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Abstract: Despite the significant advancement in bone tissue engineering, it is still challenging to
find a desired scaffold with suitable mechanical and biological properties, efficient bone formation in
the defect area, and antibacterial resistivity. In this study, the zeolite (ZSM-5) scaffold was developed
using the space holder method, and a novel vancomycin-loaded alginate coating was developed on it
to promote their characteristics. Our results demonstrated the importance of alginate coating on the
microstructure, mechanical, and cellular properties of the ZSM-5 scaffold. For instance, a three-fold
increase in the compressive strength of coated scaffolds was observed compared to the uncoated ZSM-
5. After the incorporation of vancomycin into the alginate coating, the scaffold revealed significant
antibacterial activity against Staphylococcus aureus (S. aureus). The inhibition zone increased to 35 mm.
Resets also demonstrated 74 ± 2.5% porosity, 4.3 ± 0.07 MPa strength in compressive conditions,
acceptable cellular properties (72.3 ± 0.2 (%control) cell viability) after 7 days, good cell attachment,
and calcium deposition. Overall, the results revealed that this scaffold could be a great candidate for
bone tissue engineering.

Keywords: zeolite (ZSM-5); three-dimensional scaffold; bone tissue engineering; antibacterial activity;
bone mineralization

1. Introduction

Bone disorders such as bone fracture, osteoarthritis, and osteoporosis are some of
the main issues of the elderly world population. Based on previous reports, 21% of the
world population will be old by 2050, demonstrating more bone disorders and bone
replacements are required than the 10% of elderly people in 2000. In this regard, bone
tissue engineering using innovative biomaterials and techniques has been developed in
recent years [1]. Engineered scaffolds are temporary structures to provide a suitable
substrate for cells to grow and, consequently, the formation of new bone. Biocompatibility,
biodegradability, and mechanical and biological properties are some of the important
properties of the scaffolds [2,3]. Between various materials, aluminosilicates, especially
zeolite, gained much attention in recent years. Due to the periodic arrangement of channels
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and cages in zeolite, it has been used in different industrial applications such as catalysts,
chromatography adsorbents, and ion exchangers [4,5]. Zeolite is also a biocompatible and
biodegradable ceramic without any toxic body responses. Due to these great features, it
has been used in different biomedical applications such as magnetic resonance imaging [6],
skin hemostats [7], drug [8] and gene delivery [9], and anticancer agents [10], especially
because of its porous structure, large surface area, and zero cytotoxicity, zeolite is suitable
for bone tissue engineering [11]. Zeolite classification can be arranged based on their
origins and also their chemical structures. More than 10 natural zeolites and 200 synthetic
zeolites have been introduced. The special application of each zeolite is related to two of
its important crystalline structure parameters and chemical composition. Among various
synthetic zeolites, ZSM-5 is one the most used zeolite in biomedical applications. Great
cytocompatibility, ability to load different kinds of drugs and bioactive molecules, and
in vitro bioactivity have been confirmed in various studies [12]. In addition, results showed
that zeolite could deliver oxygen to cells, stimulate osteogenic differentiation and improve
bone resorption [13]. Overall, cell delivery and tissue ingrowth are affected by high
porosity and high surface area to mass ratio. Especially, open pores optimize the diffusion
of nutrients and waste [14]. On the other hand, both macro and micro porosities in zeolite
structure can improve the cell properties of scaffolds. Microporosities are increasing
the surface area to mass ratio and consequently increase the cell properties of zeolite
scaffold [15].

Different strategies have been applied to develop 3D scaffolds including lyophiliza-
tion [16], melt molding [17], particle leaching “phase” inversion [18], immersion [19],
electrospinning [20] and 3D printing [21]. Among the aforementioned methods, the space
holder method is one of the cost-effective processing methods that have good control of
the morphology and pore sizes. Due to these effective features, this method has been used
for bone tissue engineering for a wide range of biomaterials. For instance, Chen et al. [22]
developed titanium scaffolds using the space holder strategy for bone tissue engineering.
They demonstrated the formation of porous Ti scaffold with more than 95% porosity. More
importantly, elastic moduli were in the range of 4–30 GPa and in the suitable range for bone
tissue engineering. According to our knowledge, the space holder strategy has not been
investigated for the fabrication of 3D ZSM-5 scaffolds. Recently, ZSM-5 scaffolds have been
developed using 3D printing method for bone tissue engineering applications. However,
weak mechanical strength and low antibacterial properties are two important limitations of
ZSM-5 scaffolds for bone tissue applications.

Surface coating is a promising strategy that has been widely applied to simultane-
ously overcome the weak mechanical properties and improve the degradation rate and
biological properties of scaffolds [23,24]. Between them, polymeric coatings are promising
due to biocompatibility, biodegradability, similarity to the extracellular matrix structure,
and good cell affinity [14,23,24]. Among different natural polymers, alginate (Alg) is a bio-
compatible, biodegradable, non-immunogenic polymer with great cellular properties [25].
Mourino et al. [26] demonstrated that Alg coating could promote the antibacterial and
mechanical properties of bioactive glass scaffolds without any significant change in the
interconnected pores. In similar work, Keshavarz et al. [27] synthesized Alg coated bioac-
tive glass scaffolds and found that Alg coating increased the cell viability (45.2%), ALP
activity (3.4-Infection and post-operative issues are the main issues after implantation of
bone scaffolds [28–31]. The incorporation of various antibiotics, including vancomycin
(VA), rifampin, gentamicin, doxycycline, nafcillin, penicillin, colistin, and minocycline, is an
effective method to overcome this challenge. Between them, VA is a water-soluble antibiotic
that can kill most bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) [32].
Osteomyelitis can be effectively treated with vancomycin, a wide glycopeptide antibiotic
that is active toward Gram-positive bacteria. Gram-positive bacteria are resistant to van-
comycin, but not Gram-negative ones [32,33]. Minting et al. [33] developed the VA-loaded
Alg coating on the surface of magnesium alloy, which was post-treated using micro-arc
oxidation. They confirmed that Alg enhanced the hemocompatibility and antibacterial
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properties while decreasing the degradation rate of scaffolds. According to our knowledge,
VA-loaded Alg coating on ceramic scaffolds has not been widely investigated. The aim of
this study is to develop bone scaffolds with desired osteogenic and antibacterial properties.
A ZSM-5 scaffold is fabricated using a simple space-holder strategy and consequently,
herein, a VA-loaded Alg coating is developed on it to inhibit bacterial growth and promote
osteogenic differentiation. Based on our knowledge, there is no study on in vitro drug
release and antibacterial properties of VA-loaded Alg coating on ZSM-5 scaffolds. So, in
this study, for the first time, a ZSM-5 scaffold was developed using space holder method.
Moreover, to promote mechanical and cellular properties and also to provide suitable
antibacterial features, Alg coating and VA loading were utilized.

2. Material and Methods
2.1. Materials

ZSM-5 zeolite powder (≥99%) was purchased from Sigma-Aldrich. Sodium alginate
(≥99%) was bought from Merck, Germany. Vancomycin hydrochloride (Applichem GmbH,
Germany) and sodium chloride (≥90%), and sunflower oil (≥80%) were prepared from
Sigma-Aldrich. In addition, deionized (DI) water was applied in all experiments.

2.2. Fabrication of ZSM-5 Scaffolds

The porous ZSM-5 scaffold was developed based on a space holder strategy using
NaCl (Sigma-Aldrich) with a particle size of 300–420 µm, as the spacer, according to a
previous study [34]. Firstly, the initial zeolite and NaCl powders were mixed with a weight
ratio of 80/20. In order to obtain a homogeneous mixture, the powders were dispersed in
sunflower oil (2 wt.%) for 1 h. Consequently, the mixture was compacted in the cylindrical
mold with a diameter of 10 mm under the stress of 400 MPa using a Universal Testing
Machine (Hounsfield H50KS, crosshead speed = 0.5 mm/min). Then, the sintering process
was performed at 950 ◦C for 150 min. The heating rate was kept at 3◦/min. Finally, the
sintered samples were immersed in deionized water for 24 h to remove all spacer powder.

2.3. Preparation of Drug-Loaded Alg Coated ZSM-5 Scaffolds

The Alg-based coating was developed using a simple dip-coating process on a zeolite
scaffold. In this regard, following the preparation of 3 wt.% Alg solution, zeolite scaffolds
were dipped in the Alg aqueous solution at ambient temperature for 10 min to allow
penetrating Alg within the zeolite scaffold. Alg-coated scaffolds were vacuum-dried in the
oven for 24 h and at 37 ◦C. The coating process (impregnation cycles) was repeated three
times; then, the coated samples were left to dry overnight at 37 ◦C. In order to develop
VA-loaded Alg coating, VA was dissolved in PBS with concentrations of 0.02 mg/mL, and
subsequently, the scaffolds (n = 3) were immersed in the VA solution at 37 ◦C for 24 h as
shown in Scheme 1.

2.4. Characterization of ZSM-5 Scaffolds

In order to study the surface morphology of zeolite powder, a field emission scan-
ning microscope (FESEM, Tescan, Mira 3 Czech Republic, Prague, Czech Republic) and
transmission electron microscope (TEM, Philips EM208S 100kV Netherland) were utilized.
The morphology of the scaffolds was analyzed using scanning electron microscopy (SEM,
Philips, XL30, Netherlands). The composition of elements was also identified using energy
dispersive X-ray spectra (EDS, JSM-5910LV, JOEL Ltd., Tokyo, Japan). For the sample
preparation, the scaffolds were gold-coated using a sputter coater. After imaging the cross-
section of scaffolds, at least images from 3 individual samples were used to measure the
pore size of scaffolds using Anix. In addition, samples were studied using X-ray diffraction
(XRD, Phillips, Netherlands) and Fourier-transform infrared spectroscopy (FTIR; ALPHA-T,
Bruker, Ettlingen, Germany). To evaluate the total and interconnected porosity of scaffolds,
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the Archimedes method was used. Furthermore, the total porosity was estimated using the
Equation (1).

Total porosity % = 1 − W1
pscaffold (W3 − W2)

× 100 (1)
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In this regard, following the estimation of the primary weight (n = 3, W1), the scaffolds
were immersed in DI water and kept for 24 h. Consequently, the immersed scaffolds were
weighed and recorded as W2. After drying, the scaffolds were weighed again, and their
weight was recorded as W3 [35].

2.5. Machinal Properties of ZSM-5 Scaffolds

Compressive properties of scaffolds were studied with a mechanical test instrument
(Hounsfield H50KS). The scaffolds (n = 3) were prepared in the specified dimension (8 mm
diameter and 15 mm height) and consequently were fixed between two mechanical jaws
and compressed with the rate of 1 mm/min based on ASTM F2150-07. From the obtained
stress–strain curves, the compressive strength, and elastic modulus were determined. The
elastic modulus was calculated in the strain range of 0–10% for all scaffolds and compressive
strength was calculated according to the maximum stress of the stress–strain curves.

2.6. In Vitro Drug Release Evaluation

In order to evaluate the VA release, two samples were prepared: VA-loaded Alg coated
ZSM-5 (ZSM-5-Alg-VA) and VA-loaded ZSM-5 scaffold. Three samples were fabricated
from each one and soaked in PBS for 28 days. At the specific time points, 2 mL of PBS
was discarded, and the absorbance of VA was measured by NanoDrop one (Thermo Fisher
Scientific, USA).

2.7. In Vitro Bioactivity Properties of ZSM-5 Scaffolds

In order to study the in vitro bioactivity of scaffolds, they were immersed in simulated
body fluid (SBF, pH = 7.4) at 37 ± 0.5 ◦C for 21 days. The Kokubo protocol [36] was used
for the preparation of the SBF solution. After 21 days of soaking, the samples were washed
with DI water and dried at room temperature. The formation of bone-like apatite on the
scaffolds was determined using SEM imaging, XRD, and FTIR analysis.
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2.8. Antibacterial Activity Evaluation of ZSM-5 Scaffolds

A disk diffusion test was utilized to determine the antibacterial properties of scaffolds
using Staphylococcus aureus (S. aureus, ATCC 25923) (Ideal Gostar Co., Iran). Scaffolds were
sterilized with gamma radiation, and all antibacterial assays were performed under sterile
conditions and in a laminar flow cabinet. The bacterial inhibition tests were performed on
the disk diffusion agar method. The S. aureus bacteria were added to a separate bottle of
50 mL sterile Mueller–Hinton broth and stirred. Each bottle was incubated in a shaking
water bath at 37 ◦C for 2 h. The bacterial suspension was cooled and homogenized
to room temperature. 0.5 mL of suspension was spread onto a 10 cm diameter agar.
Before the sample applying, agar plates were dried at 37 ◦C. In order to determine the
antibacterial properties of scaffolds toward S. aureus, samples were placed on the agar plate
containing the test organism and incubated at 37 ◦C for 24 h to determine the inhibition
zone. For further investigation, the antibacterial activity of scaffolds was studied using
colony counting of bacteria in plates containing specimens. Same bacteria were used. An
amount of 10 µL of bacterial suspensions was added to each test tube containing samples.
These tubes were shaken at 37 ◦C and 160 rpm for 24 h, and in the next step, 1 mL of this
suspension was diluted serially by 9 mL sterile PBS and added to a plate containing a
bacterial medium. Eventually, the number of bacterial colonies formed in each plate was
counted after 48 h incubation at 37 ◦C by a colony counter.

2.9. Cell Culture

MG-63 cells from the National Cell Bank of Iran at the Pasteur Institute (NCBI, C555)
were used to study the cytocompatibility of scaffolds. The scaffolds were sterilized via
30 min soaking in ethanol and consequent 20 min UV exposure. The cells (104 cells/mL)
were seeded on the scaffolds and cultivated for 1 and 7 days in a complete culture medium
based on Dulbecco’s Modified Eagle Medium (DMEM, BIO-IDEA, Iran) supplemented with
1% (v/v) streptomycin/penicillin (BIO-IDEA) and 10% (v/v) fetal bovine serum (Bioidea).

2.9.1. In Vitro Cytocompatibility of Scaffolds

The metabolic activity of cells was determined using a 3-(4,5-dimethylthia-zolyl-2)-
2,5-diphenyl tetrazolium bromide (MTT) assay based on manufacture protocol (Sigma,
USA). After 1 and 7 days of culture, the cell-seeded scaffolds were incubated for 4 h in MTT
solution (0.5 mg/mL). Then, DMSO was applied to dissolve formed formazan crystals. The
optical density (OD) of samples was determined using a microplate reader (Bio-Rad) at
490 nm. Finally, the relative cell survival (% control) was calculated using Equation (2).

Relative cell survival (%control) =
X sample − Xb

Xc − Xb
(2)

X sample, Xb, and Xc are reported absorbance of scaffolds, DMSO, and control sample,
respectively [37].

2.9.2. In Vitro Cell Attachment Evaluation

In order to evaluate the cell attachment and morphology, the samples were cultured
for 7 and 14 days in a complete growth medium and evaluated by SEM. At the specific time
point, scaffolds were fixed with 4% formaldehyde solution for 30 min. After rinsing with
PBS three times, samples were dehydrated with 30, 70, 90, 96, and 100% ethanol, respectively.
Finally, in the next step, scaffolds were air-dried, and gold coated. Cells’ morphology on
each sample (n = 2) was observed by SEM (Philips, XL30, The Netherlands) [38].

2.9.3. Osteogenic Differentiation Evaluation

In order to determine the calcium deposits (mineralization), Alizarin red staining
was used on scaffolds after 7 and 14 days of cell culture. At the specific time points, the
cells were fixed with 4% formalin for 15 min. Then, Alizarin red solution in Tris buffer
(pH 4) was added to all samples. After the incubation for 1 h at room temperature, the
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stain was removed, and cells were rinsed with PBS. Finally, pictures were taken under
the stereomicroscope (Nikon, USA). In addition, for quantitative analysis, the cells were
rinsed with PBS and fixed with methanol. The samples were stained for 10 min and again
washed with PBS. A total of 400 mL of 10% sulfuric acid was added to each well and sat
for 30 min. After removing cellular layers, the remaining liquid was transferred to 1.5 mL
microtubes. Then, for 10 min, microtubes were located at 85 ◦C bain-marie bath and after
that immediately were located in ice for 5 min. In the next step, samples were centrifuged
for 15 min in 2000 g at 4 ◦C. Finally, for neutralization 30 mL of 10%, ammonium hydroxide
solution was added to 80 mL of extracts, and the absorbance of each sample was determined
at 405 nm according to Ref. [39].

2.10. Statistical Analysis

Statistical analysis was accomplished via one-way ANOVA to assess statistically
meaningful differences between the results according to the p-value < 0.05.

3. Results and Discussion
3.1. Characterization of ZSM-5 Nanopowder

In this study, the fabrication of ZSM-5 zeolite scaffolds with VA-loaded Alg coating was
investigated for bone tissue engineering. The XRD pattern of ZSM-5 powder is presented
in Figure 1A. Based on JCPDS 42-0024, the peaks at 2θ = 8◦, 9◦, 14.6◦, 23◦, 23.9◦, and
29.6◦ were attributed to (101), (200), (301), (501), (303) and (503) crystallographic peaks of
crystalline zeolite structure [40]. The crystallite size of ZSM-5 powder was also estimated
at 22 ± 3 nm. In addition, the FTIR spectrum of zeolite powder in Figure 1B confirmed
the ZSM-5 structure. The characteristic peak at 3425 cm–1 was related to the stretching
vibration of OH bonds, while the peak at 1600 cm–1 was associated with the residual H2O
in zeolite powder. Two other remarkable peaks at 1222 and 1079 cm–1 were related to
the external vibration of SiO4 and AlO4 in zeolite structure. The stretching of the internal
tetrahedra was represented at 792 cm–1. Finally, the fine and intense band at 540 cm–1

corresponded to the zeolite ring [41]. TEM and FESEM images of ZSM-5 powder are
also presented in Figure 1C,D. Results showed that the ZSM-5 zeolite demonstrated two
different morphologies: coffin shape crystals and boat-type crystals with a large surface
area that is suitable for cellular, antibacterial, and drug delivery applications [42].

3.2. Physico-Chemical Characterization of ZSM-5 Scaffolds

In the next step, by adding Alg and VA-loaded Alg coating, a series of scaffolds were
prepared. Engineered scaffolds should improve the attachment and proliferation of cells.
Consequently, interconnected porous scaffolds are required for the transportation of growth
factors and nutrients, and vascularization. SEM images (Figure 2A) demonstrated that all
scaffolds possessed highly interconnected porous structures. However, the morphology
of the scaffolds changed depending on the composition. The average pore size of the
ZSM-5 scaffold decreased from 427 ± 2 µm to 407 ± 3 µm and 401 ± 2 µm after Alg
and VA-loaded Alg coatings. Teixeira et al. [43] revealed pore sizes in the range of 200 to
500 µm could promote angiogenesis in newly formed bones. In addition, Cheng et al. [44]
demonstrated that the larger pore size in the range of 250–400 µm could provide a better
situation for bone formation. In another study, Lim et al. [45] showed larger pores (<3 g
500 µm) were not effective in cell attachment and osteoblast proliferation. An effective
scaffold must have an interconnected porous structure in addition to porosities with a size
greater than 300 µm [3]. This demonstrates that the scaffold is very permeable for tissue
ingrowth, vascularization, and cell seeding. For quick protein and cell attachment, cell
migration, and osseointegration, microporosity (50 < µm) is necessary. For improved new
bone development, higher bone ingrowth, and capillary production, larger pore diameters
(>300 µm) are necessary [23]. Abdellahi et al. [2] prepared diopside scaffolds with pore
sizes ranging from 250 to 600 µm and more than 600 µm. Their result exhibited that the
increase in pore size leads to the reduction of the compressive strength of the samples.
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On the other hand, increasing the porosity of the structure may have negative effects
on the mechanical properties and stability of scaffolds in the body. There is a critical value
for pore size to balance the mechanical properties, stability, and also new bone formation
and cellular properties. Zhang et al. [46] demonstrated that macro-porosities could improve
the protein and oxygen delivery to new cells due to the increasing ratio of surface to volume
and, consequently, increase the new bone formation. Based on the Archimedes method,
the open and total porosity of structures were calculated and shown in Figure 2B. After
the incorporation of Alg (ZSM-5-Alg) and vancomycin-loaded alginate (ZSM-5-Alg-VA)
coatings, the total porosity did not significantly change. However, open porosity decreased
in Alg and VA-Alg coated scaffolds compared to ZSM-5 scaffolds, while they are still in
the suitable range for bone tissue formation. Torres et al. [28] demonstrated that after
Alg coating on HA/β-TCP scaffolds, the average porosity and also the total porosity
of structures decreased. A high magnification image of the Alg coated ZSM-5 scaffold
demonstrated well-attachment of Alg coating on the scaffold surface and a homogenized
structure. In addition, Alg coating changes the surface roughness, and more cell attachment
and proliferation and, consequently, more bone formation is predictable.

XRD analysis was also used for ZSM-5 scaffolds with Alg and VA-Alg coatings
(Figure 2C). All scaffolds consisted of the characteristic peaks of ZSM-5 in all samples, and
no clear peaks were added after Alg and VA coating incorporation due to the amorphous
structure of Alg and VA [27]. FTIR spectra of ZSM-5 scaffolds with Alg and VA-Alg coatings
are presented in Figure 2D. All ZSM-5 peaks, which were described in Figure 1B, were
still visible in the spectrum of scaffolds. After Alg coating, due to hydroxyl groups of Alg,
two different peaks were detected at 3637 and 1639 cm–1. In addition, the symmetric and
antisymmetric stretches of CO2 in Alg structure were presented at 1487 and 1403 cm–1 [47].
After VA incorporation, a sharp peak at 1230 cm–1 was related to the aromatic ester [48].
A small peak for the skeletal vibration of the CO bond at 1550 cm–1 and vibration of the
CN group at 1062 cm–1 are the main characteristic peaks of VA. However, because of the
integration of these peaks with Alg peaks, they were not obviously visible in the spectrum
of the ZSM-5-Alg-VA scaffold. However, broadening and shifting peaks were remarkable
in the FTIR spectrum, demonstrating the successful VA loading.

3.3. Mechanical Characterization of ZSM-5 Scaffolds

The mechanical characteristics of bone scaffolds are important properties for bone
tissue engineering applications. The compressive strength and compressive modulus of
each scaffold were determined according to the stress–strain curves. According to the
stress–strain curves of scaffolds in Figure 3A, all samples demonstrated similar behavior
during increasing strain (%), including an increase in the stress reaching the special amount
of the strain (%) (10% for uncoated and 20% for coated samples) and after that decreasing.
A temporary decrease in the stress was related to the thin struts cracking in the zeolite
structure [49]. These results were confirmed by many other studies based on various
ceramic scaffolds due to their intrinsic cracks in the ceramic structures [49–51]. Our results
demonstrated that incorporating Alg coating into the zeolite scaffold significantly increased
the compressive strength of samples from 1.44 ± 0.1 MPa to 4.3 ± 0.07 MPa, making them
suitable candidates for damage bone replacement (compressive strength of spongy bone
0.2–4 MPa). The main reason for increasing compressive strength in Alg-coated scaffolds
was described by Peroglio et al. [52] and Pezzotti et al. [53] as a microscale crack bridge
mechanism. Based on this mechanism, polymer coating was stretched upon the crack open-
ing and can avoid the failure of the structure. After VA incorporation in Alg coatings, the
compressive strength of samples did not show significant changes (4.5 ± 0.01 MPa), and it
was in the appropriate range for bone replacement. Additionally, the compressive modulus
of scaffolds was not significantly changed after Alg and Alg-VA coatings, while they were in
the appropriate range for bone tissue engineering. Similarly, Araujo et al. [24] demonstrated
that melanin coating on bioglass scaffold increased the compressive strength from 0.5 to
1.3 MPa. The compressive modulus of bone was reported at the range of 0.1–0.4 MPa [54],
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which confirmed the great potential of ZSM-5 scaffolds for bone replacement. Additionally,
Alg coating on the ZSM-5 matrix also had a significant effect on reducing the porosity and
pore size of the scaffolds and improving the mechanical properties.
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3.4. Drug Release Evaluation

In order to determine the VA release, two different samples (ZSM-5-Alg-VA and VA-
loaded ZMS-5) were investigated. Figure 4 shows similar behaviors in releasing VA in two
samples; in the first stage, more than 20% of VA was burst released in the first 60 min for
coated scaffold and 120 min for the uncoated scaffold. It can be related to the weak physical
interaction between VA and scaffolds, which happened at the loading level. In the next
stage, after 10 h, the drug release in two different samples entered the plateau phase. The
slow release rate of VA in the coated sample could help to prevent infection in damaged
bone. In a similar study, Araujo et al. [24] showed that more ibuprofen was loaded on
polymer-coated bioglass than the uncoated bioglass. Minting et al. [33] also evaluated the
release of VA loading on Mg scaffolds with Alg coatings. They revealed that the first burst
release happened in the first 25 min. Compared to our results, due to the zeolite structure
and great interactions between zeolite, Alg, and VA, the burst release time increased to 1
and 2 h.
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3.5. In Vitro Bioactivity of Scaffolds

SEM images and EDS analysis of scaffolds after 28 days of soaking in SBF are shown
in Figure 5A. Deposition and the growth of bone-like apatite on the surface of samples
were detected, while its density changed depending on the scaffold composition. In vitro
apatite formation is a crucial step in showing new bone formation on the scaffolds. Overall,
a dense and homogeneous bone-like Ca-P appeared in all samples and various coated and
uncoated ZSM-5 scaffolds remained bioactive. EDS analysis also showed an increase in
the Ca and P peaks and also a slight decrease in the Si peak because of bone-like apatite
formation on the scaffold. The Ca/P molar ratio extracted from EDS analysis is about
1.69 in the ZSM-5 scaffold and completely confirmed the bone-like apatite formation.
In similar research, Sanchez et al. [55] confirmed the bioactivity of the ZSM-5 scaffold
and bone-like apatite formation on it, after 21 days of immersion. After incorporation
of Alg and VA-loaded Alg coating on the ZSM-5 scaffold, SEM images and EDS analysis
still confirmed the bone-like apatite formation. However, the Ca/P ratio decreased to
1.55 and 1.54, for Alg and VA-loaded Alg coating, respectively. FTIR and XRD analyses
were also investigated to confirm SEM images. According to Figure 5B, FTIR spectra
of both VA-loaded Alg coating and uncoated ZSM-5 after 21 days of immersion in SBF
consisted of two different peaks at 580 and 617 cm–1 relating to the vibration of P-O bonds.
In addition, the peak at 650 cm–1 corresponded to OH bonds confirming the bone-like
apatite formation on both structures. In addition, XRD patterns of the scaffolds, after
21 days of immersion in SBF solution consisted of peaks located at 28.2◦, 30.3◦, 31.9◦, 35.4◦,
and 45.5◦. According to JCPDS file# 09-0432, these peaks were related to the crystalline
structure of hydroxyapatite [56]. Additionally, two peaks at 28.2◦ and 29.6◦ were related
to the (501) and (503) in zeolite structure, respectively as shown in Figure 5C. Due to the
thickness of the bone-like apatite, some characteristic peaks of the zeolite structure did not
appear in this pattern. In a similar study, Yunos et al. [57] determined the bioactivity of
bioglass scaffolds with various poly-DL-lactic (PDLLA) coatings with different thicknesses.
They demonstrated that, by increasing the thickness of the polymeric coating, the bioactivity
of ceramic scaffolds decreased. In addition, Li et al. [58] showed the presence of vancomycin-
loaded (poly(3- hydroxybutyrate-co-3-hydroxyvalerate (PHBV) coating on the bioglass
scaffold can retarded the bioactivity of samples. They explained that the incorporation of
polymer coatings on bioceramics and bioglass is mainly related to improving mechanical
properties and drug releases, but intrinsic bioactivity has to be maintained. Based on
different studies, alginate and chitosan coatings are better for maintaining the bioactivity
of scaffolds [50,52,59].
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Figure 5. In vitro bioactivity evaluation of the ZSM-5 scaffold: (A) SEM images and EDX analysis,
(B) FTIR spectra, and (C) XRD patterns of ZSM-5, ZSM-5-Alg, and ZSM-5-Alg-VA scaffolds after
28 days immersion in SBF.

3.6. Antibacterial Activity of Scaffolds

The antibacterial features of scaffolds against Gram-positive S. aureus were inves-
tigated. According to Figure 6, the antibacterial activity of scaffolds is enhanced after
the incorporation of Alg and VA-loaded Alg coatings. A disc diffusion test (Figure 6A)
demonstrated that VA-loaded Alg coating was highly able to prevent S. aureus bacteria
proliferation. While the control sample showed an inhibition diameter of 5 mm, it was
enhanced to 14 mm, 21 mm, and 35 mm, in contact with ZSM-5, ZSM-5-Alg, and ZSM-5-
Alg-VA scaffolds, respectively. In similar research, Yarlagadda et al. [60] demonstrated that
VA was highly active against Gram-positive bacteria, especially S. aureus. They pointed out
that long-chain length, cationic lipophilic, and high ability to permeabilize the cytoplasmic
film, are some main features of VA structure making it a great candidate for antibacterial
applications. Based on the report by Minting et al. [33], S. aureus infections are the most re-
ported issues after implantations. They also demonstrated that VA-loaded Alg coatings on
the Mg scaffolds are a highly effective strategy to improve antibacterial activity. Figure 6B
demonstrated an obvious decrease in the number of colonies on the scaffolds compared
to the control group. Similar to disk diffusion results, the number of visible colonies was
significantly decreased, especially after vancomycin incorporation as shown in Figure 6C.
Karakecili et al. [61] demonstrated that the incorporation of VA on zeolite-coated chitosan
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scaffolds improved antibacterial properties and improved the scaffold responses in the
bacterial situation of damaged bone.
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Figure 6. Antibacterial activity of ZSM-5 scaffolds against S. aureus bacteria: (A) inhibition zones of
the ZSM-5 scaffolds with Alg and VA-loaded Alg coating, (B) plate count technique CFU results, and
(C) the values of growth inhibition zones (* p < 0.05).

3.7. In Vitro Cytocompatibility of Scaffolds

Osteoblast cells were used to determine the cytocompatibility of scaffolds with Alg
and VA-loaded Alg coatings. In order to study the effect of coating on the cell survival rate,
osteoblast cells were seeded on the coated and uncoated scaffolds, and cell proliferation
was measured with MTT assay after 1 and 7 days of culture. According to Figure 7A, high
cell viability after 7 days in different scaffolds approved the cytocompatibility of scaffolds.
For example, after 7 days of culture, the cell viability was reported 115 ± 2.2 (%control)
and 120.5 ± 3.6 (%control) for ZSM-5 and ZSM-5-Alg, respectively. In similar research,
Wang et al. [62] demonstrated that Alg coating improved the cell viability on Ti implants.
In research by Lee et al. [63], the main reason for increasing cell viability in the presence of
Alg was pointed out. They demonstrated the similarity between the structure of Alg and
extracellular matrix, and the viability of various types of cells significantly improved. After
incorporating VA into the coating structure, the cell viability of osteoblast cells decreased.
After 7 days of culture, the cell viability decreased from 88.4 ± 1.5 (%control) to 72.3 ± 0.2
(%control). Bakhsheshi-Rad et al. [64] reported the same results for baghdadite-VA scaffolds.
They demonstrated that after 3 days of culture, the viability of MG-63 cells decreased from
77 (%control) to less than 70%. Based on their results, a high amount of VA could affect
mitochondrial activity and decline the motility of cells. In another study, Rathbone et al. [65]
evaluated the effect of various concentrations of different antibiotics on the activity and
viability of osteogenic cells. They demonstrated a high amount of antibiotics significantly
decreased the cell viability and alkaline phosphate activity compared to the control sample.
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Of 10 different antibiotics, VA is one of the less toxic ones and does not appreciably affect
cell activity and viability. They also pointed out that drug release systems can affect the
cell viability.

Materials 2022, 15, x FOR PEER REVIEW 13 of 18 
 

 

rate, osteoblast cells were seeded on the coated and uncoated scaffolds, and cell prolifer-
ation was measured with MTT assay after 1 and 7 days of culture. According to Figure 
7A, high cell viability after 7 days in different scaffolds approved the cytocompatibility 
of scaffolds. For example, after 7 days of culture, the cell viability was reported 115 ± 2.2 
(%control) and 120.5 ± 3.6 (%control) for ZSM-5 and ZSM-5-Alg, respectively. In similar 
research, Wang et al. [62] demonstrated that Alg coating improved the cell viability on 
Ti implants. In research by Lee et al. [63], the main reason for increasing cell viability in 
the presence of Alg was pointed out. They demonstrated the similarity between the 
structure of Alg and extracellular matrix, and the viability of various types of cells sig-
nificantly improved. After incorporating VA into the coating structure, the cell viability 
of osteoblast cells decreased. After 7 days of culture, the cell viability decreased from 
88.4 ± 1.5 (%control) to 72.3 ± 0.2 (%control). Bakhsheshi-Rad et al. [64] reported the 
same results for baghdadite-VA scaffolds. They demonstrated that after 3 days of cul-
ture, the viability of MG-63 cells decreased from 77 (%control) to less than 70%. Based on 
their results, a high amount of VA could affect mitochondrial activity and decline the 
motility of cells. In another study, Rathbone et al. [65] evaluated the effect of various 
concentrations of different antibiotics on the activity and viability of osteogenic cells. 
They demonstrated a high amount of antibiotics significantly decreased the cell viability 
and alkaline phosphate activity compared to the control sample. Of 10 different antibi-
otics, VA is one of the less toxic ones and does not appreciably affect cell activity and 
viability. They also pointed out that drug release systems can affect the cell viability. 

 
Figure 7. (A) The viability of the MG63 cells grown on ZSM-5 scaffolds with Alg and Alg-VA 
coatings after 1, and 7 days of culture (n = 3) (* p < 0.05), and (B) SEM images of the MG63 cells 
seeded on ZSM-5-Alg and ZSM-5-Alg-VA scaffolds for 7 and 14 days. 

Figure 7. (A) The viability of the MG63 cells grown on ZSM-5 scaffolds with Alg and Alg-VA coatings
after 1, and 7 days of culture (n = 3) (* p < 0.05), and (B) SEM images of the MG63 cells seeded on
ZSM-5-Alg and ZSM-5-Alg-VA scaffolds for 7 and 14 days.

Cell adhesion is one of the most important parameters, especially in bone tissue
engineering. Roughness, stiffness, and other surface features can affect the interaction
between cells and scaffolds. According to Figure 7B, the morphology of cell-seeded scaffolds
after 7 and 14 days of culture was evaluated. After 7 days of culture, osteoblast cells
were attached to the zeolite scaffolds. However, Alg coating significantly improved cell
adherence. Based on a similar article [27], the improved cell attachment and elongation
on the alginate-coated scaffolds could be related to the similarity between the structure of
coated scaffolds to the extracellular matrix, which provides a suitable and better surface for
osteoblast cells. However, the cell spreading significantly reduced after the incorporation
of vancomycin. It can be related to the effect of antibiotics on the cell mitochondrial
activities [64].

In order to determine the osteogenic differentiation of MG63 cells in contact with
samples, Alizarin red staining was used. According to Figure 8A, red dots contributing to
the calcium depositing on the cell-seeded scaffolds were spread on the surface of samples,
and their intensity and density changed depending on the culture time and scaffold com-
position. It was clearly found that the density of these dots significantly enhanced with
increasing culture time. These changes were more obvious on the Alg-coated scaffolds.
Qualitative results of staining shown in Figure 8B also obviously demonstrated the great
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formation of calcium crystals on all samples. These results indicated the great capacity
of both coated and uncoated scaffolds for new bone formation and overall, bone tissue
engineering. In ZSM-5 scaffolds, due to the presence of Al and Si ions, calcium deposition
was stimulated, making it appropriate for bone tissue engineering [66,67]. Wang et al. [66]
demonstrated that zeolite-based coating on the 3D-printed titanium implants significantly
enhanced calcium deposition. In addition, after alginate coating, calcium deposition in-
creased in both 7 and 14 days. Similarly, various studies [68–80] reported that alginate
coating increased calcium deposition and new bone formation. For example, Jang et al. [69]
demonstrated the great calcium deposition results on the PCL scaffold with alginate coating.
On the other side, after adding vancomycin to the coating structure, the calcium deposition
decreased, which might be related to the negative effect of an antibiotic on cellular activi-
ties. These results were also confirmed by quantitative results from sample absorbance at
612 nm.
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scaffolds and (B) OD values of ZSM-5 scaffolds with Alg and Alg-VA coatings (* p < 0.05).

4. Conclusions

Bone damages are one of the most common health issues worldwide. Infections are
also really challenging in bone problems and make bone repairs harder. Consequently,
antibiotic-loaded bone scaffolds can firstly improve infection removal and, secondly, fasten
bone repair. Among different materials that have been used for bone tissue engineering,
bioceramics show great biocompatibility, mechanical properties, and effective cellular
properties. In this study, we demonstrate the excellent effect of alginate coating on zeolite
scaffolds for bone tissue engineering. Improved mechanical (4.3 ± 0.07 MPa compressive
strength), cellular (120.5 ± 3.6 (%control) cell survival after 7 days), and antibacterial
(inhibition zone = 21 mm) properties are some of the most useful effects of alginate coating
on the zeolite structure for bone tissue applications. In addition, the incorporation of
vancomycin into the alginate coating can improve the antibacterial effects of the scaffold.
Despite the negative effects of vancomycin on the cellular survival rate (72.3 ± 0.2 (%control)
after 7 days), they are still in the acceptable range. Taken together, vancomycin-loaded
alginate coating on the ZSM-5 scaffold releases the properties that will be suitable for bone
tissue engineering.
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79. Thomas, M.; Osińska, M.; Ślosarczyk, A. Long-Term Behavior of Cement Mortars Based on Municipal Solid Waste Slag and
Natural Zeolite—A Comprehensive Physico-Mechanical, Structural and Chemical Assessment. Materials 2022, 15, 1001. [CrossRef]

80. Tontisirin, S.; Phalakornkule, C.; Sa-ngawong, W.; Sirisawat, S. Magnetic Induction Assisted Heating Technique in Hydrothermal
Zeolite Synthesis. Materials 2022, 15, 689. [CrossRef]

http://doi.org/10.3390/ma13194421
http://www.ncbi.nlm.nih.gov/pubmed/33020427
http://doi.org/10.3390/ma15082857
http://doi.org/10.3390/ma15072684
http://www.ncbi.nlm.nih.gov/pubmed/35408016
http://doi.org/10.3390/ma15072405
http://doi.org/10.3390/ma15062258
http://www.ncbi.nlm.nih.gov/pubmed/35329709
http://doi.org/10.3390/ma15062206
http://doi.org/10.3390/ma15031001
http://doi.org/10.3390/ma15020689

	Introduction 
	Material and Methods 
	Materials 
	Fabrication of ZSM-5 Scaffolds 
	Preparation of Drug-Loaded Alg Coated ZSM-5 Scaffolds 
	Characterization of ZSM-5 Scaffolds 
	Machinal Properties of ZSM-5 Scaffolds 
	In Vitro Drug Release Evaluation 
	In Vitro Bioactivity Properties of ZSM-5 Scaffolds 
	Antibacterial Activity Evaluation of ZSM-5 Scaffolds 
	Cell Culture 
	In Vitro Cytocompatibility of Scaffolds 
	In Vitro Cell Attachment Evaluation 
	Osteogenic Differentiation Evaluation 

	Statistical Analysis 

	Results and Discussion 
	Characterization of ZSM-5 Nanopowder 
	Physico-Chemical Characterization of ZSM-5 Scaffolds 
	Mechanical Characterization of ZSM-5 Scaffolds 
	Drug Release Evaluation 
	In Vitro Bioactivity of Scaffolds 
	Antibacterial Activity of Scaffolds 
	In Vitro Cytocompatibility of Scaffolds 

	Conclusions 
	References

