreak detection [15]. Mann et al.
(2011) took a more individualized approach where an
alarm could be raised when a school either surpassed
8% absenteeism or if absenteeism exceeded one standard
deviation of the previous 30 day mean [16]. This study
attempted to catch school-level outbreaks, however of the
89 schools that produced an alarm only nine were truly in
the midst of an outbreak [16].
Examples of studies that use statistical process con-

trol techniques include Besculides et al. (2005), who used
a cumulative sum (CUSUM) method to monitor absen-
teeism in New York City [17]. They examined three school
years’ worth of absenteeism data and were able to detect
changes in absenteeism for several community-wide epi-
demics of influenza-like illness [17]. However, they con-
cluded that the absenteeism data still resulted in toomuch
noise and did not ultimately recommend its implemen-
tation [17]. Similarly, Xu et al. (2017) applied CUSUM
models to absenteeism from four schools in Tianjin, China
[18]. They were able to detect 10 within-school out-
breaks over the course of two school years, although
they did not report the number of false alarms that were
raised [18].
The final main modelling technique used for the

early detection of seasonal influenza epidemics based
on school absenteeism data is regression. A negative
binomial regression model for predicting influenza epi-
demics using non-cause specific absenteeism in New York
City was previously found not to be useful at giving
advance notice [19]. However, Zhou et al. (2015) com-
pared five statistical process control methods with linear
and Poisson regression to see which one would provide
the optimal alarm system for influenza where they use
U.S. national syndromic (but not absenteeism) data. They
reported that the regression models somewhat improved
timeliness and sensitivity, especially for high influenza
counts [20].
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Influenza surveillance in Wellington-Dufferin-Guelph
The Wellington-Dufferin-Guelph (WDG) region in
Ontario, Canada covers two counties (Wellington, includ-
ing the City of Guelph, and Dufferin). It encompasses
approximately 4147 km2 and had a recorded population of
284,461 people in 2016 [21, 22]. At the time, the respective
population densities of Dufferin and Wellington counties
were 41.5 people/km2 and 83.7 people/km2 [21, 22].
Nearly half of the total population resided within the
City of Guelph (in Wellington County), which covers 87
km2 and contains 53 elementary and secondary schools.
Outside of Guelph, WDG is largely rural with six towns
and nine townships.
The school absenteeism surveillance program at

Wellington-Dufferin-Guelph Public Health (WDGPH)
has utilized an on-line form to collect daily counts of
students absent from schools in the WDG region since
2008. An absenteeism-based influenza surveillance
program was piloted by WDGPH independently of the
federal government in 2008 and became more established
during the during the 2009–2010 pH1N1 epidemic.
When absenteeism within a reporting school reaches
10%, WDGPH follows up with the school in question to
investigate whether the increased absenteeism is related
to illness and to advise on mitigating measures if it is.
Cause of absenteeism is unavailable for most schools so
WDGPH must use total all-cause absenteeism rather
than symptomatic absenteeism with the threshold.
The 10% threshold used by several public health depart-

ments for absenteeism-based syndromic surveillance is an
arbitrary threshold that is generally used for detection of
any significant or widespread epidemic or outbreak within
communities and schools. While some correlation has
been noticed between the trends in absenteeism during an
influenza season and trends in local school absenteeism
both in WDG and elsewhere, there is no evidence that
the 10% threshold is the best measure of unusual dis-
ease activity in a community or school. Further, the 10%
threshold does not take into account the varying baseline
absenteeism levels between different schools. For these
reasons, there is a need to develop statistically sound
approaches to using absenteeism data as a predictor of
school or community disease activity.
This study evaluates several model-based alternatives

to the 10% threshold for raising an epidemic alarm using
school absenteeism data, with the goal of reducing these
false alarms. The models include a statistical process con-
trol method, the exponentially weighted moving average
(which approximates a Shewart chart or a CUSUM chart
when different parameters are used [23]), as well as varia-
tions of logistic regression. In addition, two new metrics,
false alarm rate (FAR) and accumulated days delay (ADD),
are introduced to allow for epidemic detection method
performance evaluation and comparison of the existing

and proposed methods for detecting seasonal influenza
epidemics using school absenteeism. The models used in
the study were evaluated against influenza data from the
community, as historically, there appeared to be no notice-
able correlation between the number of cases of any other
reportable disease in WDG and levels of school absen-
teeism. However, in most years there appeared to be a
noticeable peak in absenteeism shortly before the peak in
the incidence of reported cases of laboratory-confirmed
seasonal influenza within the community.

Methods
The goal of the methods discussed in this section was to
detect a seasonal influenza epidemic within WDG ear-
lier than it would be detected by waiting for reports of
laboratory-confirmed influenza cases. For the purpose of
this study, a seasonal influenza epidemic is defined as
beginning when more than one case is observed within a
seven-day period for the first time in any given influenza
season. It is meant to reflect the increase in the occurrence
of cases that occurs as the peak of an influenza season
approaches, rather than the beginning of an influenza
season.
Data from WDGPH were available from January 2008;

however, at that time point, the 2007–2008 influenza sea-
son had already begun. Thus, the study period covered
September 2008 to June 2018, not including the 2009–
2010 school year. This year corresponded to the 2009
pH1N1 pandemic and was not used because, unlike in
other years, the start of the epidemic preceded the start
of the school year. Nine school years/ influenza sea-
sons remained available to which the epidemic detection
methods could be applied, although there were a lim-
ited number of elementary schools and no secondary
schools reporting during the 2008–2009 school year as the
program was still being piloted.
In the WDG region school years typically begin during

the first week of September, and never before Septem-
ber 1st, so for consistency in analysis the school year was
assumed to begin on September 1st each year. All data
cleaning, analysis, and visualization was performed in R
version 3.5.0 [24].

Data sources
Absenteeism data
Elementary and secondary schools within the WDG area
are asked to report their absences toWDGPH each school
day by 3:00 p.m. using an on-line form. The data obtained
from WDGPH contained anonymized school identifica-
tion numbers, the school population size, and the number
of students absent for each day. Data from a limited num-
ber of schools also included the number of students absent
due to illness, and specifically due to respiratory, gas-
trointestinal, and other symptoms; however, most schools
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did not provide this additional information. From the
all-cause absenteeism, percentage absenteeism was calcu-
lated using total student population at the school as the
denominator. Over the study period, 90 unique elemen-
tary schools and 14 unique secondary schools reported
absenteeism data on at least one day. The number of
schools reporting for a given day ranged from only one
school to more than 40 schools in October-December
2010. The median number of schools that reported on
school days was 13. No data were available for days when
students were not required to attend school: weekends,
statutory and school board holidays, and school breaks
(for example, winter holidays, March break, and the sum-
mer holidays). In addition, schools that reported on fewer
than five days throughout the study period were omit-
ted from analysis. Extreme points where absenteeism
was greater than 50%, and observations where elemen-
tary school population sizes were less than 45 or greater
than 820 and secondary school population sizes were less
than 443 or greater than 1902 (the smallest and largest
consistently reported population sizes), were assumed to
represent data entry errors and were therefore deleted
from the dataset.
Differences in distribution between elementary and

secondary school absenteeism were examined using the
Mann-Whitney-Wilcoxon and Kolmogrov-Smirnov tests
and, since both test results indicated a significant differ-
ence in the two distributions with a p-value < 2.2 ×
10−16, data from elementary and secondary schools were
analyzed separately when fitting models. Different aggre-
gation methods of absenteeism were explored, including
using the average absenteeism of all schools of one type
that reported on a day, using the average of the three most
frequently reporting schools, and using data only from
the most frequently reporting school. Sample means were
calculated for each aggregation, along with 95% boot-
strapped percentile intervals for the population (regional)
means. Autocorrelation was accounted for in interval cal-
culation; observations were sampled from blocks where
block size was chosen from a geometric distribution with
mean 20 and a sample size of 10000 [25], using the boot
package in R [26, 27].

Influenza data
The influenza dataset contained information about
influenza cases in WDG that were laboratory-confirmed,
and the dates on which WDGPH was notified of a case
(Report Date) were used in analyses, with report date
being chosen because this represented the date on which
WDGPH first becomes aware of a case of influenza in the
normal course of events. The dataset comprised usable
data from nine influenza seasons, with seasonal epidemic
start dates (reference dates) that ranged from late October
to late January (Table 1, Fig. 1). The Spearman correlation

Table 1 Reference dates representing the beginning of each
seasonal influenza epidemic investigated in the study

School Year Influenza Epidemic Reference Date

2008–2009 January 20th, 2009

2010–2011 December 14th, 2010

2011–2012 January 9th, 2012

2012–2013 October 26th, 2012

2013–2014 November 27th, 2013

2014–2015 December 8th, 2014

2015–2016 November 17th, 2015

2016–2017 December 15th, 2016

2017–2018 December 6th, 2017

The reference date was the report date for the second of two laboratory-confirmed
influenza cases reported within seven days of each other for the first time in an
influenza season

coefficient was used to examine strength of relation-
ship between averaged elementary and secondary school
absenteeism and influenza case counts. Cross-correlation
up to 15 lags was also calculated using the ccf function
in R, with absenteeism and influenza counts ranked to
approximate Spearman correlation.

Epidemic detection methods
Epidemic detection methods were applied to data
prospectively. The first available year of data was used to
train the models, and therefore was not used in model
evaluation. Each school year was evaluated using models
that had been trained on all data that temporally preceded
that year. The school absenteeism featured missing val-
ues as described in the “Data sources” subsection. Both
deletion and linear interpolation with the zoo package
[28] were considered for treating these missing values. In
addition, there were cases where a school reported more
than once on a single date. We explored using either the
maximum or the median of the reported values for that
school to replace the absenteeism observations for those
dates and schools. Every combination of the types of miss-
ing value and multiple entry handling was considered for
each of the epidemic detection methods described in this
section.

10% thresholdmethod
The method currently in use by WDGPH is a 10% absen-
teeism cut-off for raising an alarm for an outbreak (which
may be related to influenza or a different disease). As it
is currently used, whenever 10% or greater of the popu-
lation at an individual school is absent, WDGPH follows
up with that school to investigate possible illness. We
explored raising an alarm for a region-wide epidemic with
the 10% thresholdmethod by using aggregated rather than
individual school absenteeism data. Therefore an alarm
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Fig. 1 Influenza and absenteeism in WDGPH. Average absenteeism and laboratory-confirmed influenza cases (“Flu Cases”) reported to WDGPH for
the WDG region from January 2008 to June 2018

was raised if absenteeism averaged across certain schools
reached 10%. The threshold approach cannot be used with
interpolated missing values as there are no parameters
to be estimated, and it cannot incorporate any additional
data or factors to aid in predicting the start of an epidemic.

Exponentially weightedmoving average
Originally developed for use in econometrics, the expo-
nentially weighted moving average (EWMA) and other
statistical process control methods have been used in sev-
eral influenza surveillance studies [29, 30]. The average of
an epidemic-related variable is calculated, where obser-
vations in the past are given successively lower weights
for determining the current test statistic [31]. Weights
are represented by a parameter, λ, which can take values
between 0 and 1 [31]. A value of λ close to 0 approximates
a CUSUM chart, where all past observations are given
equal weighting, while a λ value close to 1 approximates a
Shewart chart, in which only the most recent observation
is considered [23]. This gives the equation:

zt = λxt + (1 − λ)zt−1 (1)

where xt is the value of the observed variable for day t, zt
is the EWMA statistic for day t, and zt−1 is the EWMA
statistic for the day before day t. In this study, xwas absen-
teeism aggregated in one of the ways described in the

“Data sources” subsection, and either untransformed, log-
transformed, or square root-transformed. Additionally, t
indexes the days on which absenteeism data is available.
For the first observed day, zt−1, or z0, was set to be the
expected mean μ0 absenteeism when the process is “in-
control” [32]. Here, μ0 was set as the mean absenteeism of
the training years and thus was reset for each school year.
The variance of zt can be found by expanding Eq. 1 to

obtain:

zt = λ

t−1∑

j=0
(1 − λ)jxt−j + (1 − λ)tz0, (2)

and taking the variance of Eq. 2. This gives:

σ 2
zt = σ 2

(
λ

2 − λ

)
[ 1 − (1 − λ)2t]

where σ 2 is the in-control variance of xt . It was fixed at 1
for simplicity. The EWMA statistic is compared to a con-
trol limit andwhen zt falls outside the bound of the control
limit, an alarm is raised. Typically, both lower and upper
control limits would be used. However, in the context of
biosurveillance only the upper limit (UCL) is meaningful.
The UCL is given by:

UCL = μ0 + kσ 2
zt

and an alarm was raised when zt > UCL. The parameters
λ and k can be chosen theoretically to fix the error rate
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and make the UCL essentially equivalent to a one-sided
95% confidence limit. However, Buckeridge et al. (2005)
found that in practice this results in unacceptable false
alarm rates for most biosurveillance systems [33]. There-
fore, in our study a range of values for the two parameters
were used to fit the model, and the optimal values of
λ and k were selected based on their performance on
prediction with the evaluation metrics described in the
“Evaluation metrics” subsection. Twenty values of λ

between 0.05 and 1, and 20 values of k between 0.5 and 10
for untransformed data or 0.05 and 1 for transformed data
were considered.

Logistic regressionmodels
Distributed-lag regressionmodels are used to analyse time
series where the predictor variable is expected to correlate
with a change of the response variable over a distributed
period of time [34]. In the context of this study, it is
likely that the first true influenza cases in the community
preceded the first laboratory confirmed case each year,
since not everyone who contracts an influenza infection
will seek treatment from healthcare professionals [12]. In
addition, there is a delay between the time when the first
symptomatic case seeks health care and when results of
the laboratory test for influenza are available. Because of
this, it would be expected that an increase in absenteeism
would be observed several days in advance of the report of
any corresponding laboratory-confirmed cases to public
health, and a distributed lag model would be appropriate
to capture this phenomenon. Although EWMA models
also take past observations of absenteeism into account,
using a regression model allows for the inclusion of addi-
tional predictors.
Distributed-lag models use the value of a predictor vari-

able for day t as well as for each day until l (the desired
number of lags) days before day t. In this study, the out-
come of interest was whether or not at least one case
of (laboratory-confirmed) influenza would be reported to
WDGPH on a given day, and thus logistic regression was
used. Under this model the log-odds that at least one case
occurs on day t is given by:

logit(ρt) = log
(

ρ

1 − ρ

)
=β0+β1xt+β2xt−1+...+βl+1xt−l,

(3)

where ρ is the probability of at least one case occur-
ring on day t, t = 1, . . . ,T ; T is the total number of
days with absenteeism data available; xt is the percent-
age of students absent on the given day, and xt−i gives the
percentage of students absent on the ith day with absen-
teeism data available before day t. Although this model
accounts for the potential delay between influenza cir-
culation and reporting, it does not specifically take into

account the seasonal pattern that influenza tends to fol-
low. Thus, a second regression model that captures the
seasonality pattern through the inclusion of trigonometric
functions as covariates was considered [35]. The seasonal
logistic regression model is given by:

logit(ρt) = β0 + β1xt + β2xt−1 + ...

+ βl+1xt−l + βl+2sin
(
2π t∗

T∗

)

+ βl+3cos
(
2π t∗

T∗

)
,

(4)

where t∗ represents the calendar day of the year on which
xt was observed, and T∗ equals 365.25. When added
together, the sine and cosine terms represent the har-
monic motion of the response across the time axis, with a

period of T∗ and amplitude of
(
β2
l+2 + β2

l+3

) 1
2 [35].

In addition to the lagged absenteeism predictors, ver-
sions of these models including an indicator variable for
day of the week (DOW) were also considered, to account
for possible weekly effects such as increased absenteeism
each Monday or Friday.
The parameters for the above models were estimated

using the glm function in R. For each of these regres-
sion models, as well as the mixed logistic regression and
GEE models described below, lag lengths of 0 (only the
current day’s absenteeism used) to 15 were considered.
Alarms were raised when the predicted probability of at
least one case being reported to WDGPH surpassed a
defined threshold, �. Eleven possible thresholds between
0.1 and 0.6 were considered.

Mixed logistic regressionmodels
To account for the effect of school years, models that
included a random intercept for school year were also
considered. Mixed regression models allow for intracor-
relation among observations at a given measurement
unit, such as multiple observations within an individ-
ual, a geographical location, or a time period [36]. For
this study, including a random intercept for the observed
absenteeism with a given school year acknowledges that
absenteeisms, or their relationship to influenza may be
correlated or similar within one year but vary over differ-
ent years. Residual variance is divided into one component
for the yearly level, and one component for the daily
level [36].
Two mixed logistic regression models were examined in

this study. The first added a random intercept for year to
Eq. (3), giving:

logit(πtj) = β0+β1xtj+β2x(t−1)j+ ...+βl+1x(t−l)j+γj. (5)

The random component of the intercept is represented
by γj and follows a normal distribution with mean 0 and
variance τ 2, and j indexes school year.
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The second mixed model was an adaptation of Eq. (4):

logit(πtj) = β0 + β1xtj + β2x(t−1)j + ...

+ βl+1x(t−l)j + βl+2sinj
(
2π t∗

T∗

)

+ βl+3cosj
(
2π t∗

T∗

)
+ γj,

(6)

with again γj ∼ N(0, τ 2). This model attempted to
account for both the possible dependence of observations
on school year as well as the seasonality of influenza. To
fit the mixed models, we used the glmer command from
the lme4 package in R [37]. Because the school year being
modeled needed to be represented in the training dataset
in order to estimate the intercept, data from September of
the year of interest were included in the training data for
each random intercept model.

Autoregressive GEEmodels
An alternative to generalized linear mixedmodels is to use
a generalized estimating equation (GEE), which models
data at the population level as opposed to the individ-
ual level [38]. School year was still included as a random
effect, but a first order autoregressive correlation struc-
ture was also specified [38]. Due to the infectious nature of
influenza, it is more likely there will be a new case if there
has already been a case in the preceding days. Absen-
teeism follows a similar pattern, as illness spreads from
child to child, so there are reasons to believe that obser-
vations which are closer together will be more highly cor-
related than those further apart and this can be modelled
by a correlation structure. Two first order autoregressive
GEEs were investigated in this study. The first is given by:

logit(μtj) = β0+β1xtj+β2x(t−1)j+ ...+βl+1x(t−l)j. (7)

Instead of estimating an individual probability of at least
one case occurring, themodel predicts themean probabil-
ity averaged across all observations with the same absen-
teeism values [39]. Therefore, μj represents the mean
response for the population that has the same absenteeism
pattern. The second model adds sine and cosine terms to
create a seasonal variation on Eq. (7):

logit(μtj) = β0 + β1xtj + β2x(t−1)j + ...

+ βl+1x(t−l)j + βl+2sinj
(
2π t∗

T∗

)

+ βl+3cosj
(
2π t∗

T∗

)
.

(8)

In both equations, j indexes school year, and t, t∗, and
T∗ are as previously defined. The geeglm function from
the geepack package in R was used to fit the GEE
models [38].

Evaluation metrics
For the purposes of this study, seasonal influenza epi-
demics were defined to begin whenWDGPH was notified
of two cases within a seven day period for the first time
within an influenza season. Therefore these two cases
could have been reported to WDGPH on the same day, or
up to six days apart from each other. The reference day
of the epidemic was the date of the second of these cases.
Note that for the purposes of our analyses, the start of a
seasonal influenza epidemic (i.e., the “reference day”) was
defined differently from the usual definition of the start of
an influenza season (the reporting of the first laboratory-
confirmed case). Instead, the start of a seasonal influenza
epidemic was defined as the report date of the second of
two cases which had been reported to public health within
seven days of each other. This was done in order to reflect
the approaching peak of the season, as opposed to the rel-
atively sporadic cases that often occur early in an influenza
season.
Alarms were raised by EWMA models if the EWMA

statistic, zt , surpassed the UCL, and by the regres-
sion models if the predicted probability of at least one
laboratory-confirmed case occurring on day t surpassed
the probability threshold �. Ideally, an alarm would be
raised one to two weeks ahead of the start of a seasonal
epidemic, so alarms were considered to be true if they
occurred in the 15 calendar day period between the refer-
ence day of the epidemic and 14 days prior to the reference
day, inclusive. An alarm raised prior to the reference day
was considered to be false. Alarms raised between the day
after the reference day and the final day of the school year
were ignored.
Two metrics were used to optimize model parameters

and evaluate the performance of the epidemic detection
methods. The first, FAR, was calculated as:

FAR =
{ nf

nf +1 , if a true alarm was raised
1, if no true alarms were raised,

(9)

where nf is the number of false alarms produced during
that school year. The FAR produces a value between 0 and
1, where 0 would indicate that no false alarms and at least
one true alarm were raised in a year. An FAR value of 1 or
close to 1 would indicate that no true alarms were raised
in a year, or that there was a large number of false alarms.
The secondmetric was ADD. The ADDwas used to give

a sense of timeliness for true alarms. It was calculated as:

ADD =
{

τoptimal − τobs, if a true alarm was raised
τmax, if no true alarms were raised

(10)

where τoptimal is 14 (or the ideal number of calendar
days of advance notice before an epidemic reference day)
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and τobs is the number of calendar days before the epi-
demic reference day that the first true alarm raised for
that season was declared. For example, if two true alarms
were raised prior to the seasonal epidemic one year, one
12 days before the reference day and one 10 days prior,
τobs = 12. In the event that no true alarms were raised,
a large value was assigned to represent the system rely-
ing only on laboratory-confirmed cases. This value, τmax,
was set to the number of days between the first day of the
school year for which absenteeism data were available and
the epidemic reference day, and so differed by year. See
Fig. 2 for an illustration of the definitions of terms used in
computing ADD.
Ideally, an epidemic detection method would have an

ADD of 0, meaning a true alarm was observed 14 days
before the epidemic reference day. An ADD of 14 would
mean that the first true alarm was observed on the epi-
demic reference day. An ADD greater than 14 indicates
no true alarm was observed that school year. Therefore
any ADD value less than 14 indicates that the method
was able to provide an alarm prior to when the epidemic
would have been declared based on laboratory-confirmed
influenza reports alone.
Metrics were calculated for each school year of every

epidemic detection method, and then were averaged over
all school years. For model-based methods, estimated
parameters were chosen based on minimizing the average
FAR. The models fitted with those optimized estimated
parameters were then compared primarily by looking at
which method could produce the lowest FAR, and among
models that produced similar FARs, which method had
the timeliest alarms as indicated by a low average ADD
value.

Results
Preliminary data analysis
Mean daily all-cause absenteeism was 5.94%[95% CI =
(5.58%, 6.31%)] for elementary schools and 7.76%[95%
CI = (6.96%, 8.55%)] for secondary schools. Additional

summary statistics for the different school aggregations
considered in the epidemic detection methods are pre-
sented in Table 2.
Spearman correlation between influenza counts and

average absenteeism was fairly weak, particularly for sec-
ondary schools. For elementary school absenteeism the
correlation was 0.371, and for secondary school absen-
teeism it was 0.161. Cross-correlation was highest when
elementary school absenteeism lagged behind influenza
counts by six days (0.405) and when secondary school
absenteeism was lagged by 11 days (0.181).
After removing missing and misreported values, the

data aggregation type that had the most days of usable
data was absenteeism averaged across all schools (ES.SS-
allavg) with 1709 school days available out of the 3223
total calendar days in the study period. The average for
all elementary schools (ES-allavg) had a similar number
of school days available (1697), while the aggregation type
with the fewest usable days was the top reporting sec-
ondary school (SS-top) with 1133 days available. This
school did not begin reporting until the 2010–2011 school
year and stopped reporting before the 2017–2018 school
year. The top reporting elementary school (ES-top) had
1384 usable days.

Epidemic detection methods
Using the maximum versus the median reported num-
ber of absences to replace entries when a school reported
more than once within one day had little to no effect
in most models, therefore only the results based on the
maximum reported absence are presented in this section.

10% thresholdmethod
The 10% threshold method applied to the aggregated
absenteeism data had limited ability to accurately identify
epidemics ahead of laboratory confirmation. At best, this
method produced an FAR of 0.661 with a corresponding
ADD of 28.75 days when the average absenteeism across
all secondary schools was used (Table 3). Allowing an

Fig. 2 Evaluation metrics time-line. Illustration of terms used in the definitions of the evaluation metrics, ADD and FAR
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Table 2 Summary of the different data aggregation types under consideration for use in epidemic detection methods

Data Type Description Mean 95% CI

Elementary (ES)

ES-top Daily absenteeism for the elementary school that
reported the most days throughout the study period.

8.34% (7.89%, 8.79%)

ES-3avg Daily absenteeism averaged over the three elemen-
tary schools that reported the most days throughout
the study period.

6.39% (5.96%, 6.82%)

ES-allavg Daily absenteeism averaged over all the elementary
schools that reported.

5.94% (5.58%, 6.31%)

Secondary (SS)

SS-top Daily absenteeism from the secondary school that
reported the most days throughout the study period.

3.35% (3.17%, 3.53%)

SS-3avg Daily absenteeism averaged over the three secondary
schools that reported the most days throughout the
study period.

8.15% (7.06%, 9.40%)

SS-allavg Daily absenteeism averaged over all the secondary
schools that reported.

7.76% (6.96%, 8.55%)

ES.SS-allavg Daily absenteeism averaged across all elementary and
secondary schools that reported.

6.19% (5.83%, 6.56%)

The sample means and bootstrapped (R = 10000) percentile 95% confidence intervals are given

alarm to be raised when any individual school reached
10% absenteeism generally resulted in lower ADD values,
but very high FAR (0.827 at best). Themost effective use of
the threshold method gave true alarms for six out of eight
evaluable school years, but up to 18 false alarms in five
of the years. Although there was a high number of false
alarms, the true alarms produced by this method were
well-timed. Out of the six years where the start of a sea-
sonal influenza epidemic was detected, only one of them
had less then 10 days notice prior to the reference day.

Statistical models
The absenteeism data aggregations that resulted in the
lowest FAR values for the model-based methods were
those that incorporated the largest numbers of schools
into their averages (ES-allavg and ES.SS-allavg). Of the ten
models that produced the lowest FARs, all but two used

Table 3 Evaluation metrics for the threshold-based epidemic
detection methods where alarms are raised when absenteeism
reaches 10%. Missing observations were not treated

Data Type FAR ADD

ES-top 0.799 37.75

ES-3avg 0.685 60.89

ES-allavg 0.722 70.33

SS-top 1.00 93.71

SS-3avg 0.664 28.88

SS-allavg 0.661 28.75

ES.SS-allavg 0.889 78.33

See Table 2 for aggregation abbreviations

one of these two absenteeism aggregations (Table 4). Even
amongst the 50 lowest FAR-producing models, approx-
imately half used absenteeism averaged over either all
the schools or all elementary schools (Fig. 3). In par-
ticular, ES-allavg consistently produced results with low
FARs. Table 5 shows the models that produced the
lowest FAR for each absenteeism aggregation type and
method of handling missing values; models that used ES-
allavg absenteeism data had the lowest FARs regardless of
whether deletion or interpolation in the training datasets
was used. Secondary school absenteeism data was found
to have lower predictive ability than elementary school
data. None of the ten lowest FAR-producing model-
based methods used secondary school absenteeism

Table 4 Epidemic detection methods with the ten lowest FARs

Model Data Type Parameters FAR ADD

Seasonal Mixed, D.O.W. ES-allavg (Int.) l = 7, � = 0.20 0.299 15.13

Seasonal Mixed ES-allavg (Del.) l = 11, � = 0.25 0.313 23.63

Seasonal Mixed, D.O.W. ES-allavg (Del.) l = 15, � = 0.25 0.333 21.50

Seasonal LR ES-allavg (Del.) l = 5, � = 0.25 0.344 23.00

Seasonal GEE ES-top (Int.) l = 1, � = 0.15 0.350 14.29

Seasonal GEE ES-allavg (Del.) l = 7, � = 0.25 0.350 23.13

Seasonal GEE ES-3avg (Del.) l = 15, � = 0.25 0.375 29.38

Seasonal LR ES.SS-allavg (Del.) l = 11, � = 0.30 0.375 31.75

Seasonal GEE, DOW ES-allavg (Del.) l = 11, � = 0.30 0.375 33.13

Seasonal GEE, DOW ES.SS-allavg (Del.) l = 8, � = 0.30 0.375 33.13

Del. = Missing values deleted, Int. = Missing values linearly interpolated
See Table 2 for aggregation abbreviations
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Fig. 3 Characteristics of best-performing models. Representation of the proportion of a) model types and b) absenteeism data aggregation types
within the 50 lowest FAR-producing epidemic detection methods. See Table 2 for aggregation abbreviations

unless it was averaged together with elementary school
data (Table 4).
Of the various modelling techniques that were consid-

ered for use as influenza epidemic detection methods,
the EWMA models were the least represented amongst
the best performing methods. None of the ten low-
est FAR-producing epidemic detection methods used
EWMA modelling, and even in the 50 best methods
there were very few EWMA models. At best, the EWMA
models were able to give an FAR of 0.438 and ADD
of 32 days, these being obtained when the square-root
transformed average of all elementary school absenteeism
data with missing values deleted was used. Transform-
ing the data by either taking the square root or log
of absenteeism did not generally improve results com-
pared to the untransformed data. Overall, EWMAmodels
outperformed the 10% threshold method but were less
successful than the regression-based models at achiev-
ing an acceptable balance between false and timely
true alarms.
The best performing models were based on variations

of the logistic regression model. Figure 4 summarizes
the effect that the inclusion of various factors and dif-
ferent data aggregation types had on FAR across all the
regression-based models. Seasonality terms seemed to
have the greatest effect on the FAR, as models with

these terms included tended to have considerably lower
FARs than the non-seasonal models. Additionally, the ES-
allavg data gave the most consistently low FARs with the
regression-based models, with all other aggregation types
performing variably well depending on what other factors
were included in the model. Table 4 shows that, based on
FAR, the ten best performing epidemic detection meth-
ods were all regression-based models with seasonality
terms, all of which incorporated some form of elemen-
tary school absenteeism data. Between the mixed and
GEE models, eight out of the ten best performing epi-
demic detection methods included a random intercept for
school year. However, there was no clear pattern for day
of week indicator or interpolated/ deleted missing values
in the absenteeism training data. Linear interpolation of
the missing absenteeism data in the training data for the
model-based methods did not consistently improve the
number of true alarms or reduce false alarms compared to
when days missing values were simply deleted. Similarly,
the inclusion of a categorical variable for day of the week
improved FAR in some cases and worsened it in others.
The detection method with the lowest FAR was the sea-

sonal mixed model with a day of week indicator, using
ES-allavg absenteeism data with values linearly interpo-
lated in the training sets. The optimized parameters were
l = 7 days and � = 0.20. Under this model, the start
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Table 5 Best performing statistical models by data type, when missing values are either deleted or linearly interpolated

Data Type Model Parameters FAR ADD

ES-top

Deleted Seasonal Mixed, DOW l = 7-8, � = 0.30 0.411 26.71

Interpolated Seasonal GEE l = 1, � = 0.15 0.350 14.29

ES-3avg

Deleted Seasonal GEE l = 15, � = 0.25 0.375 29.38

Interpolated Seasonal GEE l = 6, � = 0.20 0.433 22.75

ES-allavg

Deleted Seasonal Mixed l = 11, � = 0.25 0.313 23.63

Interpolated Seasonal Mixed, DOW l = 7, � = 0.20 0.299 15.13

SS-top

Deleted Seasonal Mixed l = 4, � = 0.10 0.461 14.67

Interpolated LR, DOW l = 4, � = 0.25 0.454 9.17

SS-3avg

Deleted Seasonal GEE, DOW l = 0, � = 0.25 0.420 21.00

Interpolated Seasonal Mixed l = 1, � = 0.15 0.422 21.57

SS-allavg

Deleted Seasonal GEE, DOW l = 0, � = 0.25 0.420 21.43

Interpolated Seasonal GEE, DOW l = 0, � = 0.25 0.420 21.43

ES.SS-allavg

Deleted Seasonal LR l = 11, � = 0.30 0.375 31.75

Interpolated Seasonal LR l = 4, � = 0.25 0.411 21.86

The metrics for the model with the lowest FAR are shown in bold. See Table 2 for aggregation abbreviations

of each seasonal epidemic was captured with the excep-
tion of the 2012–2013 epidemic, and false alarms were
only raised in two years. Figure 5 illustrates the timing
of these alarms relative to the start of the influenza epi-
demic, where each panel represents a different school year
where an alarm had the potential to be raised. True alarms
tended to occur close to the start date of the seasonal epi-
demic. False alarms appeared to coincide with early cases
of influenza that occurred far enough apart so as not to
be classified as the start of the seasonal epidemic. Table 6
shows the number of false and true alarms, along with
ADD, that were produced every school year in the study
period when this model was used.
Parameter estimation was slower for models where

missing absenteeism values in the training data had
been linearly interpolated rather than deleted. The yearly
results for the best model that used deletion are reported
in Table 7. This model was also a seasonal mixed model
using the ES-allavg absenteeism data, but did not include a
day of week indicator. In comparison to the best epidemic
detection method (the seasonal mixed model with day of
week indicator and interpolated training data), this model
captured one less epidemic giving it slightly a higher over-
all FAR, however it had fewer false alarms and the ADD

was similar to the best performing model for the years
where it did capture epidemics.

Discussion
This paper proposed and tested several possible model-
based epidemic detection methods as alternatives to the
10% absenteeism threshold method currently being used
in WDG. For this study, an ideal model would be able to
detect a seasonal epidemic earlier than it would be caught
using reported laboratory-confirmed case counts alone,
while not raising many false alarms. Overall, we found
that all of the tested model-based approaches achieved
these characteristics to a higher degree than the school
absenteeism threshold method did.
The 10% threshold was able to produce true alarms with

low ADD when it was applied to absenteeism averaged
across all secondary schools, although this was counter-
acted by a high proportion of false alarms. This appears
to contradict earlier findings that many schools would
not reach 10% absenteeism even during an influenza sea-
son [15]. Secondary school absenteeism in the WDG
region was higher than elementary school absenteeism in
most school years, with an overall average absenteeism
of 7.76% for the secondary schools that reported during
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Fig. 4 Characteristics of regression models. Effects of different model factors and absenteeism data aggregations on FAR averaged over all
regression model types with optimized parameters. Each row represents a different aggregation for absenteeism data and each column represents
either a data handling method or whether an additional predictor aside from absenteeism was included in the model. The pairs of columns
separated by spaces can be compared to view the effect on FAR across the different data aggregations, where a lighter shade indicates preferable
(lower) FAR. The value within each cell is the mean FAR

the study period. A 10% cut-off may therefore be too low
for secondary schools while being too high for elemen-
tary schools, and a more individualized approach such as
that used inMann et al. (2011) where thresholds are deter-
mined by standard deviations for a rolling meanmay work
better for WDG [16]. In WDG aggregated absenteeism
data performed better within the 10% threshold method
than using an individual school’s absenteeism for the pur-
poses of detecting a regional epidemic. However, an alarm
for an individual school may still be useful for detecting
within-school outbreaks. Data do not currently exist for
the evaluation of this use of the 10% threshold, and so this
could be an area for future investigation.
The EWMA approach explored in this study is some-

what similar to the adaptive thresholds of Mann et al.
(2005), although all past observations (as opposed to only
30) were included and weighted in the calculation of the
standard deviation [16]. The EWMA models improved
FAR compared to the threshold method but did not do as
well asmany of the regression-typemodels. Although data
transformations were attempted, normality of the absen-
teeism data was not achieved, and the EWMA models
may not have been able to sufficiently smooth out the day-
to-day noise. Non-parametric modified EWMA models

have been proposed for use with non-normally distributed
data (see [40] for a review of several), however a chal-
lenge remains in choosing an appropriate subset of data
to represent the “in-control” process; the distribution of
absenteeism when influenza is not present in the com-
munity. In this study, the “in-control” mean was set to
be the mean of all absenteeism data from the training
years, however that average would include observations
during an influenza season. Without knowing more infor-
mation about additional circulating infectious diseases
or other factors affecting absenteeism (which could be
unique to different schools) it is difficult to choose a
specific time period to use as the “in-control” process.
In addition, most of the best-performing EWMA mod-
els had a very small optimized λ value, indicating that a
high degree of smoothing was required. A small λ also
approximates a CUSUM model, which has been used in
previous studies where absenteeism is used for influenza
surveillance [17, 18]. One such study concluded that
the CUSUM was not ideal for their data [17]. Finally,
at a small value of λ EWMA models can accumulate
“credit” [41]. If an increase in mean absenteeism were
to occur following a day where the EWMA statistic had
been calculated to be a value less than μ0, it would
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Fig. 5 Alarms of the top-performing model. True and false alarms for the best performing model, faceted by school year: the seasonal logistic
random intercept model using ES-allavg data with l = 7, � = 0.20, interpolated missing values in the training data. Averaged absenteeism is
plotted as grey bars, with actual laboratory-confirmed influenza case counts overlaid as black bars, and the epidemic reference day is indicated by
the dashed yellow line for each school year

take several days for the EWMA statistic to reach the
UCL because of the low weights assigned to recent val-
ues, which may have limited the number of true alarms
observed.
The regression-based models generally performed bet-

ter than the EWMA models, particularly when covariates
accounting for seasonality were included in the model.

Table 6 Yearly alarms and ADD for the best performing model:
the seasonal logistic random intercept model using ES-allavg
data with l = 7, � = 0.20, interpolated missing values in the
training data

School Year False Alarms True Alarms ADD

2010–2011 0 1 13

2011–2012 8 1 14

2012–2013 0 0 55

2013–2014 1 1 14

2014–2015 0 4 3

2015–2016 0 1 14

2016–2017 0 8 0

2017–2018 0 3 8

Mean FAR = 0.299, mean ADD = 15.13

The seasonality (trigonometric) covariates may act to
counterbalance any unusually high values of absenteeism
that occur during times of the year when influenza is
not generally circulating yet, thus reducing the number of
false alarms. Inclusion of a random intercept for school
year (in the mixed and GEE models) also seemed to
improve model performance in most cases. The random

Table 7 Yearly alarms and ADD for the seasonal random
intercept model with 11 lags and � = 0.25, using ES-allavg data
with missing values deleted

School Year False Alarms True Alarms ADD

2010–2011 0 2 13

2011–2012 0 1 14

2012–2013 0 0 55

2013–2014 1 1 12

2014–2015 0 2 7

2015–2016 0 0 70

2016–2017 0 5 5

2017–2018 0 1 13

Mean FAR = 0.313, mean ADD = 23.63
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intercept models were considered to allow for possible
differences in the relationship between absenteeism and
odds of an influenza case from year to year. However, to
be able to estimate the random intercept, the models must
be trained on at least some data from a given school year
in order to be used to predict outcomes for that same year.
In this study we used data from September of each year to
obtain the intercept estimate and then began prediction
in October. We tested models with up to 15 lagged school
days of absenteeism, so this combined with the amount of
data needed to estimate the intercept meant that in some
years the models were not able to be used until nearly
November. In the event of an unusually early seasonal epi-
demic starting prior to November, it would not be able
to be captured by the random intercept models. Alter-
native solutions to estimating the random intercept for
year-effect should be investigated. One possibility would
be to use a previously estimated intercept for a new school
year. For example, if information on the current influenza
strain were available from earlier epidemics in a compa-
rable nearby health region, an intercept could be used
that was estimated on the WDG data from a previous
year when there was a similar strain. Alternatively (and
more realistically, given that WDGPH would not neces-
sarily have access to strain information from other public
health units), an intercept could be estimated using the
most recent past year of WDG data and used with the
current year’s data.
Secondary school absenteeism was less consistent than

elementary absenteeism, and the yearly mean averaged
across all secondary schools decreased over the 2012–
2013 to 2015–2016 school years before increasing again
(Fig. 1). This, along with the fact that fewer secondary
schools than elementary schools report data, may explain
why secondary school absenteeism generally performed
less well than elementary school absenteeism in predicting
influenza epidemics. Despite this, an Augmented-Dickey-
Fuller test for non-stationarity found all absenteeism
aggregations to be stationary, suggesting that the absen-
teeism decrease was not enough to cause a significant
change in temporal trend of the data. Preliminary analysis
based only on the 2008–2014 data yielded better perfor-
mance of the models using the secondary school data than
was seen using the full dataset. If the predictive abilities
of secondary school absenteeism have decreased in more
recent years, it may not be worth continuing to collect
secondary school absenteeism data.
Absenteeism data is voluntarily reported to WDGPH

daily by schools through an on-line system. The cur-
rent system (introduced in 2017) features a field where
school administrators can choose to enter the number of
absences related to illness (in total, as well as categorized
as respiratory, gastrointestinal and other). The illness and
specific syndrome counts were observed to be unreliable,

(for example exceeding the total number reported absent),
and incomplete and thus could not be used in this study.
Increased adoption of this reporting feature by school
administrators could greatly aid model performance as
observations from schools that are experiencing an out-
break or epidemic of an illness with non-respiratory
symptoms could be excluded. Reporting of other reasons
for unusual levels of absenteeism, such as field trips, would
be similarly helpful. However, even if more detailed absen-
teeism information were available, a school-absenteeism
surveillance system has limitations due to the “missing”
data from weekends and holidays as well as potentially
differing effects of different influenza strains on children.
For example, Cauchemez et al. (2008) found that influenza
subtype B was more closely associated with children than
subtype A\H3N2 [42]. One way to overcome these limi-
tations would be to use a second surveillance system in
addition to the absenteeism surveillance system. Possi-
bilities could include an alternative form of syndromic
surveillance that targets an older demographic (such as
over-the-counter drug sales monitoring).
We chose to define the start of an influenza epidemic by

the first time two cases were reported toWDGPHwithin a
week of each other. In the WDGPH region, there are gen-
erally no laboratory-confirmed influenza cases observed
outside of influenza season, however if influenza activ-
ity became more sustained throughout the year in the
region, or in a region with a larger population where more
cases are seen overall, it may be necessary to explore alter-
nate definitions for the beginning of the epidemic. The
Moving Epidemic Method could be used to identify an
influenza activity threshold above which the region would
be defined as experiencing an epidemic [43].
Another limitation of this study is that spatial infor-

mation was not incorporated in any of the model-based
epidemic detection methods. Approximately half of the
WDG population live in rural areas, which accounts for
98% of the geographic area serviced by WDGPH [21, 22].
Since spatial identifiers were not provided with the absen-
teeism data, we were unable to select the top or top
three consistently reporting schools to be representative
of a certain part of the region (ie. the City of Guelph)
and so they were selected on the basis of most days
reported. Therefore, some or all of the top schools chosen
here could be in relatively remote locations. Depending
on where the annual influenza season begins within the
region in any particular year, influenza cases in Dufferin
may precede cases in Guelph for example, resulting in
absenteeism in a Guelph school raising an alarm too late
for WDG as a whole. Since WDGPH has access to school
identifiers, it may be more useful for them to choose a few
well-reporting schools from each of the larger towns in the
region and run the chosen epidemic detection method on
the separate locational averages in parallel.
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Another area for future work is the development of an
improved metric or collection of metrics to use for epi-
demic detectionmethod evaluation.We chose to optimize
model parameters based on the lowest FAR since select-
ing based on the ADDwould lead to toomany false alarms
(false alarms increase somewhat proportionately with true
alarms). The FAR provides an idea of the balance between
true and false alarms, but does not indicate where these
alarms occur relative to the start of an epidemic. A low
FAR can be misleading in certain cases; for example, a
method that raised no false alarms and a single true alarm
on the reference day each year would have a FAR of 0 when
in reality the method is not giving an alarm any sooner
than one that would be raised based on hospital reports
alone. An improved metric for identifying optimal model
parameters might define an ideal day (for example, 14 days
prior to the reference day) for an alarm to be raised, and
penalize both false and true alarms based on the differ-
ence between the day on which they were raised and the
ideal alarm day. This would also penalize models that raise
alarms clearly unrelated to influenza activity more heavily
than those whose alarm dates are only marginally outside
the true alarm range.
When using any of these epidemic detection methods in

practice, it would be useful to test model performance as
more years of data become available, and obtain updated
optimized parameters on a yearly basis. Since linear inter-
polation increases computation time for training models
and was not found to significantly improve the results
of methods compared to when the missing values were
deleted, deleting missing values is recommended. The
number of lagged days of absenteeism data included as
predictors in the model and the probability thresholds for
the regression-based models reported in this paper are
optimized for the data currently available, but should be
re-evaluated regularly tomaintain the efficacy of influenza
epidemic detection methods of this nature. The meth-
ods identified in this study should also be evaluated with
data from other public health regions prior to being used
as epidemic detection method outside of WDG. Regional
differences in weather, school attendance patterns, health
care, and other factors could influence which method
would be the most effective.

Conclusions
Comparison of the 10% threshold approach to several
modelling-based methods showed that the 10% threshold
approach can be improved upon to reduce the number
of false alarms while still giving warning of influenza epi-
demics ahead of laboratory-confirmed cases. Based on
our findings, a seasonal logistic regression model with
random intercept for school year is recommended for
influenza surveillance inWDG. This approach was able to
raise true alarms for almost every epidemic of influenza.

Although it produced some false alarms, those alarms
did coincide with influenza cases, though those cases
were spread too far apart to be classified within an epi-
demic. In practice these alarms may still be useful in
alerting WDGPH of when influenza or a similarly trans-
mitted disease begins circulating in the region. Absen-
teeism averaged over all reporting elementary schools is
recommended as the model predictors, as it was found to
give the best balance of true and false alarms for most of
the epidemic detection methods. However, it is suggested
that the school absenteeism surveillance system be used in
conjunction with another influenza surveillance system,
due to limitations caused bymissing data and absenteeism
patterns unrelated to influenza.
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