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Introduction

To circumvent the disparity between the number of organ 
donors and transplant recipients, studies have been focused 
on using decellularized tissue scaffolds to help regenerate 
organs in vivo or in vitro. The decellularized tissues provide 
proper cues and anatomical structures for cells to prolifer-
ate, differentiate, and organize into adequately functioning 
tissues. Of all scaffolds used in regenerative medical 
research, those generated directly from or designed to mimic 
the qualities of the extracellular matrix (ECM) are consid-
ered the gold standard for making proper graft to repair 
damaged tissues or organs. The ECM contains physiochem-
ical cues needed to regulate accurately cell phenotype and 
function, as well as to provide a foundation for the desired 
organ’s natural structure. Native ECM is ideal for regen-
erative medicine and tissue engineering approaches, as it 
retains an original tissue anatomical structure. Therefore, 
retention of native protein niches and physiochemical 
properties is the primary goal of decellularization. Often, a 
decellularization protocol must be customized in accord-
ance with the origin of the tissue, as there is no singular 
ideal approach that can fit all. In addition, proteomic 

studies have revealed that the proteomic content of the 
matrisome varies according to the tissue from which the 
ECM is sourced.1 Hu et al.2 has implied that that age and 
sex may also play a lesser, but still notable role in the pro-
teomic makeup of the ECM. This corroborates recent find-
ings by Ozcebe et  al.3 which indicate recellularization 
potential of ECM varies by donor age. To generate an 
ECM-derived scaffold, a plethora of decellularization pro-
tocols have been generated over the past decades, each 
with their own unique advantages and disadvantages. 
Some of these protocols often contradict to each other, due 
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to diverse experimental conditions including different tis-
sue types, temperatures, flow applications, pH, etc. As a 
result, it is difficult to directly compare the efficiency of 
each individual component utilized. This review aims to 
highlight a variety of decellularization approaches, com-
pare the methods used as a basis for decellularization of 
tissue to procure a well-decellularized ECM with minimal 
damage to the biomechanical structure and proteomic 
makeup. We provide a comprehensive analytical interpre-
tation on the most recent advances in decellularization 
strategies for a variety of organs and tissues, highlighting 
techniques of chemical, physical, biological, enzymatic, or 
combinative-based methods to remove cellular content 
from tissues. In addition, we collectively present modern-
ized approaches for improving standard decellularization 
protocols for various types of tissues and organs.

Decellularization for ECM retrieval

The ECM is a naturally occurring, dynamically active 
macromolecular network arranged in a highly organized 

tissue-specific manner. It is predominantly composed of 
collagens, proteoglycans, elastin, glycoproteins, and 
secreted factors based on tissue type (Figure 1). These 
components establish the ECM as a mechanically stable 
basement membrane that serves as a structural support for 
anchored cells. The bioactive molecules and growth fac-
tors secreted into the ECM by the cells allow for confor-
mational changes in its structure, which induce chemical 
signals that regulate cell proliferation, differentiation, 
adhesion, migration, polarity, and apoptosis. ECM has 
been shown to preferentially promote the differentiation of 
cells from the same tissue origin. Stem cells or stem cell-
derived cells seeded into the ECM have their cell morphol-
ogy influenced toward the cell lineage of the ECM origin 
tissue, regardless of the origin of the cells being seeded.4,5 
Interestingly, it has been shown that ECM from various 
species can support human stem cell proliferation and dif-
ferentiation if the ECM constructs are sourced from the 
same tissue type as the organ of interest.6,7 Although the 
properties of ECM make it an ideal model for implantable 
scaffolds for tissue engineering purposes, the ECM’s 

Figure 1.  Decellularized ECM procurement and tissue engineering applications. Decelluarized ECM contains ECM proteins and 
secretome that facilitate cell proliferation and differentiation. Tissue structure and vascular network retained after whole organ 
decellularization provide alternative tissue graft materials.
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intricate biomechanical and biochemical composition 
make it difficult to replicate its properties from inorganic 
materials.8 As such, it is of the utmost importance to 
develop methods to obtain naturally occurring ECM for 
tissue engineering. Decellularization, therefore, has been 
extensively studied in the past two decades.

Decellularized ECM has shown success as scaffolds for 
generation of a variety of tissue and organ types.9–15 
Typically, decellularization results in the retention of larger 
macromolecules such as polysaccharides and constructive 
collagens due to their size and degree of crosslinking, 
while smaller ECM-associated components like growth 
factors, chemokines, and signaling molecules are more 
easily washed away.16 The loss of these molecules cripples 
the performance ability of the resulting tissue microenvi-
ronment to act as a tissue specific platform for recellulari-
zation. Different decellularization techniques vary in the 
rates of lost protein niches. Crap et al.17 has stated that suc-
cessful decellularization should be determined on the basis 
of producing (I) ECM which does not contain more than 
50 ng of DNA per dry weight, (II) residual DNA fragments 
no longer than 200 bp, and (III) no visible nuclear compo-
nents. Several strategies have since been able to success-
fully decellularize tissues to retrieve the ECM by this 
definition. Figure 1 illustrates two major decellularization 
processes, that is, minced tissue and whole organ decellu-
larization, for ECM procurement and potential applica-
tions in tissue engineering and regenerative medicine. 
Minced or sectioned decellularized tissues can be reconsti-
tuted and used as cell culture substrates or as injectable 
hydrogels to improve cell proliferation, differentiation, 
and engraftment.7,18–22 Decellularized tissue ECM prot-
eomics and subsequent bioinformatics analyses allow dis-
tinct applications, including but not limited to the 
understanding of tissue microenvironments associated dis-
eases such as tumor metastasis and signaling molecules 
crucial to in vitro tissue generation (Figure 1).18,23–26 
Hydrogels prepared from decellularized tissues can also be 
used as a bioink for 3D bioprinting of tissue or as a disease 
model.27–32 Decellularized animal whole organs retain 
their original 3D structure and vasculature network and 
thus are applied to repopulate human cells for organ 
regeneration.33–35

Decellularization techniques

Common decellularization techniques utilize chemical, 
physical, biologic, or enzymatic methods to remove cellu-
lar content from the tissue in order to retrieve naturally 
occurring ECM. To overcome the deleterious effects asso-
ciated with a single particular decellularizing method or 
agent, techniques are often used in combination. The spe-
cific tissue type being decellularized should also be taken 
into consideration, as the same decellularizing protocol 
can produce different results in different tissues.36 We 

discuss the decellularization techniques in details in the 
following.

Chemical treatment-based decellularization

The efficiency of chemical treatment-based decellulariza-
tion varies according to the size, density, cellularity, thick-
ness, and lipid content of the starting tissue. Chemical 
agents are a favorite among decellularization strategies, as 
there exists a plethora of evidence to validate their ability 
to quickly and efficiently rid tissue of native cells. Despite 
this, chemical agents usually are incapable of completely 
stripping cellular components and can leave trace amounts 
of dsDNA, mitochondrial DNA, mitochondria, and mem-
branous phospholipids, the presence of which can jeopard-
ize subsequent recellularization attempts and invoke 
immune responses.17 Moreover, chemical agents are typi-
cally cytotoxic and must be followed with additional 
washing steps to rid the decellularized construct of rem-
nant chemical residues. Chemical agents can be com-
pounded together, used in tandem, or combined with other 
decellularizing strategies to expedite the decellularization 
processes. In protocols where multiple decellularizing 
agents are used, the order by which a tissue sample is 
exposed to different chemical agents plays a critical role in 
the proteomic and biomechanical features of the resulting 
ECM.37 Chemical decellularizing agents are categorized as 
being either ionic detergents, non-ionic detergents, zwit-
terionic detergents, solvents, acids, bases, or hypertonic 
and hypotonic solutions.38

Detergents, also known as surfactants, are the most 
commonly used chemical means for decellularization. 
Owing to their popularity, they are generally cheap, quick, 
and efficient decellularizing agents. The most common 
detergents for decellularization are the nonionic detergent 
Triton X-100 and the ionic detergent Sodium Dodecyl 
Sulfate (SDS). Triton X-100 removes cellular content by 
disrupting lipid-lipid and protein-lipid interactions without 
affecting protein-protein interactions, whereas SDS dis-
rupts protein-protein interactions and solubilizes cell 
membranes. Ionic detergents like SDS have the benefit of 
being able to effectively remove nuclear materials in 
shorter time frames compared to other chemical treat-
ments.39–42 This, however, is at the expense of greater dam-
age to the ECM matrisome, as treatment of tissue with 
SDS can result in an altered microstructure that diminishes 
the biomechanical integrity of the ECM.43 The concentra-
tion of SDS and tissue exposure time must therefore be 
optimized for any SDS-based protocol, as increased expo-
sure is directly linked to decreased ECM biomechanical 
properties,44 Also easily lost in SDS decellularizations are 
fibronectins, glycosaminoglycans (GAGs), proteoglycans, 
and ECM regulators and secreted factors.45 Thus, SDS is 
associated with removal of significant amounts of bio-
chemical cues contained in a native ECM. Most successful 
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SDS-based decellularizations use a concentration between 
0.1% and 1% SDS.46–49 However, decellularization at SDS 
concentrations as low as 0.01% in ovine small intestine 
and as high as 2% in articular cartilage have been per-
formed to varying degrees of success.44,50

Remnant SDS within a decellularized matrix is difficult 
to remove, which is detrimental to recellularization due to 
its high cytotoxicity, potentially due to the exposure of the 
collagen C and N termini which reveal antigenic sites.51 As 
such, SDS treatment is commonly followed by Triton 
X-100. Alternatively, decellularizations using nonionic 
detergents like Triton X-100 are considered to be less 
harsh on tissue than ionic detergents, and are therefore use-
ful for decellularizations where preservation of the ECM 
proteome is important.39 Although milder than ionic deter-
gents, Triton X-100 is still itself a strong detergent and its 
use can lead to proteomic complications, especially at high 
concentrations. Normally decellularization protocols do 
not use concentrations of Triton X-100 in excess of 1%, 
though some protocols have found success with concentra-
tions as high as 3% so long as exposure length was reduced 
accordingly.43,47,52 Like all other detergents, the adverse 
effects of Triton X-100 include, but are not limited to, sig-
nificantly increased stiffness of the resulting matrix, low-
ered recellularization potential due to cytotoxic chemical 
remnants, and loss of bioactive molecules such as GAGs 
and proteoglycans.39

In recent years, several new detergents have been dis-
covered for decellularization protocols. The ionic deter-
gents sodium deoxycholate (SDC) and sodium lauryl ether 
sulfate (SLES) have gained popularity upon discovery that 
they contain decellularizing abilities on par with or supe-
rior to SDS-based protocols. Both SDC and SLES have 
been shown to better preserve collagen and GAG content 
than SDS while showcasing superior biocompatibility 
following recellularization.39,53–56 SDC can successfully 
decellularize tissues at concentrations up to 4%,57,58 
although increased concentration of SDC does not con-
tribute to higher nuclear removal rates and results in 
increased damage to structural integrity, despite its ina-
bility to degrade collagens.57,59 Additionally, SDC decel-
lularizations must be followed with agents such as 
Deoxyribonuclease (DNase) to reduce induction of DNA 
agglutination at the tissue surface.57 To date, the require-
ment of DNase for successful SDC decellularization has 
only been overcome in cardiac tissue, as described by 
Methe et al.56 Regardless, SDC has proven to be successful 
for decellularization of several tissue types, including rat 
peripheral nerve,57 auricular cartilage,58 murine ovary,53 
and porcine heart valve,39 while SLES has successfully 
decellularized of heart, kidney, ovary, and bone tis-
sue,16,60,61 demonstrating the versatility of both ionic sur-
factants. SLES is particularly intriguing, as Emami et al.16 
found that SLES may be superior to not only SDS, but also 
other decellularizing agents, including Triton X-100 and 

enzymatic Trypsin/EDTA for decellularization of histo-
logically dense bone tissue. Li et  al.62 advised that the 
addition of dextrose perfusion pretreatment step prior to 
SLES exposure assists in further protecting collagens from 
degradation by the detergent. Potassium Laurate (PL), a 
naturally occurring ionic detergent, is also of interest. In 
2019, Obata et al.63 was the first to describe its potential 
for decellularization of rat lung. They reported that PL was 
capable of sufficient cellular and DNA removal while sig-
nificantly reducing ECM damage associated with SDS. 
Most ostensibly, these results indicate the potential for the 
development of PL based protocols to permit effective 
detergent based decellularization of easily damaged thin 
tissues. As such, further investigations into the potential of 
PL to act as a decellularizing agent are necessary. The only 
nonionic detergents other than Triton X-100 to be investi-
gated for use in decellularization are Tween 20 and Tween 
80, both of which consistently produce inadequate decel-
lularizations apart from a study by Chaschin et al.67 who 
found that inclusion of Tween 80 in decellularization of 
human aorta by supercritical carbon dioxide (scCO2) was 
beneficial.64–66

Zwitterionic detergents share properties with both ionic 
and nonionic detergents. They have been shown to pre-
serve the ECM ultrastructure but tend to be limited in their 
ability to completely remove cellular content.39,68 For this 
reason, they are typically followed by treatment with enzy-
matic techniques to complete the decellularization. They 
are known to target and break protein-protein bonds in a 
similar fashion to ionic detergents but are far less aggres-
sive. 3-[(3-cholamidopropyl) (dimethylammonio]-1-pro-
pane sulfonate (CHAPS) decellularizes tissues by 
disrupting lipid-protein and lipid-lipid interactions.68 Its 
reduced permeating qualities limit CHAPS’ ability to 
remove nuclear DNA, thereby making CHAPS more 
applicable for decellularization of thin tissues.68–70 CHAPS 
also highly retains the biomechanical properties of native 
tissue, making it ideal for tissues, which must be capable 
of contracting with ease such as heart or lung.70 Other 
zwitterionic detergents Sulfobetaine 10 and Sulfobetaine 
16 (SB10 and SB16, respectively) induce cell apoptosis, 
resulting in improved cell removal, which eliminates the 
need for vigorous washing steps.71 Physical agitation is 
used to gently assist in coaxing apoptotic cells from the 
matrix.71,72 SB-10 and SB-16 have been shown to result in 
better retention of ECM basement membrane integrity and 
higher rates of cell removal when compared to ionic deter-
gents.73 Both detergents are typically followed by enzy-
matic treatments, such as DNase, to promote DNA 
fragmentation and reduce immunogenicity of the ECM 
construct.39,71 In the case of CHAPS treatment, immuno-
genicity can also be reduced by induction of a physiologi-
cally accurate pH during decellularization to reduce 
inflammation upon later implantation.74,75 Song et  al.71 
describes that cellular apoptosis is more quickly induced 
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when SB-10 and SB-16 are combined with another apop-
tosis-inducing agent, camptothecin, while McCrary et al.57 
found that SB-10 and SB-16 treatment could improve SDC 
decellularizations.

Solvents, another category of chemically-based decel-
lularizing techniques, are generally inadequate for decel-
lularization. They can be used as an initiating step for 
decellularization to remove lipids and reduce fat content of 
the tissue.76–78 Exercising caution when using solvent-
based techniques is encouraged, as the use of solvents 
often results in damage to the 3D microstructure and 
reduces the likelihood of successful recellularization.17 
Solvents for decellularization include alcohols, acetone, 
tri-n-butyl phosphate (TNBP), dimethyl ether (DME), and 
urea. Alcohols dehydrate native cells to lyse them and 
have been shown to delipidate tissues. The use of alcohols 
is effective for the removal of fat from thick, dense muscle 
tissue. However, they can crosslink and precipitate colla-
gens, altering the structural integrity of the 3D proteomic 
network.17 Alcohols such as isopropanol,77,79 glycerol,80 
ethanol,81–83 and methanol21 have all proven to be effective 
for removal of lipid content, though some reports indicate 
that isopropanol may be a superior agent for this purpose.84 
Like alcohols, acetone removes cellular content from ECM 
by acting on lipids. It is typically used in conjunction with 
ethanol, albeit these ethanol-acetone solutions dehydrate 
the ECM and result in significant increases in stiffness.85,86 
Because acetone has a dehydrating effect on ECM, some 
studies use it to chemically dry and sterilize collagen 
matrices rather than to decellularize them.87 Due to its ster-
ilizing properties, it has reduced immunogenicity com-
pared to detergent-based techniques.81 Typically, acetone 
results in extensive adverse impacts on the biomechanics 
of ECM and is not recommended for use in tissues which 
are contracting or load bearing.87,88

TNBP, which does not share the same dehydrating 
effect as alcohols or acetone, has been shown to be capable 
of successful removal of DNA content from the ECM 
membrane when used in tandem with multiple enzymatic 
and chemical decellularizing agents. Recently, TNBP has 
been utilized to assist in physical scCO2 decellularization 
strategies, though these processes can be lengthy.39,89,90 
Unlike alcohols and acetone, TNBP is not useful for decel-
lularization of dense muscle tissues, as increased concen-
trations or exposure times do not improve nuclear removal 
rates, but also do not further damage the matrisome of the 
ECM.91,92 Unlike alcohols and acetone, TNBP may pro-
mote collagen crosslinking as opposed to degrading 
them.90,91 It can also act as a principal decellularizing 
agent, and has been effective in protocols for decellulari-
zation of porcine diaphragm,91 rabbit tendon,89 porcine tra-
beculae,90 and human vein.93

Dimethyl ether (DME) and urea are decellularizing sol-
vents which are not yet extensively studied, and it is there-
fore difficult to infer their effect on the ECM. Kanda et al. 

demonstrated that DME under subcritical temperatures, 
followed by DNA fragmentation with DNase, can effec-
tively replace SDS in decellularization protocols for por-
cine aorta and ostrich carotid artery.94,95 In addition to 
reducing structural damage to the ECM, DME may also 
reduce the immunogenic response properties. Urea is a 
powerful solubilizing agent with a high affinity for antigen 
removal. Addition of urea to decellularization protocols 
showed severe alterations to the histoarchitecture, elastin, 
and GAG content of the ECM in bovine bone and pericar-
dium.96,97 These findings indicate that urea may not be an 
ideal agent for use in future decellularization attempts.

Protocols which utilize acids and bases for decellulari-
zation have also been developed. Peracetic acid (PAA) can 
be used as both a decellularizing and disinfecting agent. In 
this way, it is much like alcohols and acetone, though it 
may result in fewer significant impacts to the biomechani-
cal structure of the ECM.98 Similar to but stronger than 
PAA is acetic acid (AA), which is more likely to damage 
the structural integrity of the ECM by destroying or remov-
ing collagens, although it has a negligible effect on smaller 
bioactive molecules such as GAGs.99 For tendon, acetic 
acid or hydrochloric acid can be utilized to successfully 
strip calcium from the matrix prior to decellularization by 
detergent.100 Ammonium-hydroxide, a mildly basic com-
pound, disrupts the cell membrane and breaks down the 
cell wall while disrupting hydrogen bonds to induce cell 
lysis. Typically, following ammonium-hydroxide treat-
ment, an ionic or nonionic detergent solubilizes the cell 
membrane and separates the proteins from the matrix. 
Ammonium-hydroxide has been reported to have been uti-
lized in protocols to successfully decellularize liver,101–104 
urological tissue,34 and mesenchymal stem cell derived 
ECM.105 It is considered to work best in tandem with 
Triton X-100 under perfusion or static conditions.101,106,107 
Treatment with enzymes like DNase following decellulari-
zation with ammonium hydroxide and Triton X-100 has 
been recorded to result in up to 100% DNA removal in thin 
cell sheets.106

Unlike all other types of chemical decellularizations, 
hypertonic and hypotonic solution-based decellulariza-
tions are consistently described as having little to no nega-
tive impact on the proteome of the ECM along with 
powerful removal of cellular DNA.7,18 Hypertonic solution 
rinses followed by hypotonic solution rinses induce cell 
lysis by an osmotic shock to decellularize tissue. This tech-
nique seeks to capitalize on the initial incubation in the 
hypotonic water step used in many decellularization strate-
gies and limit exposure to harsh chemicals known to strip 
ECM of native proteins. Previously, most attempts to uti-
lize this technique resulted in subpar immunogenic condi-
tions for implantation into a host biosystem.108,109 However, 
recent advancements in the technique have increased 
removal rates of cellular content, thereby making the 
resulting constructs more biocompatible. Recent advances 
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by our group have shown that NaCl and distilled water 
changes under agitation can produce porcine pancreatic 
ECM, which meets criteria for successful decellulariza-
tion. Interestingly, this protocol resulted in DNA removal 
rates similar to or exceeding those of an SDS and Triton 
X-100 based techniques.2,7,18 Similar studies which use 
hypertonic NaCl solution to decellularize cornea have 
indicated a downside with this technique, in which the tis-
sue grafts produced by these decellularized corneal grafts 
remained transparent in rabbit eyes for 6 months,110,111 
which is approximately half the amount of time that grafts 
produced by SDS-containing isotonic buffer decellular-
ized corneal grafts.112 Due to the lack of decellularizing 
strength associated with this technique, only minced or 
sectioned tissue samples have been successful. Thus, no 
hypertonic/hypotonic solution change protocol has been 
developed to date for whole organ decellularization. Table 
1 summarizes numerous chemical methods that have been 
developed and utilized to decellularize tissues based on the 
classification of the chemicals with comparison of their 
advantages and disadvantages.

Physical/Mechanical decellularization

Physical methods of removing cellular content from tis-
sue work by disrupting cell membranes and creating unfa-
vorable cellular environments that can induce apoptosis. 
Physical decellularization has the advantage of producing 
a uniform effect throughout tissue. Moreover, their effect 
is more predictable than chemical or enzymatic decellu-
larizing agents. Physical treatment alone is often insuffi-
cient for decellularization. While they can induce cell 
lysis, they are ineffective for complete removal of cell or 
nuclear remnants. Nonetheless, they can be used in con-
junction with chemical, biological, or enzymatic decellu-
larizing agents to reduce exposure times and aid in the 
retention of ECM proteomic content. Vacuums, high 
hydrostatic pressure (HHP), freeze-thaw cycles, scCO2, 
and sonication are all physical methods commonly used 
for decellularization.

Vacuum-assisted decellularizations refer to any decel-
lularization technique that is aided or accelerated by the 
usage of a negative pressure. Though the use of negative 
pressure systems is ineffective for decellularization on its 
own, it has been found to be effective when used in combi-
nation with other physical methods as well as chemical or 
enzymatic methods.122,123 These systems can significantly 
reduce the decellularization time without sacrificing addi-
tional proteins, allowing for more efficient processes and 
reduced exposure to potentially damaging agents.122

HHP bursts cells with minimal risk of the type of pro-
tein denaturation associated with nonphysical strategies. 
Pressures over 150 MPa are required to achieve adequate 
cell death, though pressures over 500 MPa can potentially 
result in ECM protein denaturation.124–126 Supercooling 

pretreatment of tissue before HHP decellularization can 
also assist in reducing the likelihood of protein denatura-
tion.126 HHP has the disadvantage of not retaining the bio-
mechanical properties of the original tissue as well as other 
physical methods like freeze-thaw cycles. However, it has 
been found to produce immunologically superior decellu-
larized matrices that increase likelihood of achieving 
recellularization.127

Freeze-thaw cycles result in thermal shock-induced cell 
death upon immersing tissue in liquid nitrogen. Freeze-
thaw is used as a precursor step to decellularization and 
cannot effectively decellularize any kind of tissue alone.128,129 
Therefore, freeze-thaw cycles have been followed by washes 
with detergents such as Triton X-100,130–132 solvents like iso-
propanol,133 and enzymes such as trypsin.58 This method 
assists in retaining a majority of the ECM’s 3D structural 
integrity and allowing for reduced exposure required for 
adequate cell removal by chemical or enzymatic agents.134 
Freeze-thaw cycles are particularly applicable for use in 
tissues when treat with highly damaging agents known to 
harm ECM components, such as SDS and SDC. However, 
it should be carried out with caution, as they can also cause 
main components of the ECM to rupture and make recel-
lularization difficult.135

scCO2 is notable for its ability to decellularize tissues 
in a fraction of the time that it takes for most chemical 
agents. The carbon dioxide used in this technique is an 
ideal gas for decellularization, as it is nontoxic, inflamma-
ble, relatively inert, and cost effective. The exact mecha-
nism by which scCO2 removes cells and cellular content 
from a tissue has been widely disputed, although previous 
beliefs that it is the result of high pressure induced cell 
bursting have been disproven.136–138 Recently, attempts to 
identify the main mechanism by which it decellularized 
tissue has brought claims that it may induce hypoxia, 
though this is still uncertain. Previous studies found scCO2 
to be inadequate for developing viable scaffolds, as the 
final matrices were often too dehydrated for reseeding. 
Pre-saturating scCO2 with water overcomes tissue dehy-
dration.139 In addition, combination of scCO2 with 2% 
PAA can successfully decellularize tissues without damag-
ing the vasculature or proteome of their ECM. PAA was 
found to be superior to all other solvents when paired with 
scCO2.140 Combination of scCO2 with ethanol also results 
in the production of successfully decellularized and immu-
nologically inert acellular matrix from pig esophagus, 
albeit, to a lesser extent than detergent-based approaches.141

Sonication is a technique that allows decellularizing 
agents to better permeate a tissue. Sonication has been 
used to successfully assist in decellularization of aorta,142 
artery,143 larynx,144 and cartilage.145 The cavitation inten-
sity during the course of sonication is influenced by pH, 
temperature, viscosity, diffusion rate of dissolved oxygen 
and vapor pressure, and solubility of gas in liquid. These 
conditions are heavily influenced by the concentration of 



Moffat et al.	 7

T
ab

le
 1

. 
T

he
 a

dv
an

ta
ge

s 
an

d 
di

sa
dv

an
ta

ge
s 

us
in

g 
di

ffe
re

nt
 c

he
m

ic
al

s 
fo

r 
tis

su
e 

de
ce

llu
la

ri
za

tio
n.

C
la

ss
ifi

ca
tio

n
D

ec
el

lu
la

ri
zi

ng
 a

ge
nt

M
ec

ha
ni

sm
A

dv
an

ta
ge

s
D

is
ad

va
nt

ag
es

R
ef

er
en

ce
s

Io
ni

c 
D

et
er

ge
nt

s
So

di
um

 D
od

ec
yl

 
Su

lfa
te

 (
SD

S)
Br

ea
ks

 n
on

-
co

va
le

nt
 b

on
ds

C
on

si
st

en
tly

 r
em

ov
es

 o
ve

r 
90

%
 o

f c
el

lu
la

r 
co

nt
en

t
R

eq
ui

re
s 

vi
go

ro
us

 r
in

si
ng

A
liz

ad
eh

 e
t 

al
.40

, X
u 

et
 a

l.43
, E

ld
er

 
et

 a
l.44

, X
in

g 
et

 a
l.45

, S
ch

m
itt

 e
t 

al
.46

, 
W

an
g 

et
 a

l.49
, C

ha
kr

ab
or

ty
 e

t 
al

.51
, 

Sc
hm

id
 e

t 
al

.11
3 , 

D
al

 S
as

so
 e

t 
al

.11
4 , 

Fe
rn

an
de

z-
Pe

re
z 

an
d 

A
he

ar
ne

11
5

D
am

ag
es

 b
io

m
ec

ha
ni

ca
l i

nt
eg

ri
ty

R
em

ov
es

 c
ol

la
ge

ns
, f

ib
ro

ne
ct

in
, 

an
d 

sm
al

l b
io

ac
tiv

e 
m

ol
ec

ul
es

So
di

um
 D

eo
xy

ch
ol

at
e 

(S
D

C
)

D
is

ru
pt

s 
ce

ll 
m

em
br

an
e

H
ig

he
r 

re
te

nt
io

n 
of

 G
A

G
s 

an
d 

co
lla

ge
n 

th
an

 
SD

S
In

du
ce

s 
im

m
un

e 
re

sp
on

se
Si

m
sa

 e
t 

al
.39

, A
ls

ha
ik

h 
et

 a
l.53

, 
M

cC
ra

ry
 e

t 
al

.57
, R

ah
m

an
 e

t 
al

.58
, 

H
w

an
g 

et
 a

l.59
H

ig
he

r 
bi

oc
om

pa
tib

ili
ty

 t
ha

n 
SD

S
In

du
ce

s 
D

N
A

 a
gg

lu
tin

at
io

n
In

ca
pa

bl
e 

of
 d

eg
ra

di
ng

 c
ol

la
ge

ns
R

em
ov

es
 G

A
G

s 
an

d 
gr

ow
th

 
fa

ct
or

s
So

di
um

 L
au

ry
l E

st
er

 
Su

lfa
te

 (
SL

ES
) 

&
 

So
di

um
 L

au
ry

l S
ul

fa
te

 
(S

LS
)

D
is

ru
pt

s 
ce

ll 
m

em
br

an
e

H
ig

he
r 

re
te

nt
io

n 
of

 G
A

G
s 

an
d 

co
lla

ge
n 

th
an

 
SD

S
R

em
ov

es
 c

ol
la

ge
n 

an
d 

G
A

G
s

Em
am

i e
t 

al
.16

, M
a 

et
 a

l.54
, K

es
hv

ar
i 

et
 a

l.55
, K

aw
as

ak
i e

t 
al

.61

H
ig

he
r 

re
ce

llu
la

ri
za

tio
n 

po
te

nt
ia

l t
ha

n 
SD

S
Pr

es
er

ve
s 

bi
om

ec
ha

ni
ca

l i
nt

eg
ri

ty
 a

nd
 

m
ic

ro
ar

ch
ite

ct
ur

e
Po

ta
ss

iu
m

 L
au

ra
te

 
(P

L)
So

lu
bi

liz
es

 
m

em
br

an
e 

pr
ot

ei
ns

Be
tt

er
 r

et
en

tio
n 

of
 G

A
G

s,
 e

la
st

in
, a

nd
 

co
lla

ge
n 

th
an

 S
D

S
N

ot
 e

xt
en

si
ve

ly
 s

tu
di

ed
O

ba
ta

 e
t 

al
.63

H
ig

he
r 

re
ce

llu
la

ri
za

tio
n 

po
te

nt
ia

l t
ha

n 
SD

S
Pr

es
er

ve
s 

bi
om

ec
ha

ni
ca

l i
nt

eg
ri

ty
 a

nd
 

ar
ch

ite
ct

ur
e

R
ed

uc
ed

 in
fla

m
m

at
io

n 
co

m
pa

re
d 

to
 S

D
S 

tr
ea

te
d 

tis
su

e
N

on
Io

ni
c 

D
et

er
ge

nt
s

T
ri

to
n 

X
-1

00
D

is
ru

pt
s 

lip
id

-li
pi

d 
an

d 
lip

id
-p

ro
te

in
 

in
te

ra
ct

io
ns

H
ig

he
r 

re
ce

llu
la

ri
za

tio
n 

po
te

nt
ia

l t
ha

n 
SD

S 
an

d 
SD

C
In

cr
ea

se
s 

st
iff

ne
ss

Si
m

sa
 e

t 
al

.39
, X

u 
et

 a
l.43

, L
uo

 e
t 

al
.47

, 
Li

ao
 e

t 
al

.11
6

D
oe

s 
no

t 
re

qu
ir

e 
ex

te
ns

iv
e 

ri
ns

in
g

R
em

ov
es

 G
A

G
s 

an
d 

pr
ot

eo
gl

yc
an

s

T
w

ee
n 

20
 &

 T
w

ee
n 

80
In

du
ce

 c
el

l l
ys

is
Pr

ot
ec

ts
 p

ro
te

in
s 

fr
om

 d
en

at
ur

at
io

n
In

su
ffi

ci
en

t 
fo

r 
de

ce
llu

la
ri

za
tio

n 
al

on
e

A
eb

er
ha

rd
 e

t 
al

.64
, H

ei
da

rz
ad

eh
 

et
 a

l.65
, O

’N
ei

ll 
et

 a
l.66

C
om

pa
tib

le
 w

ith
 s

ev
er

al
 d

ec
el

lu
la

ri
zi

ng
 

ag
en

ts
M

in
im

al
ly

 im
pa

ct
fu

l
R

ed
uc

es
 b

io
m

ec
ha

ni
ca

l i
nt

eg
ri

ty
Z

w
itt

er
io

ni
c 

D
et

er
ge

nt
s

C
H

A
PS

D
is

ru
pt

s 
lip

id
-li

pi
d 

an
d 

lip
id

-p
ro

te
in

 
in

te
ra

ct
io

ns

R
et

ai
ns

 b
io

m
ec

ha
ni

ca
l i

nt
eg

ri
ty

In
su

ffi
ci

en
t 

fo
r 

de
ce

llu
la

ri
za

tio
n 

al
on

e
M

en
di

bi
l e

t 
al

.68
, M

ar
in

-T
ap

ia
 e

t 
al

.69
, 

Q
iu

 e
t 

al
.70

, T
su

ch
iy

a 
et

 a
l.74

, Z
va

ro
va

 
et

 a
l.75

U
na

bl
e 

to
 p

er
m

ea
te

 t
is

su
e

pH
 d

ep
en

de
nt

SB
10

 &
 S

B1
6

In
du

ce
s 

ap
op

to
si

s
R

et
ai

ns
 s

m
al

l b
io

ac
tiv

e 
m

ol
ec

ul
es

N
ot

 e
xt

en
si

ve
ly

 s
tu

di
ed

So
ng

 e
t 

al
.71

, H
ud

so
n 

et
 a

l.73

R
et

ai
ns

 b
io

m
ec

ha
ni

ca
l i

nt
eg

ri
ty

D
oe

s 
no

t 
re

qu
ir

e 
vi

go
ro

us
 r

in
si

ng

 (C
on

tin
ue

d)



8	 Journal of Tissue Engineering ﻿

C
la

ss
ifi

ca
tio

n
D

ec
el

lu
la

ri
zi

ng
 a

ge
nt

M
ec

ha
ni

sm
A

dv
an

ta
ge

s
D

is
ad

va
nt

ag
es

R
ef

er
en

ce
s

So
lv

en
ts

A
lc

oh
ol

s
D

eh
yd

ra
te

 a
nd

 
ly

se
 c

el
ls

Ef
fe

ct
iv

e 
fo

r 
re

m
ov

in
g 

fa
t 

fr
om

 t
hi

ck
 t

is
su

es
C

ro
ss

lin
ks

 a
nd

 p
re

ci
pi

ta
te

s 
co

lla
ge

ns
C

ra
po

 e
t 

al
.17

, L
um

pk
in

s 
et

 a
l.85

, 
K

ab
ir

ia
n 

an
d 

M
oz

af
ar

i86

In
cr

ea
se

s 
st

iff
ne

ss
A

ce
to

ne
A

ct
s 

on
 li

pi
ds

St
er

ili
ze

s 
EC

M
In

cr
ea

se
s 

st
iff

ne
ss

V
an

 d
e 

W
al

le
 e

t 
al

.81
, L

um
pk

in
s 

et
 a

l.85
, G

or
sc

he
w

sk
y 

et
 a

l.87
, 

G
or

sc
he

w
sk

y 
et

 a
l.88

R
ed

uc
es

 im
m

un
og

en
ic

ity

T
ri

(n
)b

ut
yl

 P
ho

sp
ha

te
 

(T
N

BP
)

D
is

ru
pt

s 
pr

ot
ei

n-
pr

ot
ei

n 
in

te
ra

ct
io

ns

Le
ss

 s
tr

uc
tu

ra
lly

 d
am

ag
in

g 
th

an
 a

lc
oh

ol
s 

an
d 

ac
et

on
e

In
su

ffi
ci

en
t 

fo
r 

de
ce

llu
la

ri
za

tio
n 

al
on

e
Si

m
sa

 e
t 

al
.39

, X
in

g 
et

 a
l.89

, D
ua

rt
e 

et
 a

l.90
, D

ee
ke

n 
et

 a
l.91

, Y
an

g 
et

 a
l.11

7

Pr
om

ot
es

 c
ol

la
ge

n 
cr

os
sl

in
ki

ng
In

cr
ea

se
s 

pr
ot

ei
n 

re
te

nt
io

n 
an

d 
re

ce
llu

la
ri

za
tio

n 
po

te
nt

ia
l

C
om

pa
tib

le
 w

ith
 d

et
er

ge
nt

-b
as

ed
 m

et
ho

ds
 

an
d 

ph
ys

ic
al

 m
et

ho
ds

U
re

a
D

is
ru

pt
s 

no
n-

co
va

le
nt

 b
on

ds
R

ed
uc

es
 im

m
un

og
en

ic
ity

Pr
im

ar
ily

 u
se

d 
as

 a
n 

an
tig

en
 

re
m

ov
al

 a
ge

nt
 a

s 
op

po
se

d 
to

 a
 

de
ce

llu
la

ri
za

tio
n 

ag
en

t

W
on

g 
et

 a
l.96

, W
on

g 
et

 a
l.97

R
em

ov
es

 c
yt

ot
ox

ic
 d

et
er

ge
nt

s
D

is
ru

pt
s 

bi
om

ec
ha

ni
ca

l i
nt

eg
ri

ty
D

is
ru

pt
s 

co
lla

ge
n 

or
ga

ni
za

tio
n

di
m

et
hy

l e
th

er
 (

D
M

E)
A

ct
s 

on
 li

pi
ds

M
ay

 r
ed

uc
e 

im
m

un
og

en
ic

ity
In

su
ffi

ci
en

t 
fo

r 
de

ce
llu

la
ri

za
tio

n 
al

on
e

K
an

da
 e

t 
al

.94
, K

an
da

 e
t 

al
.95

R
et

ai
ns

 b
io

m
ec

ha
ni

ca
l i

nt
eg

ri
ty

N
ot

 e
xt

en
si

ve
ly

 s
tu

di
ed

A
ci

ds
 a

nd
 B

as
es

A
ci

ds
So

lu
bi

liz
es

 c
el

l 
m

em
br

an
e 

an
d 

di
sr

up
ts

 n
uc

le
ic

 
ac

id
s

N
eg

lig
ib

le
 r

ed
uc

tio
n 

of
 s

m
al

l b
io

ac
tiv

e 
m

ol
ec

ul
es

 s
uc

h 
as

 G
A

G
s

D
am

ag
es

 c
ol

la
ge

n
Sy

ed
 e

t 
al

.98
, A

ba
ci

 a
nd

 G
uv

en
di

re
n99

, 
Z

ha
o 

et
 a

l.10
0 , 

D
on

g 
et

 a
l.11

8 , 
D

at
ta

 
et

 a
l.11

9
C

an
 s

tr
ip

 c
al

ci
um

 fr
om

 b
on

e 
tis

su
e

Ba
se

s
D

en
at

ur
e 

ch
ro

m
os

om
al

 a
nd

 
pl

as
m

id
 D

N
A

C
an

 a
ch

ie
ve

 1
00

%
 D

N
A

 r
em

ov
al

 in
 t

hi
n 

tis
su

e 
sa

m
pl

es
R

em
ov

es
 g

ro
w

th
 fa

ct
or

s
K

aj
ba

fz
ad

eh
 e

t 
al

.10
1 , 

Fa
ra

g 
et

 a
l.10

6 , 
Po

or
ne

ja
d 

et
 a

l.12
0

R
ed

uc
es

 b
io

m
ec

ha
ni

ca
l i

nt
eg

ri
ty

H
yp

ot
on

ic
 &

 
H

yp
er

to
ni

c 
So

lu
tio

ns

In
du

ce
 c

el
l l

ys
is

 
by

 o
sm

ot
ic

 s
ho

ck
G

en
tle

r 
re

m
ov

al
 o

f c
el

ls
 t

ha
n 

de
te

rg
en

t-
ba

se
d 

m
et

ho
ds

D
iff

ic
ul

t 
to

 a
ch

ie
ve

 a
cc

ep
ta

bl
e 

ce
llu

la
r 

re
m

ov
al

H
u 

et
 a

l.2 , 
D

ah
l e

t 
al

.10
8 , 

W
oo

ds
 a

nd
 

G
ra

tz
er

10
9 , 

Le
e 

et
 a

l.12
1

H
ig

h 
re

te
nt

io
n 

of
 E

C
M

 c
om

po
ne

nt
s

In
ef

fe
ct

iv
e 

fo
r 

w
ho

le
 o

rg
an

 
de

ce
llu

la
ri

za
tio

n
C

an
 r

es
ul

t 
in

 E
C

M
 s

w
el

lin
g

T
ab

le
 1

. 
(C

on
tin

ue
d)



Moffat et al.	 9

the decellularizing agent. Sonication protocols use low 
concentrations of SDS, as this agent can aggressively solu-
bilize cellular content.145 However, sonication is itself a 
physically aggressive process, which may or may not 
cause structural damage to the ECM.146 Ultrasonic baths 
are better able to allow smooth penetration of chemical 
agents into tissue than sonicators while also causing less 
damage to the ECM ultrastructure. This, however, is at the 
cost of longer protocols.147 Table 2 highlighted decellular-
izing methods with advantages and disadvantages of each 
physical method.

Biological treatment-based decellularization

Biological treatment-based decellularization aims to 
induce apoptosis of cells. These apoptosis-inducing agents 
are looked upon favorably for decellularization protocols 
because they result in contained cell debris that can more 
easily be washed away. Few studies have investigated the 
role of apoptosis-inducing agents, but those which indicate 
that they likely involve complicated mechanisms, leaving 
the field open for further exploration. Cytotoxic drugs, 
hydrogen peroxide, and hypoxia are means of inducing 
apoptosis in tissue to facilitate the removal of cells from 
the tissue.

To date, cytotoxic drugs are generally utilized only to 
improve the efficiency of zwitterionic detergent decellu-
larizations and are not effective decellularizing agents 
alone.150,151 Camptothecin, a cytotoxic drug, is employed 
in decellularization as it inhibits DNA topoisomerase I. It 
has been utilized in several studies and has shown great 
promise for decellularization of sciatic nerve, as it pre-
serves anatomical architecture while retaining small bioac-
tive molecules.71,151 Cornelison et  al.151 reported that 
camptothecin was necessary for cellular removal through 
hypertonic/hypotonic buffers. Further treatment with 
DNase over hypotonic buffers led to effective DNA 
removal for nerve tissue.

Rotenone, another cytotoxic compound and a strong 
mitochondrial class I inhibitor, mediates apoptosis by 
inducing oxidative stress.150,152,153 Treatment of tissues 
with rotenone for up to 24 h prior to detergent based decel-
lularization of cell sheets has shown no significant benefit 
in terms of DNA removal, although this could be due to the 
already efficient strategy to decellularize cell sheets.150 
The effect of rotenone in decellularization of tissues 
thicker than cell sheets has not yet been reported and is 
worth investigation. The cytotoxic drug Latrunculin B 
induces changes in cell shape and actin organization. It has 
been identified as an efficient DNA removal agent, and has 
even been found to produce greater reduction of DNA in 
skeletal muscle than standard Triton X-100 and SDS/
Triton X-100 methods. However, this was at the cost of 
notable reduction in structural integrity.154–156 Other apop-
totic inducing compounds for decellularization, including 

analogs of those previously listed, have not yet been exten-
sively tested.

Apart from cytotoxic drugs, hydrogen peroxide or 
hypoxia can also be used to induce apoptosis for decellu-
larization purposes. In addition to being a strong induction 
of apoptosis, hydrogen peroxide (H2O2) also shows prom-
ise as a sterilizing agent, which may make it useful for 
recellularization or implantation purposes. H2O2 cannot 
act as the major component of a decellularization protocol, 
as it has been found to be largely unhelpful when tested in 
combination with PAA/ethanol and scCO2 mediated 
decellularization strategies.157,158 Isolation of tissue under 
hypoxic conditions can be used to assist in the removal of 
cellular content from tissue. N2 is particularly useful as a 
hypoxic agent for decellularization. It has been utilized 
with semi-successful results in porcine cornea but has not 
been tested in any other tissue.159,160 Table 3 showed 
advantage and disadvantages of the biological decellulari-
zation techniques.

Enzymatic decellularization

Enzymatic digestion can improve decellularization by 
digesting tissues with one or a combination of several 
enzymes to allow for decellularizing agents to diffuse 
through the tissues more easily. This makes enzymatic 
treatments particularly alluring for use in dense tissues that 
are difficult to decellularize. Despite the benefits associ-
ated with enzymatic digestion, these approaches are diffi-
cult to reproduce. They also magnify the risk of significantly 
altering the structural and proteomic composition of the 
ECM.

Trypsin is an aggressive enzyme that specifically 
cleaves at the C-terminus of lysine and arginine to disrupt 
the tissue microstructure, allowing for accelerated solubi-
lization by detergents or enzymatic chelating agents.163,164 
As these bonds help crosslink collagens and elastin, trypsin 
is rarely used as a principal agent for decellularization.114 
Use of trypsin (0.05%–0.2%) typically is restricted to an 
initial pretreatment step before decellularization with 
chemical agents.114,164,165 Higher concentrations or lengthy 
exposure to trypsin can result in detrimental damage to 
biomechanics of ECM. Attempts to utilize trypsin as a 
principal decellularizing agent have resulted in inadequate 
DNA removal and severely damaged biomechanical prop-
erties of ECM.166 Ethylenediamine tetra acetic acid 
(EDTA) is a chelating agent that decellularizes ECM by 
targeting the Ca2+ and Mg2+ ions that maintain bonds 
between the ECM and native cells. Most protocols that use 
EDTA also include trypsin to help cleave the bonds 
between cells.37 Though most protocols pair EDTA with 
trypsin, its versatility allows it to also be paired with ionic 
detergents and non-ionic detergents.37,167 Miranda et al.37 
coupled EDTA with Tris buffer and used it for murine skel-
etal muscle decellularization by induction of an osmotic 
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shock. This approach, while successful, was improved 
with additional treatment by ionic and nonionic detergents 
but was still less effective than standard ionic or nonionic 
protocols.37,167

Nucleases such as DNase, RNase, and benzonase are 
generally used as post-treatment steps in chemical, physi-
cal, or biological decellularization. These agents fragment 
nuclear contents to achieve considerable removal of cel-
lular materials from the matrix. DNase has been useful for 
decellularization of peripheral nerve,57,168 kidney,169 
artery,170 and trachea tissues,171 among several others. 
Similar to DNase, ribonuclease (RNase) can selectively 
break down the nucleic acids that make up RNA. DNase 
and RNase are particularly useful for removing nucleo-
tides from ECM following treatment with lysis-inducing 
decellularization agents. Studies indicate that the addition 
of DNase treatment steps can improve the retention of bio-
mechanical properties and GAGs in several chemical, 
enzymatic, and physically based decellularization strate-
gies.57,123,172 Despite this, it does not fully remove nuclear 
materials and can still result in incomplete decellulariza-
tion when coupled with chemical and enzymatic meth-
ods.39 Benzonase, while also unable to act as a principal 
decellularizing agent, is compatible for use with several 
detergent-free decellularization protocols.173–175 DNase 
can be used as a replacement for TNBP, which similarly 
works to reduce negative impacts caused by chemical 
agents, as DNase achieves similar results with shorter pro-
tocols and higher mechanical stability and GAG content.39 
ECM treated with DNase or RNase must be put through 
numerous rinse cycles, as they are immunogenic com-
pounds that can hinder recellularization attempts.176

Enzymatic digestion can also be carried out by proteases 
and esterases, such as dispase, collagenase, phospholipase 
A2, and chondroitinase ABC. Dispase is a neutral protease 
that dissociates cells quickly but gently from a tissue by 
selectively cleaving at fibronectin and collagen IV. This 
makes it ideal for decellularizing the basement membrane of 
tissues, which are predominantly composed of collagen IV 
and laminin. Dispase is also good for preventing cell aggre-
gation.177 It is generally used to dissociate cells from thinner 
tissue membranes such as lung or cornea, but it can be used 
in succession with other chemical or enzymatic agents to 
decellularize denser tissues.110,178,179 Collagenase cleaves at 
collagen II in cartilage and collagens I and III in all other tis-
sues. Collagenase treatment can be used to selectively 
metabolize collagens from the ECM, permitting better prot-
eomic analysis of other components of the ECM matrisome 
using mass spectrometry. Kuljanin et al.180 found that the use 
of collagenase depleted the relative abundance of collagen in 
the ECM of bone and adipose tissue from 90% to less than 
10%. Phospholipase A2 is an esterase which hydrolyses the 
phospholipids in cells but does not disrupt collagen and pro-
teoglycan content, allowing for insignificant structural dam-
age to the ECM but noticeable reduction of GAG content.181 
Phospholipase A2 can assist in the removal of lipid content 
but is inadequate for removal of cellular content from a tis-
sue. Thus, it is commonly used in combination with chemi-
cal detergent or non-detergent methods to produce adequate 
decellularized ECM.181–185 Chondroitinase ABC can aggres-
sively digest proteoglycans, making it useful for the decel-
lularization of dense cartilage tissue.186 As such, it can be 
utilized to enhance the removal of cellular remains from the 
cartilage ECM. Chondroitinase ABC is directly associated 

Table 2.  Advantages and disadvantages of physical decellularizing methods.

Decellularizing agent Mechanism Advantages Disadvantages References

High Hydrostatic 
Pressure

Induces necrosis Reduced likelihood of 
protein denaturation

Proteins can denature at 
pressures above 600MPa

Le et al.124, Frey et al.125, 
Zemmyo et al.126, 
Watanabe et al.127Reduces biomechanical 

properties
scCO2 N/A Decellularizes tissue 

quickly
Dehydrates ECM White et al.136, Dillow 

et al.137, Isenschmid 
et al.138, Sawada et al.148

Increases stiffness

Freeze-Thaw Cycles Induces necrosis 
by thermal shock

Leaves majority of ECM 
components intact

Insufficient for 
decellularization alone

Levorson et al.128, 
Thibault et al.129, Li 
et al.134, Liu et al.135Reduces decellularization 

time
Can cause ECM 
components to rupture

Vacuums Negative pressure 
system aids 
decellularization

Reduces decellularization 
time

Insufficient for 
decellularization alone

Butler et al.122, Wang 
et al.123

Facilitates uniform 
exposure to 
decellularizing agents

Sonication Rupture cell 
membrane

Helps decellularizing 
agents permeate tissue

Can impact 
microarchitecture and 
biomechanics of ECM

Azhim et al.142, Yusof 
et al.146, Rabbani et al.147, 
Manalastas et al.149Reduces decellularization 

time
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with extreme reduction of GAG content, which changes the 
mechanical properties of the ECM and increases stiff-
ness.186,187 However, for cartilage decellularization, this may 
be ideal, as the reduction of GAG content can improve later 
recellularization efforts and subsequently be restored.186–188 
Apart from cartilage, Chondroitinase ABC has also been uti-
lized for decellularization of tissues associated with the 
peripheral nervous system, such as sciatic nerve and periph-
eral nerve. It is able to digest the chondroitin sulfate proteo-
glycans which inhibit neuronal repair after injury, thereby 
permitting axonal growth.189–191 Chondroitinase ABC treated 
ECM scaffolds appear to permit adequate recellularization, 
which indicates great potential for use in tissue engineer-
ing.186–188,192,193 Table 4 outlined types of enzymes widely 
used in decellularization, their mechanism, advantages, and 
disadvantages.

Recent novel approaches to 
decellularization by tissue type

Figure 2 summarizes a variety of novel approaches that 
have been recently developed and tailored for decellulari-
zation of various tissue types.

Bone

Organic bone ECM is a complex heterogeneous composite 
material composed predominantly of collagen types I, III, 
and V as well as low levels of proteoglycans, glycopro-
teins, and small signaling molecules.201 Decellularization 
of bone has a variety of uses, as it contains the ideal prop-
erties to be developed into 3D bioinks and hydrogel scaf-
folds for tissue engineering, and surgical meshes. In 
clinical settings, decellularized bone allografts have dem-
onstrated excellent bone regeneration capability compara-
ble to that of autologous bone grafts, which signifies the 
importance of the ECM in naturally occurring bone recon-
struction.202 For these reasons, optimizing decellulariza-
tion protocols for bone tissue is highly appealing. During 
decellularization, pretreatment of bone tissue with chelat-
ing agents or acids can be performed to first demineralize 

the bone. As these agents can break down several key 
ECM components that contribute to the biomechanics of 
bone, the concentration and exposure time must be taken 
into consideration.203 Many decellularization protocols use 
combinative chemical and biological decellularizing 
approaches. Multiple chemical reagents are effective for 
decellularizing bone tissue, but the most commonly uti-
lized are SDS and Triton X-100. Addition of acids to these 
decellularization processes is also possible, although they 
tend to result in lower success rates.204 While these agents 
have been able to successfully decellularize bone tissue, 
they all can destruct essential ECM components such as 
collagens, GAGs, and growth factors. If not washed away 
properly, they can also cause increased immunogenicity 
due to the retention of cellular waste.16

Emami et al.16 recently investigated the effectiveness of 
multiple detergents for bone decellularization. They found 
0.5% SLES to outperform typical SDS and trypsin/EDTA 
protocols in regard to DNA removal rates, retention of criti-
cal ECM proteins, and recellularization potential. Rasch 
et al.205 investigated sonication as a potential new means of 
bone decellularization. They determined sonication to be a 
superior means of removing DNA from bone tissue when 
compared to SDS treatment. They also found the final ECM 
product to have good recellularization potential and biocom-
patibility. These characteristics led to the conclusion that 
sonication produces a matrix comparable to commercially 
available products. However, the effectiveness of retaining 
the native architecture and biomechanical properties was not 
evaluated and is worth further evaluation.205 Hashimoto 
et al.206 was the first to report that a high hydrostatic pressure 
(HHP) of 980 MPa followed by treatment with nucleases 
could produce decellularized ECM from bone (Figure 2). 
However, Nakamura et al.207 later found HHP to be inferior 
for overall cell removal compared to SDS, but superior for 
retaining the ECM microenvironment.

Cartilage

Naturally occurring cartilage has highly limited healing 
capabilities, making the generation of scaffolds for tissue 

Table 3.  Advantages and disadvantages of biological strategies for tissue decellularization.

Agent Mechanism Advantages Disadvantages References

Cytotoxic 
Drugs

Induce 
apoptosis

Retains small bioactive 
molecules

Insufficient decellularization Song et al.71, Novoseletskaya 
et al.150, Cornelison et al.151, 
Giordano et al.153, Reyna et al.154, 
Fishman et al.155, Desouza et al.156

Can cause damage to 
structural integrity
Increases immunogenicity

Hydrogen 
Peroxide

Induce 
apoptosis

Sterilizes ECM Inefficient as a principal 
decellularizing agent

Gosztyla et al.157, Hennessy et al.158

Decreases immunogenicity
Hypoxia Induce 

apoptosis
Can be used to assist in 
recellularization following 
decellularization

Inefficient as a principal 
decellularizing agent

Amano et al.159, Isidan et al.160, Han 
and Flynn161, Colombo et al.162

Only somewhat successful in 
assisting decellularization
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engineering by decellularization alluring.208 Different 
types of cartilage have different structural composition 
and permeabilities, and thus require individualized decel-
lularization protocols.209 Cartilage is a highly dense tissue, 
making decellularization and subsequent recellularization 
highly difficult. Despite this, several successful decellu-
larization strategies have been developed for various carti-
laginous structures.210–212 Generally, pretreatment with 
physical methods such as freeze thawing, snap-freezing, or 
tissue smash can be performed to assist in the decellulari-
zation, as the ice crystals they produce can create more 
pores in the tissue, thereby reducing the exposure time to 
damaging reagents. Other pretreatments that have been 
explored to optimize decellularization of hyaline cartilage 
include pulverization of the tissue, which increases the 
surface area and promotes slightly better permeation of 
chemical agents into the tissue.213,214 These steps are com-
monly followed by combinative chemical-enzymatic treat-
ments. The chemical detergents used most in cartilage 
decellularization are SDS and Triton X-100, although 
some studies have utilized SLES. These detergents are 
then quickly followed by treatment with enzymes such as 
trypsin-EDTA, DNase, or RNase to completely remove 
cellular DNA and prevent nucleic waste from sticking to 
the matrix.215,216 Due to the detrimental nature of these 
compounds on the ECM matrisome, the exposure time to 
these agents must be highly controlled. Since some types 
of cartilage are denser than others and therefore require 
longer subjection to decellularizing agents, the specific tis-
sue type must be considered when determining the neces-
sary exposure time. Hyaline cartilage, which is present 
between most joint surfaces, is the most extensively stud-
ied cartilage for decellularization. The ECM of hyaline 
cartilage consists of predominantly collagens, particularly 
collagen II. It is also extensively composed of GAGs and 
laminin. Auricular cartilage, present within the outermost 
part of the ear, is highly elastic and flexible as a result of 
more elastic fibers in its ECM composition compared to 
hyaline cartilage. Fibrous cartilage makes up the interver-
tebral disks and menisci in ligaments and tendon. Its ECM 
composition is unlike any other cartilage in that fibrous 
cartilage contains collagen I only, as college II was not 
detected.217

Decellularization of cartilage tissue should aim to retain 
as much of the original GAG content as possible, as it is 
predominantly the GAG content which grants cartilage its 
unique mechanical properties.218,219 Unfortunately, expo-
sure to common decellularizing agents tend to result in the 
destruction of GAGs, causing an increase in matrix stiff-
ness. Despite this setback, reduction of GAG content has 
been theorized to assist in the recellularization potential of 
the ECM, as GAG depletion reduces density and increases 
the porosity of the final matrix. Depleted GAGs could 
potentially return to the structure following successful recel-
lularization.186 As such, several cartilage decellularizations 

aim to use agents which reduce GAG content, as may assist 
in the successful recellularization of the final construct. In 
the case of cartilage tissue, further study into the importance 
of GAG retention should be performed in order to determine 
what properties constitute an ideal scaffold. Regardless, 
only three recent investigations at least somewhat success-
fully detail means for overcoming GAG reduction. Rahman 
et al.58 attempted to optimize standard decellularization pro-
tocols to retain GAG content and found that detergent decel-
lularizations involving treatment with trypsin are able to 
retain GAGs slightly better than treatment with other enzy-
matic agents, although GAG content overall was still sig-
nificantly reduced.58 This was likely due to the aggressive 
means by which trypsin cleaves at amino acid bonds permit-
ting a more rapid decellularization and reducing overall 
exposure time to all reagents. Most auspicious to the field, 
however, were the progress made by Vas et  al.220 They 
established a vacuum-assisted osmotic shock method capa-
ble of retaining up to 85% of GAGs during decellularization 
of porcine costal cartilage, while Shen et al.221 developed a 
means of decellularizing cartilage using freeze-thaw, fol-
lowed by treatment in water and sonication to preserve 
GAG content (Figure 2).220 Clearly, further investigation 
into the effectiveness of sonication and vacuum-assisted 
decellularization of cartilage must be conducted.

Adipose

Adipose tissue is important for cushioning and supporting 
the internal organs and is made up of adipocytes, which are 
dependent upon the basement membrane to provide 
mechanical support as well as facilitate adipogenesis. This 
basement membrane is predominantly made up of colla-
gen types I and IV, laminin, and proteoglycans.222 
Mechanical disruption or dilapidation steps should be per-
formed prior to cell removal in order to permit proper 
invasion by decellularizing agents. While decellularization 
of adipose is not as extensively studied as many other tis-
sue types, it has been shown that adipose tissue can be 
decellularized using detergent, enzymatic, or solvent-
based techniques. Thomas-Porch et al.223 sought to com-
pare several previously described combinative chemical 
and enzymatic protocols for adipose decellularization and 
found that while all were capable of decellularizing adi-
pose tissue, the agents used influenced the proteome of the 
resulting decellularized matrix. This echoed several years 
of similar findings by studies, which analyzed the effects 
of detergents and enzymes on other tissue types as well. As 
such, investigation into alternative strategies for decellu-
larization of adipose is encouraged.

A detergent-free decellularization protocol for adipose 
tissue, described by Flynn et  al. involved freeze-thaw 
cycles followed by isopropanol treatment, which was then 
followed by enzymatic digestion with trypsin-EDTA, 
DNase, RNase, and lipase to remove cellular content and 
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remnant lipid content.84 This protocol retained adequate 
levels of collagen IV and laminin to support adipocytes in 
the future. Since then, few studies have been published 
which claim to have developed adequate decellularization 
by alternative means. For this reason, most recent advance-
ments in adipose decellularization have focused on opti-
mizing or comparing existing approaches.224–227 Despite 
these attempts, detergents and acids of varying concentra-
tions and exposure times have consistently proven to be 
too harsh on adipose tissue, resulting in full decellulariza-
tion being accompanied by a reduction or complete 

removal of structurally supportive laminin.226–229 One suc-
cessful attempt to develop a detergent-free method of 
decellularizing adipose tissue has been reported recently. 
This protocol, developed by Wang et al,230 utilized scCO2 
to adequately decellularize adipose tissue with ethanol as a 
modifying agent (Figure 2).

Cornea

The ECM of the cornea is composed of water, inorganic 
salts, proteoglycans, glycoproteins, and several types of 

Table 4.  Summary of varied enzymatic techniques applied to tissue decellularization.

Classification Agent Mechanism Advantages Disadvantages References

Nucleases DNase Cleaves nucleotide 
bonds

Compatible with several 
decellularizing agents

Insufficient for 
decellularization alone

Simsa et al.39, McCrary 
et al.57, Wang et al.123, 
Ramm et al.172, Oliveri 
et al.176

Removes remnant nuclear 
content

Induces immune 
response

Does not impact 
proteomic content of ECM

RNase Cleaves nucleotide 
bonds

Compatible with several 
decellularizing agents

Insufficient for 
decellularization alone

Sart et al.194, Wallis 
et al.195, Rademacher 
et al.196Removes remnant nuclear 

content
Does not impact 
proteomic content of ECM

Benzonase Cleaves nucleotide 
bonds

Improves retention of small 
bioactive molecules and 
biomechanical properties

Insufficient for 
decellularization alone

Simsa et al.39, Liu 
et al.173, Godehardt 
et al.174, Dong et al.175

Compatible with several 
decellularization agents

Proteases Trypsin Cleaves lysine and 
arginine

Compatible with several 
decellularizing agents

Insufficient for 
decellularization alone

Dal Sasso et al.114, 
Olsen et al.163, Sajith164, 
Grauss et al.165, Zou 
and Zhang166

Damages biomechanical 
integrity

Dispase Cleaves fibronectin 
and collagen IV

Assists cell removal from 
thick tissues

Removes ECM 
structural components

Asadi et al.177, Spurr 
and Gipson197, 
Gonzalez-Andrades 
et al.198

Prevents cell aggregation Damages 
microstructure

Collagenase N/A Permits better detection 
and identification of ECM 
proteins

Removes collagen Kuljanin et al.180, Palka 
and Phang199Damages 

microstructure
Phospholipase Hydrolyze ester 

bonds
Reduces immunogenicity Insufficient for 

complete removal of 
lipids

Wu et al.181, Chen 
et al.182, Gessner 
et al.183, Huang et al.184, 
Li et al.185Compatible with several 

decellularizing agents
Esterases Chondroitinase 

ABC
Removes 
chondroitin sulfate 
and dermatan 
sulfate side chains 
from GAGs

Assists in decellularizing 
dense tissues

Aggressively reduces 
GAG content

Bautista et al.186, Natoli 
et al.187, Neubauer 
et al.189, Boyer et al.190, 
Bradbury et al.191, Shaya 
et al.200

Removes CSPGs in neural 
tissue

Increases ECM stiffness

Chelating 
Agents

EDTA Targets Ca2+ 
and Mg2+ ions to 
cleave cell-ECM 
bonds

Compatible with several 
decellularizing agents

Less effective 
cell removal than 
detergents

Miranda et al.37, Xu 
et al.43, Haupt et al.167
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collagens.231 Similar to other tissues, a successful decel-
lularization should aim to preserve as much of the native 
ECM components as possible. Unlike other tissues, 
decellularization of cornea must aim to produce a fully 
transparent matrix. Several conventional chemical and 
physical decellularization methods have been applied to 
corneal tissue, although most cause some undesirable 
results such as reduced transparency, damage to the ECM 
microstructure, dehydration, and/or edema.160,232,233 As 
such, several studies focus on uncovering newer uncon-
ventional decellularizing techniques. For instance, some 
studies indicate that phospholipase A2 or human serum 
with electrophoresis are capable of maintaining ECM 
structural proteins and transparency, albeit no protocol 
has been optimized to attain adequate cell removal. 
Perhaps the most promising recent advancement, 
described by Lin et al.,80 indicates that decellularization 
of cornea can be performed using glycerol with chemical 
crosslinking (Figure 2). The application of glycerol to the 
tissue through a pressure based osmotic system followed 
by gamma-ray irradiation preserved the fibrous collagen 
morphology and GAG content. Moreover, it provided a 
fully transparent and non-immunogenic decellularized 
graft with long-term stability.80

Respiratory organs

Due to the importance of the lungs to be able to expand and 
collapse, it is critical that a lung decellularization protocol be 
optimized to retain as many of the native organ’s mechanical 
properties as possible. In particular, the ultrathin “air-blood 
barrier” between the alveoli and capillaries are of the utmost 
importance to preserve during decellularizations, as this per-
mits the exchange of gases between the blood and the 
lungs.234 The thinness of the lungs allows them to be decel-
lularized quickly by a variety of agents. As such, several pro-
tocols have been published which indicate that the lungs can 
be decellularized by chemical, enzymatic, physical, and 
combinative methods.235,236 Most commonly, lung tissue is 
decellularized by perfusion through the airways, vasculature, 
or both, with combinations of detergents such as SDC and 
Triton X-100, or individually by low concentrations of SDS 
or CHAPS. Protocols have utilized different concentrations 
for each reagent, exposure times to reagents, routes for per-
fusion, and order of reagent administration, each with differ-
ing levels of success. Tebyanian et  al.236 found that a 
detergent-based approach using 2 mM CHAPS and 0.1% 
SDS for 24 h maintained the microarchitecture of rat lung 
better than 2 mM CHAPS and 0.5% Triton X-100 for 96 h. It 

Figure 2.  Novel strategies to improve standard decellularization protocols organized by tissue type.
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is important to note that a donor tissue source must be taken 
into consideration when choosing a means of introducing 
decellularizing agents into the tissue, as lung from species of 
differing sizes cannot be decellularized under the same con-
ditions. For instance, pressure-based perfusion of decellular-
izing agents into the tissue should be avoided for lungs 
sourced from larger donors, such as human or pig, but are 
acceptable for lungs sourced from smaller donors such as 
mouse or rat. Palma et al.235 overcame this barrier by devel-
oping a constant pressure-based perfusion system to intro-
duce SDS into horse lung that was able to maintain most of 
the native collagen, elastin, fibronectin, and GAG content, 
although the procedure resulted in the collagen area being 
significantly reduced and increased stiffness of the ECM 
compared to native tissues. Obata et al.63 found that decellu-
larization of rat lung by the naturally occurring detergent, 
potassium laurate, could significantly reduce the damage to 
the ECM microstructure often caused by commonly used 
ionic and non-ionic detergent-based protocols. Interestingly, 
the use of potassium laurate for decellularization resulted in 
an increased recellularization potential and a significantly 
reduced immune response upon implantation compared to 
lung decellularized by SDS.63 Song et  al.71 found that the 
zwitterionic detergent, SB10 following treatment with the 
cytotoxic drug, camptothecin, was able to successfully decel-
lularize rat lung while significantly reducing the damage to 
the ECM collagen structure when compared to a commonly 
utilized Triton X-100 and SDS treatment.71 The potential of 
using potassium laurate and SB10 for detergent-based decel-
lularization of thin tissues is worth further investigation 
(Figure 2).

Cardiovascular tissue

ECM sourced from the heart is composed mostly of colla-
gens, fibronectin, and elastin. These components permit the 
heart to be durable, strong, and flexible.237 Cardiovascular 
tissue remains to date one of the most extensively studied 
organs for decellularization, which has allowed for the 
development of several protocols capable of adequate cell 
removal as well as retention of biomechanical properties. 
While cardiovascular tissue can be decellularized using 
several combinative detergent-based approaches, protocols 
have been developed with the express purpose of enhanc-
ing the effectiveness of individual detergents alone. The 
most common detergents used are SDS, SDC, and Triton 
X-100. Several studies claim to have discovered an opti-
mized protocol for whole organ, valve, and sectioned car-
diovascular tissue decellularizations across several 
species.238–240 These protocols typically utilize either physi-
cal methods, such as osmotic shock, or enzymatic methods, 
such as treatment with trypsin-EDTA, prior to decellulari-
zation with detergents in order to improve results. Post-
decellularization, treatment with low concentrations of 
enzymes is used to wash away remnant nuclear waste from 

the matrix. Sokol et  al.241 tested multiple standardized 
detergent-based pericardium decellularization protocols 
and found that while multiple detergent-based protocols 
adequately removed cellular content, protocols which use 
single step detergent or enzyme decellularization were 
most likely to negatively impact the collagen structure of 
the resulting matrix. Single step decellularization also led 
to higher levels of trace nucleic acid in the matrix than 
combinative approaches.241 SDS and Trypsin enzyme com-
binative approaches in particular are of interest, as they 
were shown to result in the most optimal proteomic and 
biomechanical results.241

Despite the heart being a relatively durable organ and 
the adequate decellularizations performed by combinative 
detergent-based approaches, the potential for detergents to 
damage the mechanical properties of the ECM, particu-
larly GAG content that provides much of the heart’s 
mechanical strength, remains indisputable. Thus, recent 
attempts to do away with detergents for cardiovascular 
decellularization are becoming increasingly popular. 
Decellularization by scCO2 treatment has been studied as 
a potential means for avoiding detergent induced damage 
to ECM components, however, this method can dehydrate 
the ECM.242 Cesur et al.243 found that a combinative Triton 
X-100 and scCO2 method could overcome the weaknesses 
associated with both decellularizing techniques.

Artery

Arteries contain three layers: the intima, media, and adventi-
tia, each with different ECM composition. The tunica intima 
consists mainly of laminin and collagen IV, the media con-
sists mostly of collagen II, elastin, glycoproteins, and GAGs, 
and the tunica adventitia is predominantly collagen I, elastin, 
and proteoglycans.244 Because this tissue is so thin, elastic, 
and structurally complex, it is considered difficult to decel-
lularize while maintaining its ECM components. To attain 
the best results, it has been suggested that prior to decellulari-
zation, an additional step may be taken to begin cell lysis, 
such as washing in water under physical agitation or intro-
ducing freeze-thaw cycles.130,245 Similar to other tissues, 
artery is most commonly decellularized using detergents, 
including SDS, EDTA, SDC, CHAPS or Triton X-100. 
These detergents can be used alone or in combination and 
produce satisfactory results. Additionally, some protocols 
have shown that use of either trypsin or hypo/hypertonic 
solutions in tandem with these detergents can produce greater 
success rates.246,247 While many studies have reported suc-
cessful decellularization of blood vessels by detergent-based 
methods, they have been applied under varying experimental 
conditions, making it difficult to assess the usefulness of 
each individual detergent. Simsa et al.39 sought to overcome 
these discrepancies in experimental conditions to determine 
the efficacy of individual agents in commonly utilized deter-
gent-based protocols. Although protocols which use Triton 
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X-100, SDS, SDC, and CHAPS as the main decellularizing 
reagent all produced sufficiently decellularized matrices 
with acceptable biodegradability and mechanical properties, 
Triton X-100 based protocols were shown to result in the 
greatest recellularization potential. However, it was noted 
that it is essential for Triton X-100 decellularization be fol-
lowed up with enzymatic treatment with DNase to ensure 
removal of nuclear remnants.39 Most recently, attempts to 
overcome the need for detergents using scCO2 as a decellu-
larizing agent have been described (Figure 2). Gil-Ramirez 
et al.248 indicated that scCO2-ethanol mediated decellulariza-
tions followed by enzymatic treatment with benzonase may 
be a potential means for detergent-free arterial decellulariza-
tion. scCO2 was shown to successfully decellularize arterial 
tissue, although it resulted in some external damage to the 
tissue. This is to be expected, as scCO2 is known to dehy-
drate the ECM, and thus it may not be ideal for procedures 
that require an intact final matrix. Another issue with arterial 
decellularizations is the fact that many arterial walls are pro-
tected by a watertight lining that spans the length of the arte-
rial wall. Tuan-Mu et  al.249 recently discovered that 
pretreatment of umbilical cord with collagenase permitted 
better decellularization of the arterial walls within. 
Collagenase treatments were able to remove the watertight 
lining of the abluminal surface, in turn allowing for improved 
perfusion of 1% SDS detergent and reducing the overall 
decellularization process to less than 24 h.249

Decellularization of thinner tissues, such as artery, may be 
improved by the development of a camptothecin and SB10 
approach. Blood vessels are known to be best decellularized 
using combinative detergent-based and enzymatic tech-
niques, but the thinness of these tissues can result in overex-
posure to harmful agents, resulting in unwanted removal of 
protein niches. Attempts to utilize non-detergent based meth-
ods are difficult as well, as several of these non-detergent 
agents can dehydrate the ECM, reducing elasticity and dam-
aging the matrix. To date, no studies have been published 
showing the utilization of SB10 or SB16 as the main decel-
lularizing agents for thin elastic tissues such as artery. 
Camptothecin, which gently mediates apoptosis, followed 
by rinses with SB10, a zwitterionic detergent shown to effec-
tively remove cellular content with a low risk of resulting in 
unwanted protein removal, may prove successful. However, 
this likely would still require further enzymatic or chemical 
treatment to adequately remove cellular content, which may 
decrease the mechanical strength of arterial ECM.71,151,250 It 
is also necessary for satisfactory cellular removal with com-
monly used detergents such as Triton X-100.39 For this rea-
son, thin tissue decellularized with SB10 or SB16 could 
potentially require shorter posttreatment exposure times to 
highly damaging enzymes for adequate cell removal.

Dermis

Dermal tissue, like arterial tissue, contains multiple layers in 
order to perform a multitude of functions. These layers 

make decellularization by gentle decellularizing agents dif-
ficult, as the density of dermal tissue makes infiltration of 
non-surfactant agents nearly impossible. As such, decellu-
larization of dermal tissue generally requires treatment 
with aggressive decellularizing agents such as surfactants 
and enzymes. Dermis must first be delipidated before 
decellularization that is most commonly carried out using 
combinative detergent and enzymatic treatments. While 
surfactant-enzymatic methods are adequate for decellular-
ization, recently, multiple protocols have demonstrated 
that dermal ECM can be procured by using detergents in 
combination with hypo/hypertonic solution changes to 
induce osmotic shock, as opposed to enzymatic treat-
ment.251–253 Apart from osmotic shock-based methods, 
other attempts to remove or reduce the need for enzymatic 
exposure step from dermal tissue decellularization protocols 
have not necessarily proven to be more effective than stand-
ard chemical and enzymatic treatment protocols.254,255 
Because surfactant-enzymatic methods have been thus far 
the most practical and common decellularizing protocols for 
dermal decellularization, recent advancements by Koo et al 
sought to reduce exposure time to these harsh chemicals by 
altering standard chemical-enzymatic treatment to include 
hypo/hypertonic pretreatments along with physical sonica-
tion and electroporation methods.256 The results of the study 
show promise in the premise of combining standard deter-
gent-enzymatic decellularizations with physical decellulari-
zation methods, and further investigation into combinative 
physical/chemical/enzymatic treatment is worth exploring.

Pancreas

Pancreatic decellularization is typically carried out by Triton 
X-100, SDS, or enzymatic agents. Attempts to define the 
best detergent reagents for decellularization consistently 
indicate that Triton X-100 is superior to other detergents in 
that it typically results in far less structural damage to the 
ECM components of the matrix.257 This may be due to the 
ability of Triton X-100 to interrupt lipid-lipid and lipid-pro-
tein bonds. Reagents used for pancreatic decellularization 
must be capable of breaking the protein-protein and protein-
lipid bonds within the tissue, though this aspect of pancre-
atic decellularization is not widely reported on. Still, Triton 
X-100, as well as several other detergent-based protocols 
are well documented for the proteomic makeup of pancre-
atic ECM.257,258 Recent advancements in pancreatic decel-
lularization tend to focus on either developing protocols to 
optimize maintenance of the pancreatic ECM proteome or 
overcoming lipid barriers to successfully infuse decellular-
izing agents homogeneously throughout the tissue. For 
whole organ decellularization, Sackett et al.259 developed a 
protocol that used a novel homogenization step followed by 
SDC treatment under agitation to successfully delipidate 
and decellularize human pancreas samples that contained up 
to 70% lipid content by weight. The subsequent matrix was 
determined to be non-immunogenic and had excellently 
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retained collagen and laminin content, but only partially 
retained GAG content.259 A study performed by Panjota 
et al.260 echoed this conclusion that 4% SDC could better 
preserve structural pancreatic ECM components than Triton 
X-100 or SDS in canines. SDC is known to be incapable of 
degrading collagens, which may explain its ability to better 
retain the fibrous structural components of pancreas. 
Elebring et al.261 indicated that detergent-based techniques 
could be optimized by adjusting the temperature at which 
detergent-based decellularization occurs. They reported that 
the use of “cold-perfusion,” in which a 4% SDC and 6% 
Triton X-100 reagent mixture was perfused through pan-
creas at a constant temperature of 4°C, assisted in the main-
tenance of pancreatic ECM ultrastructure.261 This may have 
been due to the fact that the low temperature inhibits the 
activation of the enzymatic proteases native to the pancreas 
which can be triggered by exposure to detergents (Figure 2). 
Bi et al.7 and Hu et al.2 demonstrated that effective rat and 
porcine pancreatic decellularization with maintenance of 
key ECM proteins could be achieved through nondetergent-
based methods. Their studies indicated that hyper/hypotonic 
solution changes under agitation were able to sufficiently 
remove up to 99% and 98% DNA from rat and porcine, 
respectively, while maintaining collagen, laminin, and GAG 
content, though investigation into potential impact on the 
biomechanics and ultrastructure were not reported.2,7,18

Kidney

Recent studies have demonstrated progress in optimizing 
kidney decellularization to better maintain an intact vascular 
tree by means of physical, chemical, and biological meth-
ods.169,262 Both Yang et al.262 and Feng et al.169 investigated 
the usefulness of several different cryoprotectants to reduce 
the damage caused by the freezing process to the kidney’s 
vascular network. While kidneys have been successfully 
decellularized by a variety of detergents, they are most com-
monly decellularized by Triton X-100, SDS, or combinative 
SDS and Triton X-100 protocols.263–265 Multiple studies 
have indicated that the addition of a freeze-thaw step to kid-
ney decellularization by Triton X-100 allows for relatively 
short treatment time with the chemical agent.266,267 However, 
freeze-thaw is also known to cause damage to the overall 
structure of the ECM as well as the vascular network by 
expanding blood vessels by nearly 200% of their original 
size.267 Several cryoprotectant agents could be used to opti-
mize the freeze-thaw decellularization process. The study 
results indicated that conditions such as crystallization tem-
perature, freeze-thaw temperature, rate of cooling, and con-
centration of each cryoprotecting agent must be considered 
before choosing which cryoprotectant is best suited for use 
in a freeze-thaw decellularization protocol (Figure 2).169,262 
Regarding recent advancements in renal decellularization 
by chemical methods, Poornejad et al.268 optimized a whole 
organ SDS detergent protocol by inducing osmotic shock on 

porcine kidney. By cycling between perfusion of SDS-
containing NaCl solution at gradually increasing flow rates, 
they were able to significantly reduce chemical treatment 
time and increase preservation of collagens, and GAGs.268 
Despite being relatively successful, there remains the poten-
tial for kidney decellularization for better retention of ECM 
ultrastructure. More specifically, establishing a protocol that 
better preserves the vasculature of native kidney is of the 
utmost importance.

Liver

The liver is mainly composed of laminin, elastin, fibronec-
tin, and collagen types I, III, and IV, as well as sulfated 
GAGs.269,270 Decellularization of liver has been extensively 
studied. Livers that have been decellularized by the tech-
niques discussed above maintain their structural and prot-
eomic components, promote cell proliferation, attachment, 
and migration, and show acceptable biocompatibility. 
Typically, for liver, whole organ decellularization is per-
formed using perfusion methods, but can also be achieved 
using immersion-based methods at the cost of losing the 3D 
architecture and vascular network. Whole liver decellulari-
zation usually use various combinations of chemical, physi-
cal, and biological methods such as detergents like Triton 
X-100 or SDS, hypo/hypertonic solution changes involving 
NaCl, and enzymatic treatment with DNase. Currently, the 
most vital obstacle to overcome for liver decellularization is 
inefficient diffusion of decellularizing reagents through the 
native whole organ. Several recent advances have been 
made in liver decellularization—many of which have deter-
mined that the addition of external pressure or forces acting 
on the liver during decellularization are beneficial. Struecker 
et al.271 was the first to report that pressure-based decellu-
larizations could produce optimized liver scaffolds. They 
reported that the application of controlled oscillating pres-
sures from 0 to 35 mbar during perfusion of detergents into 
porcine liver assisted in decreasing the amount of time 
required for decellularization to be achieved.271 Similarly, 
Willemse et al.272 found that decellularization carried out at 
constant pressure of 120 mmHg can assist in reducing the 
required exposure time to Triton X-100, thereby minimizing 
the damage incurred on essential ECM components. Mazza 
et al.273 applied high shear stress during decellularization to 
produce ECM scaffolds from human liver (Figure 2). They 
found that agitating the liver at 45× g significantly decreased 
the time required to achieve successful decellularization of 
sectioned tissue.273 These results indicate that further explo-
ration into the application of external forces on tissue during 
decellularization are necessary.

Reproductive organs

SDS appears to be the commonly utilized reagent for decel-
lularization of ovary and uterus, but is well known to be 



18	 Journal of Tissue Engineering ﻿

cytotoxic if inadequately cleared from the final ECM prod-
uct.11,274 As a result, some attempts have been made to find 
alternative detergents for ovarian decellularization. Alshaikh 
determined that decellularization of murine ovary by 2% 
SDC better preserved GAGs, collagen, and elastin fibers 
than 0.5% SDS treatment at the cost of retaining slightly 
higher DNA content. The inclusion of a DNase enzymatic 
treatment step further improved DNA removal for all decel-
lularization protocols in this study except for Triton X-100, 
which was determined to be entirely ineffective for adequate 
cell removal from ovary, a result shared by a recent study 
performed on ovine uterus, despite previous studies indicat-
ing its potential in rat uterus.275–279 Similarly, Padma et al. 
found ovine uterus treated with 2% SDC to be slightly supe-
rior to uterus treated with 0.5% SDS.280 Pennarossa et al.281 
sought to improve upon standard SDS decellularization pro-
tocols by developing a combinative physical and multi-
chemical approach. They subjected porcine ovaries to freeze 
thaw cycles prior to immersion in 0.5% SDS, 1% Triton 
X-100, and 2% SDC. This protocol functionally decellular-
ized the matrix and maintained an intact collagen fiber net-
work. The protocol also preserved the elastin and GAGs 
while displaying high affinity for recellularization. The study 
did not examine the significance of each agent throughout 
the decellularization, and thus could not affirm or deny the 
claims made by Alshaikh et  al. surrounding the impact of 
Triton X-100 on ovarian decellularizations. An attempt to 
remove surfactants from porcine ovarian decellularization 
entirely was described by Eivazkhani et  al.,282 which 
employed sodium hydroxide, a decellularizing reagent rarely 
used due to the high risk of tissue denaturation. While this 
protocol did lead to more structural damage than SDS, it pro-
duced a matrix with greater potential for successful recellu-
larization later.282

Nervous tissue

ECM sourced from nervous tissue is mainly composed of 
collagen types II and IV, laminin, and fibronectin.283,284 As is 
the case with most tissues, chemical methods, namely deter-
gents, are the favored decellularizing agents for nerve. 
Traditionally, the most widely utilized protocol for decellu-
larization was pioneered by Sondell et al,285 which has dem-
onstrated sufficient myelin and Schwann cell removal as 
well as adequate neural regeneration with optimal biocom-
patibility. This protocol used a combinative detergent effort 
using Triton X-100 SDC to effectively remove cellular con-
tent. Later, the decellularization protocol was optimized by 
Hudson et al.73 who removed SDC entirely in favor of using 
the less aggressive zwitterionic detergents SB10 and SB16, 
replaced Triton X-100 with the now discontinued Triton 
X-200, and added multiple shorter wash steps. Several adap-
tations have since been made to this protocol and multiple 
studies have sought to find entirely new means of nervous 
tissue decellularization. Nieto-Nicolau et al.286 developed a 

successful combinative multi-chemical and enzymatic 
approach that preserved collagen IV and laminin content, 
known to make up the basal lamina that is essential for axon 
growth. This technique, which used SB 10 and 16, Triton 
X-100, hypertonic NaCl, and DNase treatment steps left no 
cytotoxic remnants and removed the MHC II receptor, 
known to be the antigen most responsible for inducing 
immune response and thereby demonstrating the biocompat-
ibility of the matrix.286 Suss et  al.287 found that sonication 
during chemical decellularization does not help to remove 
DNA content, but can assist in removing cellular debris and 
myelin-sheaths. Cornelison et al.151 developed a novel apop-
tosis-inducing decellularization protocol using camptothecin 
and hyper/hypotonic solution treatment, indicating the 
potential to overcome structural damage and immunogenic-
ity concerns associated with detergents (Figure 2).

Bladder

Urinary bladder regeneration requires a scaffold that can 
produce tissue with the biomechanical properties to easily 
expand and contract. An engineered bladder must also 
contain a muscular wall and urothelium which responds to 
dynamic changes in sensory and autonomic provoca-
tion.288 As it is an extensively studied organ for decellu-
larization, several protocols have been developed and 
found to be effective. Distension of the native bladder 
prior to beginning decellularization can assist the process 
due to the reduced thickness of the tissue wall.289–291 
Decellularizations are most commonly carried out by 
PAA and ethanol or SDS and Triton X-100, although 
trypsin-EDTA and SDC protocols have been devel-
oped.292–297 Recent updates in the field indicate that PAA 
and ethanol may not be ideal for decellularization of blad-
der.48 Only Kao et al.298 has recently sought to overcome 
this obstacle by optimizing SDS protocols (Figure 2). To 
enhance the efficacy of the detergent, SDS was prepared in 
a buffer to ameliorate its degradative characteristics. 
Subsequently, 1% SDS treated bladder-derived hydrogel 
scaffolds surpassed the decellularization standards set 
forth by PAA protocols within the realm of cytotoxicity, 
immunogenicity, and cell removal.298 In the future, it may 
be beneficial to decellularize urinary bladder with other 
ionic surfactants under organ distension. For instance, 
SLES has consistently shown to remove cellular and 
nuclear material on par with SDS while also better main-
taining the biomechanics of the ECM. Alternatively, since 
the issue associated with PAA is its inability to fully 
remove cellular content, perhaps the stronger analog, ace-
tic acid may prove useful for correcting this issue, though 
exposure time would likely need to be optimized to dis-
courage dehydration of the ECM. Figure 2 highlights 
recently developed approaches for improving decellulari-
zation efficacy specific to a tissue type. Table 5 exhibited 
some examples of novel step-by-step protocols for tissue 
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Table 5.  Step-by-step protocols for decellularizing different types of tissues.

Organ Donor species Protocol Comments Reference

Bone Homo sapien 2 h 750 uL PBS and agitate Acceptable biocompatibility Rasch et al.205

[30 m wash in deionized water 15 m 
centrifuge at 1850xg] (x3)

Comparable to commercially available 
bone ECM products

10 m 20 kHz sonication in 1 mL 3% 
hydrogen peroxide
10 m 20 kHz sonication in 1 mL 70% 
ethanol
10 m deionized water
15 m centrifuge at 1850xg
30 m wash in deionized water

Bone Bovine Wash in PBS Greater preservation of ECM proteins 
compared to other surfactants

Emami et al.16

48 h 0.5N HCl
wash in PBS
24 h 0.5% SLES
wash in PBS
24 h 1% Triton X-100
24 h wash in PBS

Heart Murine soak in 2 mL ethanol Retains significantly more collagens 
and GAGs compared to SDS and 
Triton X-100

Seo et al.141

6 h 35 MPa scCO2

wash 5 days in PBS & DNase
Heart Caprine 2 h 0.1% Triton X-100 Does not dehydrate the ECM Cesur and 

Laçin243Wash with PBS Avoids structural damage caused by 
long exposure to Triton X-1001 h scCO2

Dermis Porcine 6 h deionized water Avoids enzymatic digestion Greco et al.253

12 h hypertonic solution (1 M NaCl, 
10 nM EDTA, 50 mM Tris-HCl)

Preserves more GAGs, collagen, and 
elastin than several other strategies

8 h wash buffer Maintains similar biomechanical 
properties to native tissue12 h hypotonic solution (5 mM EDTA, 

10 mM Tris-HCl)
8 h wash buffer

Dermis Porcine Rinse with deionized water x3 Effectively decellularizes skin while 
maintaining ECM proteomic content

Ventura et al.77

6 h 0.25% trypsin-EDTA
Rinse with deionized water x3
6 h 0.1% SDS in 70% isopropanol Sufficiently biocompatible
Rinse with deionized water x3
12 h 1% Triton X-100 in 70% 
isopropanol
Rinse with deionized water x3 Combinative surfactant-alcohol 

approach increases ECM protein 
retention compared to surfactant 
alone

12 h 100% isopropanol
Rinse with deionized water x3

Dermis Homo sapien Rinse with deionized water Addition of hypertonic solution 
changes, sonication, and 
electroporation reduce exposure time 
to decellularizing agents

Koo et al.256

1 M NaCl solution
0.05% trypsin-EDTA
2% SDS
1% Triton X-100 Maintained structural integrity better 

than standard surfactant-enzymatic 
dermal decellularizations

Rinse again
2 h 40 kHz sonication
Electric stimulation
Sonication

Lung Murine 0.0035% Triton X-100 Preserved microstructure Obata et al.63

Rinse in PBS and 1 M NaCl
0.15% PL & 0.5% Triton X-100 Decreased immunogenicity compared 

to SDS based approachesRinse in PBS

 (Continued)
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decellularization. The outcomes of these protocols were 
highlighted as well.

Future directions

Even though the ECM matrisome of various tissues are 
similar, the varied abundance of the ECM proteins main-
tains the uniqueness of the tissue type and plays a substan-
tial role in directing cell fate.299 The proteome of the ECM 
can be difficult to analyze due to the complexity of large, 
insoluble, crosslinked, and glycosylated proteins. Thus, it 
is difficult to determine whether decellularization results 
in the retention of the entire proteome. Decellularized 
ECM must be characterized following decellularization to 
confirm that the properties of the resultant scaffold con-
struct will be able to promote re-seeded cell proliferation 
and not invoke an immune response upon implantation 
into a host biosystem. Residual DNA, cytotoxic chemicals, 
or disruption of the native mechanical structure could all 
result in unfavorable outcomes upon recellularization or 
implantation of the final decellularized construct.

Currently, no singular decellularizing agent can be used 
to retrieve a decellularized ECM scaffold with perfectly 
identical proteome to that of native ECM, even though 
tremendous strategies for tissue- and organ-specific decel-
lularization have been developed. For this reason, decel-
lularization protocols must cautiously determine which 
agents are best for use with a particular tissue of interest. 
Many decellularization protocols can therefore uninten-
tionally increase the risk of inefficient nuclear removal 
rates, produce unintentionally cytotoxic constructs, or 

induce strong immune responses from the host system 
upon implantation. Therefore, further studies must be per-
formed to determine the extent to which these obstacles can 
be overcome. For instance, recent investigations have 
sought to introduce drugs, such as Rosiglitazone and 
Honokiol to decellularized ECM to reduce immunogenic-
ity.300,301 Raptinal has been identified as a possible apopto-
sis-inducing decellularizing agent.151 Additionally, while 
many techniques described throughout this review have 
been shown to reduce GAG content, some studies have 
suggested that partial loss of GAGs may be beneficial for 
recellularization.302 Investigation into the level of accepta-
ble GAG removal should be performed to better character-
ize the usefulness of individual decellularizing agents. 
While the importance of using tissues from an organ of 
interest has been stressed, recent findings have indicated 
that decellularized plant could potentially be used as an 
alternative to some types of decellularized animal tissues 
for scaffolding. Current research progresses on plant decel-
lularization and their potential applications of plant-derived 
scaffolding have been introduced and summarized else-
where.303 Taken together, we provide a comprehensive and 
up to date review focusing on a variety of decellularization 
techniques that have been extensively investigated lately. 
Further advancements in decellularization strategies would 
facilitate the clinical applications of the decellularized bio-
materials for tissue repair and disease treatment.
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Organ Donor species Protocol Comments Reference

Ovary Murine 16 h 2% SDC Preserved collagen fiber networks, 
GAGs, and elastin

Alshaikh et al.275

wash in deionized water
30 m 40 U/mL DNase
24 h wash in deionized water
30 m 0.1% PAA
24 h wash in PBS

Nerve Murine 1d 5uM camptothecin Cells in early stages of apoptosis 
more easily washed away than cells in 
secondary stages

Cornelison 
et al.15124 h hypertonic 4X PBS

30 m wash in 2X PBS Decellularized tissue architecture 
nearly identical to native tissue30 m wash in 1X PBS (x2)

36 h 75 U/mL DNase Retained important ECM proteins
30 m wash in 1X PBS (x2)

Cornea Porcine Wash in PBS Produced high transparency graft Lin et al.80

4 h immerse in % glycerol
Wash in preservation solution Maintained mechanical properties
2 h glycerol buffer solution
Wash in preservation solution Showed long-term stability, 

low immunogenicity, and good 
biocompatibility

Irradiate at 25KGy

Table 5.  (Continued)
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