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Abstract: The applicability of acoustic emission (AE) techniques to monitor the 
mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under 
temperature fatigue loading is investigated. Using the temperature fatigue test, real-time 
AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal 
characteristics of the whole test process and comparison of AE signals of PVA fiber 
concretes with different fiber contents, the damage evolution process of PVA fiber concrete 
is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the 
kurtosis index and b-value of AE characteristic parameters. The results obtained using both 
methods are discussed. 
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1. Introduction 

The application of fiber-reinforced concrete in various structures is increasing. Fiber can improve 
the tensile strength of concrete, its resistance to deformation, durability, dynamic effects, and so on [1]. 
The crack resistance and toughness of fiber are better than those of plain concrete because an increase 
in fiber content enhances fiber resistance and delays cracking of the material. The winter season in 
north China, the alternation of the four seasons, the day and night temperature differences, among 
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other factors, expose concrete structures during their service life to temperature freeze-thaw conditions, 
which cause temperature fatigue damage. Polyvinyl alcohol (PVA) fiber is an environmentally friendly, 
reinforced cement material ideal for use in northern China because of its good dispersion 
characteristics, ease of use in construction, good affinity with cement, alkali resistance, and resistance 
to the effects of climate and weather conditions. PVA can improve the antifreeze and anti-fatigue 
properties of concrete. Thus, the durability and frost resistance of concrete materials can be improved 
when mixed with PVA fiber. 

Acoustic emission (AE), a real-time monitoring technology, has many applications in material 
damage identification [2]. The AE technique is used for monitoring the evolution of damage in 
substandard concrete materials [3,4] and to monitor matrix cracking and failure of different interfaces, 
especially in fiber concrete [5,6]. Previous studies showed that the AE technique can detect and 
possibly identify damage mechanisms in fiber-reinforced concrete by analyzing AE parameters. 
Among the parameters, AE energy, amplitude, and duration are usually used to examine the damage 
process zone [7–9]. Sometimes, however, the commonly examined AE parameters alone cannot 
correctly explain the mechanism of material failure. Several AE waveforms and spectral parameters 
were investigated to harness the full potential of the AE technique in studying the deformation of 
materials under stress [10]. However, both direct AE parameters and waveform only qualitatively 
describe the damage process. Quantitative methods attempt to describe the nature of a source, for 
example, using moment tensor inversion techniques [11–13]. However, quantitative methods cannot be 
easily applied in large structures, so qualitative methods are mostly used in the evaluation of material 
damage. Based on AE characteristic parameters, some indirect combination parameters are proposed to 
quantify the damage level of RC structures. Common AE qualitative methods include the b-value’, 
Felicity ratio, historical index versus severity index, relaxation ratio, kurtosis index, and RA  
value [14–19]. In RC structures, the b-value theory and Felicity ratio are the most basic methods of 
analysis. The b-value is defined as the log-linear slope of the frequency-magnitude distribution of 
acoustic emissions, and shows good agreement with the process of fracture development in concrete. 
The Felicity ratio that has been developed into a standard can be used to determine if major structural 
defects are present in the material. 

In this study, the damage of temperature fatigue load to PVA fiber concrete specimens is monitored 
using AE technology. The influence of different PVA fiber contents in the freezing-thawing resistance 
durability of concrete material is also investigated. The damage evolution process of specimens is 
studied using the correlation analysis method for AE parameters. 

2. Experiments 

2.1. Test Specimens 

According to “Standard test methods of long term performance and durability of ordinary concrete 
(GB/T 50082-2009)”, the specimen had a length of 400 mm and a cross-section of 100 mm × 100 mm. 
The mixture ratio is presented in Table 1 and the PVA fiber characteristics are shown in Table 2. The 
experiment utilized high-quality fine aggregate sand with a fineness modulus of 2.13 and 1.5% silt 
content. The II district-level was qualified. Standard curing lasted for 28 days. The three-point bending 
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experiments for the determination of the specimen toughness were performed. The testing results were 
listed in Table 3. The results were shown that the increase of fiber content improved the material’s 
ultimate load and toughness. 

Table 1. Concrete mixture ratio. 

P·O 42.5 Cement (kg/m3) Sand (kg/m3) Stone (kg/m3) Water (kg/m3) PVA fiber (kg/m3) 
432 587 1,190 200 0.5 
432 587 1,190 200 1.0 
432 587 1,190 200 1.5 

Table 2. Fiber characteristics. 

Diameter Tensile strength Young’s modulus Breaking elongation Length 
15 μm + 3 1,200 MPa 35 GPa 6–11% 6 mm 

Table 3. Mechanical properties for different fiber contents under the three-point bending test. 

PVA fiber content (%) Maximum load (KN) Flexural toughness (J) 
0 12.0 - 

0.5 12.1 10.5 
1.0 12.8 13.2 
1.5 13.2 14.6 

2.2. Temperature Fatigue Test 

The temperature fatigue test protocol was also referred to the standard for GB/T 50082-2009 in 
China. Before temperature fatigue testing, the specimens from each mixture ratio group were taken and 
soaked in water for 4 days. Subsequently, the soaked specimen were put into the rapid freeze-thaw 
testing machine to simulate hot and wet testing cases for the temperature fatigue test. Humidity was 
above 90% in the control group when the environment was more than 25 °C. The temperature ranged 
from 50 °C to −30 °C, changing by 10 °C for every step. Heating or cooling at 10 °C lasted 10 min. 
Thus, temperature was kept constant for 10 min for 320 min a cycle for 50 cycles, as shown in Figure 1. 

Figure 1. Temperature loading procedures. 
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2.3. AE Acquisition System 

AE signals were collected by an AE acquisition system from the American Physical Acoustics 
Corporation. The sensor type is R15-ALPHA. Its resonant frequency is 150 KHz. Acquisition system 
parameters are as follows: the pre-amplifier gain for 20 dB, the main amplifier for 30 dB, threshold for 
46 dB and sample rate for 5 MHz. One AE sensor was installed in the concrete specimen to assess the 
integrality of the structure. The AE sensor was fixed using tape. Schematic diagram of AE sensor 
arrangement is in Figures 2 and 3. 

Figure 2. PVA concrete temperature fatigue damage testing experimental device. 

 

Figure 3. AE sensors arrangement (units: mm). 

 

3. Results and Discussion 

3.1. PVA Fiber Concrete Temperature Fatigue Damage AE Characteristic Parameters 

The AE characteristic parameters of PVA fiber concrete specimen temperature fatigue damage are 
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According to Figure 4, the AE signal energy of the different specimens is reduced with the increase of 
fiber contents. This is reasonable because the deformation resistance capacity for high fiber content 
material is better than with low content fiber. This can effectively prevent inner crack formation in the 
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amplitude is lower than 75 dB, and the duration of the signal is less than 1,000 μs. The PVA fiber 
exhibits a strong contribution in resisting crack propagation. Thus the specimen damage is small. For 
the specimen with fiber content of 1.0 kg/m3, AE amplitude is lower than 85 dB, and the duration is 
less than 1,600 μs. However, some high-amplitude and long-duration AE signals are observed when 
the AE amplitude reaches 100 dB. The reason is because the decreased fiber content leads to the crack 
propagation resistance ability becoming weaker. Accordingly, when the fiber content is reduced to  
0.5 kg/m3, the distribution of AE amplitude vs. duration is more scattered. Thus, AE amplitude is 
higher and duration is longer. Lower PVA fiber content in the concrete specimen also reduces the 
antifreeze ability. Many cracks appear on the specimen, the damage condition is more complex, and 
damage is more pronounced. 

AE amplitude statistical distributions for different volumetric PVA fiber content concrete were 
listed in Figure 8. Among the three different fiber content concretes, the 0.5 kg/m3 fiber content 
specimens’ AE activity number was maximum. The high amplitude AE events were increasing with 
decreasing fiber contents. This is reasonable because each fiber pull-out event is a potential AE hit and 
the pull-out events increase with the fiber volume content [5]. The testing results verified that the high 
PVA fiber contents concrete could improve the concrete antifreeze ability and concrete damage degree 
was reduced. 

Figure 4. AE cumulative energy vs. time. 

 

Figure 5. AE amplitude vs. duration (1.5 kg/m3). 
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Figure 6. AE amplitude vs. duration (1.0 kg/m3). 

 

Figure 7. AE amplitude vs. duration (0.5 kg/m3). 

 

Figure 8. AE amplitude statistical distributions for PVA fiber contents concrete with:  
(a) 1.5 kg/m3, (b) 1.0 kg/m3 and (c) 0.5 kg/m3. 
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Figure 8. Cont. 
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improved frost resistance ability, and a fiber content of 1.5 kg/m3 in the materials exhibits the best 
frost resistance. 

Figure 9. Temperature fatigue load and AE amplitude vs. time. 

(a) Cycle of 4–5 (1.5 kg/m3) (d) Cycle of 4–5 (1.0 kg/m3) (g) Cycle of 4–5 (0.5 kg/m3)

 
(b) Cycle of 26–27 (1.5 kg/m3) (e) Cycle of 26–27 (1.0 kg/m3) (h) Cycle of 26–27 (0.5 kg/m3)

 
(c) Cycle of 47–48 (1.5 kg/m3) (f) Cycle of 47–48 (1.0 kg/m3) (i) Cycle of 47–48 (0.5 kg/m3)
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where N is the length of each group AE characteristic parameter (energy) x(n). 
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Kurtosis indexes can show the differences between different damage stages. When the kurtosis 
value is smaller; the fatigue damage is the smaller, and the greater the kurtosis value, the greater the 
fatigue damage is [18]. In structural fatigue damage monitoring by AE, AE signals of each load cycle 
are as a group to calculate kurtosis value.  

The kurtosis index is shown in Figure 10. It is reduced in general when fiber contents increase. On 
the 16th and 32nd cycle load sets, the kurtosis indexes of different fiber contents appear as extreme 
values, which suggests that the internal damage is serious. The analysis reveals that in temperature 
fatigue load, the internal part of the concrete produces temperature stress, and the PVA fiber bears part 
of the stress. With increasing damage, this internal strain is continuously accumulated. When the strain 
reaches a certain limit, the accumulated energy is released and the temperature stress inside the 
specimen is reduced. In later temperature fatigue load (after 40 cycles), the kurtosis index of the  
0.5 kg/m3 fiber content specimens increases rapidly, which results in increased and serious specimen 
damage. In this case, the function of PVA fiber in resisting stress and deformation weakens. 
Calculation of the kurtosis index reveals that antifreeze ability is more ideal for specimens with fiber 
content of 5 kg/m3. 

Figure 10. Kurtosis index for PVA fiber concrete. 
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The b-value is shown in Figure 11. When the fiber content is greater, the b-value is higher. A low 
fiber content has a lower b-value for higher amplitude events (as shown in Figures 8) from potential 
macro-cracking. At the initial stage, the fibers bear part of the stress, which generates very small micro 
cracks and expansions. On the 16th cycle load set, the b-value becomes small. This indicates that 
internal micro cracks appear in the specimens, showing a redistribution of internal stress. With 
increasing temperature fatigue cycles, the bearing stress in the PVA fiber increases. The damage is 
slightly different from that at the initial stage. The temperature fatigue resistance performance does not 
significantly change and brittle failure is not expected to occur. The fatigue cycle last stage is the 
damage acceleration stage, especially for specimens with fiber content of 0.5 kg/m3. The b-value is 
reduced and reaches a minimum value. Through visual inspection, some cracks appeared on the fiber 
concrete surface. The inner micro cracks had developed external macro cracks. The specimens 
deteriorate rapidly. Damage in specimens with fiber content of 1.0 and 1.5 kg/m3 is still very small. 
The load and AE amplitude signals in Figures 4–7 reflect the laws. Thus, PVA fibers can effectively 
delay the deformation process in concrete material damage. When the fiber volume is high, the 
damage is small. 

Figure 11. b-value for PVA fiber concrete. 
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Temperature fatigue load has a large influence on PVA fiber concrete damage and AE characteristic 
parameters. 

(3) The kurtosis index and b-value index can qualitatively evaluate damage status and the damage 
evolution process for PVA fiber concrete. As damage develops on the PVA fiber concrete, the kurtosis 
index increases and the b-value becomes small. 
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