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Abstract

Our aims were to determine 1) if resveratrol’s vasorelaxant action is greater in the distal (resistance) versus 
proximal (conductance) portion of the rat tail artery, and 2) if it can be blocked by agents known to block differ-
ent potassium (K) channels in arterial smooth muscle. We found that its half-maximally effective concentration 
values were essentially identical (25 ± 3 versus 27 ± 3 μM) for relaxing adrenergically-precontracted rings 
prepared from distal versus proximal tissues. This does not confirm a previous report of greater relaxation in 
resistance versus conductance arteries. We also found that its relaxation could not be blocked by any of seven 
different K channel blockers. However, we uncovered a novel unanticipated action not yet reported. In half our 
arterial ring preparations, resveratrol transiently enhanced adrenergically-induced precontractions beginning 
well before its sustained relaxant effect became apparent. This action provides the first reasonable explanation 
for previously unexplained increases in arterial pressures observed during acute intravenous administration of 
resveratrol to animal models of traumatic ischemic tissue injury, in which hypotension is often present and in 
need of correction. Also unanticipated, this same transient enhancement of adrenergic contraction was notably 
inhibited by some of the same K channel blockers (particularly tetraethylammonium and glibenclamide) that 
failed to influence its relaxant effect. Although we do not rule out smooth muscle as a possible site for such a 
paradoxical finding, we suspect resveratrol could also be acting on K-selective mechano-sensitive ion channels 
located in the endothelium where they may participate in release of contracting factors.

Key words:	 arterial pressure and smooth muscle, potassium channels, resistance and conductance arteries, 
endothelium

Introduction

The health benefits of resveratrol as evidenced by both preclinical experiments and clinical trials in hu-
mans suggest that this natural polyphenol, commonly known for its powerful antioxidant action, may play an 
important role in preventing a variety of diseases (1–11). In hypertensive rat models, oral resveratrol has been 
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shown to improve cardiovascular function by chronically lowering arterial pressure (4, 5, 7, 9, 11) and prevent-
ing cardiac hypertrophy (5, 7). In human clinical trials, resveratrol has not only been shown to reduce arterial 
pressure chronically but also induce metabolic changes such as improving glycemic control in patients with 
type 2 diabetes mellitus (2) or obesity (10). Given its ability to lower arterial pressure, it is not surprising that 
several published studies have consistently shown that resveratrol can directly relax precontracted smooth 
muscle in various arteries in vitro (12–16). One vessel not yet studied is the long ventral tail artery of the labo-
ratory rat, despite being widely recognized as a convenient, inexpensive and yet valid model for many other 
arteries throughout the body (17–19). Our lab has successfully used the rat tail artery as a model for studying 
mechanisms of direct relaxant effects of other agents also known for lowering arterial pressure chronically 
(20–23). Therefore, the purpose of our studies was to further investigate resveratrol’s arterial relaxant effect 
using the rat tail artery model. Our specific aims (studies) were as follows. Detailed rationale for these aims 
(studies) are presented in the Discussion section under Specific aim related findings.

1.	 Determine if (hypothesis #1) the ability of resveratrol to relax arterial smooth muscle in vitro is signifi-
cantly greater in the distal (resistance) portion of the rat tail artery than in the proximal (conductance) 
portion of the same vessel.

2.	Determine if (hypothesis #2) resveratrol’s relaxation of rat tail arterial tissue in vitro can be antagonized 
by any of the following: tetraethylammonium, iberiotoxin, apamin, glibenclamide, barium, margatoxin 
and/or 4-aminopyridine; agents known to block different subpopulations of potassium channels in arterial 
smooth muscle.

Methods

Isolation and preparation of arterial contractile tissue rings
For all experiments described below under Studies 1 and 2 adult male Sprague-Dawley rats were eutha-

nized (as approved by the Institutional Animal Care and Use committee at Midwestern University) for removal 
of the ventral tail artery (Fig. 1) and its storage as previously recommended (24). We employed this vessel 
because of its wide-spread recognition as a convenient, inexpensive yet valid model for other arteries (17–19). 
As recently studied and reviewed by Souza et al. (19), while its most proximal segment resembles large con-
ductance (conduit) arteries its most distal segment is very similar functionally and structurally to the many 
resistance vessels throughout the body (small arteries and arterioles) that contribute to the regulation of arterial 
pressure. Souza concluded that the distal segment of the rat tail artery “is a suitable resistance vessel prepara-
tion” (19). Over 25 years ago, Rajanayagam and Medgett concluded similarly after comparing the distal to the 
proximal (18) and to sympathetic vasoconstrictor tone in the human forearm (17). Accordingly, proximal and 
distal segments of each vessel were isolated (Fig. 1), cleaned and carefully sectioned into multiple 3-mm cy-
lindrical rings using a bound set of evenly-spaced scalpel blades as we have successfully employed previously 
(20–23). As described in Fig. 1, a maximum of eight rings were selected at random from the middle portion of 
each segment for experimental treatments during each experimental period. Each ring was mounted between 
two tungsten wire stirrups, which in our experience (20–23,25) are strong enough not to bend during ring 
contractions yet thin enough not to damage the inner endothelial cell layer [presence of intact endothelium 
was confirmed by relaxation responses to acetylcholine in a representative number of precontracted rings in 
preliminary and follow-up experiments]. Each ring was then suspended in a 40 ml tissue bath and allowed to 
equilibrate for several minutes before experimentation at a passive loading (resting) tension of 1,500 mg in 
standard physiological (Krebs) buffer which was warmed to 37°C and gassed to pH 7.4 with regulated delivery 
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of O2/CO2. All tensions for these tissues were recorded (in mg units) with the aid of force transducers con-
nected to an 8-channel Grass chart recorder. To observe resveratrol’s relaxant effects on contractile tensions of 
arterial tissues in vitro, it was obviously necessary to first precontract them with a known contractile agonist. 
We chose an alpha adrenergic receptor agonist because of the widely recognized importance of adrenergic 
vasoconstrictor support of arterial pressure in vivo. We chose the smooth muscle selective alpha-1 agonist 
phenylephrine (PE) for that purpose because 1) it has already been repeatedly employed successfully by other 
resveratrol investigators in other arteries (12, 15) and 2) as we have discussed previously (25) it produces more 
sustained precontractions than other agonists previously used in other resveratrol studies (e.g. high potassium 
buffer or the nonselective adrenergic agonist norepinephrine) (13, 16).

Study 1 (specific aim 1): determine if (hypothesis #1) the ability of resveratrol to relax arterial smooth 
muscle in vitro is significantly greater in the distal (resistance) portion of the rat tail artery than in the proximal 
(conductance) portion of the same vessel. We contracted individual tail artery rings with PE at 0.5 μM, which 
in our previous experience closely approximates its half-maximally effective concentration (EC50) in the whole 
tail artery (20). Prior to the administration of resveratrol, several minutes of PE contractility were recorded 
to allow it to stabilize. We tested eight rings simultaneously each with a different concentration of resveratrol 
ranging between 0–80 μM; i.e. a control (given DMSO as vehicle at a final concentration of 0.05%) and several 
concentrations similar to those tested previously by Naderali et al. (13) in a previous comparison of resistance 
and conductance arteries but from mesenteric and uterine circulations as described in detail the Discussion 
section. Thus, concentrations of 0, 2, 5, 10, 20, 30, 40 and 80 μM were used on both proximal and distal por-
tions of each rat tail artery. We recorded contractile tension data from all rings for 2.5 h following administra-
tion of resveratrol since this amount of time was often needed for complete relaxations to occur, particularly 
at low concentrations if unanticipated transient increases in contractile tensions occurred immediately after 
its administration. These often required considerable time to disappear (Fig. 2B). Determination and display 

Fig. 1.	 Proximal and distal segments of the ventral tail artery of the adult male rat. After 
isolation and storage using cold buffer, eight 3-mm rings were cut for each experi-
ment from the middle portion of each 6 cm (60 mm) segment and used as described 
in Methods. Unused end portions of each segment were discarded.
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of magnitude and duration of these transient increases are presented in Figs. 3 and 4. Final relaxation effects 
of resveratrol were calculated as percent decrease from contractile tensions recorded immediately prior to its 
administration. We repeated the study eight times for rings from each tail artery segment, alternating the order 
in which we tested the proximal and distal segments from the same vessel from one experimental period of 
time to the next. Naderali et al. (13) found that n=7–8 rings per experimental group was sufficient to detect a 
statistically significant greater relaxant effect of resveratrol in their mesenteric resistance arteries versus uter-
ine conductance arteries.

Study 2 (specific aim 2): determine if (hypothesis #2) resveratrol’s relaxation of rat tail arterial tissue in 
vitro can be antagonized by any of the following: tetraethylammonium, iberiotoxin, apamin, glibenclamide, 
barium, margatoxin and/or 4-aminopyridine; agents known to block different subpopulations of potassium 
channels in arterial smooth muscle. In each experiment of this study, prior to contracting eight tail artery rings 
with PE, we individually exposed them to seven different known potassium (K) channel blockers (plus one 
control ring with no blocker) and allowed time for any baseline changes in resting tension to stabilize (approxi-
mately 20 min). The seven K channel blockers (and concentrations) we employed in this study were as follows: 
1) tetraethylammonium (TEA) at 1 mM to inhibit all large- and intermediate-conductance calcium-activated 
K channels (KCa), 2) iberiotoxin (Iberio) at 50 nM to inhibit only large-conductance KCa, 3) apamin at 100 
nM to inhibit only small-conductance KCa, 4) glibenclamide (Glib) at 10 μM to inhibit only ATP-sensitive K 
channels (KATP), 5) barium at 10 μM to inhibit only inward rectifier K channels (KIR), 6) margatoxin (Marga) 
at 10 nM to inhibit only subtype 1 of all voltage-dependent K channels (KV1), and 7) 4-aminopyridine (4AP) 
at 1 mM to inhibit all voltage-dependent K channels (KV). These selections were based on the following three 
sources: 1) all previous studies of the role of K channels in resveratrol’s relaxation of other arteries (12, 14–16) 
as presented in Discussion, 2) extensive reviews of all major subpopulations of K channels in arterial vascular 
smooth muscle (26, 27), and 3) successful efforts by ourselves and others to assess K channel involvement 
in relaxant actions of other substances specifically in the rat tail artery (20, 21, 28). The control ring in each 
experiment was given K channel blocker vehicles (water and DMSO) administered in volumes already known 
to exert no effects of their own on contractile tensions. Following administration of PE at 0.5 μM as in Study 
1, we allowed time for PE contractions to stabilize before administering resveratrol (26 μM; the overall mean 
of its EC50 values, 25 and 27 μM, calculated from Study 1), and then we recorded contractile tension data for 
at least two hours after resveratrol (which similar to Study 1 was needed to allow full relaxations to occur). 
We repeated this study eight times for each tail artery segment because the average of all n values previously 
needed by others to detect K channel blocker effects on resveratrol relaxation in other vessels (12, 14–16) was 
7.5 (range of n=3–17). As in Study 1 we alternated the order in which we tested the proximal and distal tissue 
segments from the same vessel. As in Study 1, we recorded magnitude and duration of any transient increases 
in contractile tensions that occurred in response to resveratrol prior to its relaxant effects. Final relaxant ef-
fects of resveratrol were calculated as percent decrease from contractile tensions recorded immediately prior 
to resveratrol’s administration, as in Study 1.

Analysis of data
Analysis of data involved assigning numerical values to (and/or calculating numerical values from) chart 

recordings of the various tissue contractile tension parameters (as defined in the above studies). Except for 
calculated EC50 values, all other numerical values were entered into computerized spread sheets for statistical 
evaluation by way of appropriate analysis-of-variance (ANOVA) followed by multiple mean comparison tests 
(Dunnett’s and Tukey’s; if justified by ANOVA) for detection of statistically significant effects of the different 
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experimental conditions (e.g. distal versus proximal arterial tissue segments). EC50 values were evaluated with 
unpaired t-tests. All data were presented in the form of mean +/– S.E.M. with a p value for significance equal 
to or less than 0.05.

Results

Study 1 (specific aim 1): determine if (hypothesis #1) the ability of resveratrol to relax arterial smooth 
muscle in vitro is significantly greater in the distal (resistance) portion of the rat tail artery than in the proximal 
(conductance) portion of the same vessel. The results from this study can be found in Figs. 2–5. In Figs. 3–5, 
the measures expressed along the y-axis were subjected to 2-factor ANOVA in which factor 1 was resveratrol at 
varying concentrations (0, 2, 5, 10, 20, 30, 40 and 80 μM) and factor 2 was the type of arterial segment (distal 
vs. proximal).

Figure 2 shows representative chart recordings of effects of resveratrol on phenylephrine (PE)-induced 
contractions. As expected, there were no significant differences in the ability of rings prepared from the dif-
ferent arterial segments (distal or proximal) to contract in response to PE prior to addition of the different res-
veratrol test concentrations (data not shown). The overall magnitude of such PE-induced contraction was 3,760 
± 98 mg for all distal rings (n=64 total) and 3,614 ± 94 mg for all proximal rings (n=64 total). 

Figure 3 shows an unanticipated finding of transient resveratrol-induced increases in PE-induced contrac-
tions observed before its anticipated relaxant effects. These transient increases began immediately (Fig. 2: B 
and D) and reached their maximum (peak values) 5–15 min after the addition of resveratrol. It is the magnitude 
of these peak values that is shown in Fig. 3. This finding was observed in over half (62%) of the total number of 

Fig. 2.	 Representative chart recordings of effects of resveratrol (R) on phenylephrine 
(PE)-induced contractions of four different distal rat tail arterial rings. A: lack of 
effect by 5 µM. B: transient increase by 5 µM. C: sustained decrease by 40 µM. D: 
transient increase followed by sustained decrease by 40 µM. Each PE = 0.5 µM. 
Similar effects were observed with proximal arterial rings.
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tissues subjected to resveratrol and regardless of its test concentration. This did not occur in any of the control 
tissues given resveratrol’s vehicle (DMSO) only. Thus, the magnitude of these increases at all test concentra-
tions was found to be significantly different from the data shown for control tissues in Fig. 3. They were not 
significantly different from each other although they appeared to be slightly smaller at 2 μM compared to all 
higher levels. Also, there was no significant difference in the magnitude of these transient increases between 
arterial segment types (distal vs. proximal). Finally, while the time to peak values for the magnitude of these 
increases all occurred within the brief period of 5–15 min after addition of resveratrol, their full durations in 
time lasted much longer. They ranged from nearly 2 h at 5 μM resveratrol down to slightly under 30 min at 80 
μM (Fig. 4), thus decreasing in time as relaxation occurred with increasing concentrations. Also, there were no 
significant differences in these durations between arterial segment types (distal vs. proximal).

In Fig. 5, we see sustained decreases in PE-induced contractions observed 2.5 h after addition of resveratrol 
to all tissues combined; i.e. those which did not and those which did show the transient increases in PE contrac-
tions much earlier (as shown in Fig. 3). As expected, there was a graded relaxant effect as resveratrol concentra-
tions increased (Fig. 5). The relaxant effect of resveratrol was statistically significant at concentrations of 10 μM 
and higher compared to the control tissues given resveratrol’s vehicle only. Figure 5 also depicts a significant 
difference in the type of arterial segment; namely, distal segments showed slightly greater relaxation than proxi-
mal segments overall. However, although this difference was only statistically significant as an overall effect 
and not at each level of resveratrol individually (including 0 μM), it was nonetheless noticeable in its absence as 
well as in its presence. Thus, this difference might be due to simply a slightly greater rate of gradual decay of 
the PE contractions by themselves in distal compared to proximal segments over the long length of time (2.5 h) 
that PE remained present. In addition, resveratrol’s half-maximally effective concentration values (EC50 values) 

Fig. 3.	 Magnitude of transient resveratrol-induced increases in PE-induced contractions 
observed (at their maximum) 5-15 min after addition of resveratrol. None were 
observed at 0 µM. The slight decreases shown at 0 µM (no resveratrol) were re-
corded 10 min after addition of vehicle (DMSO) to control tissues. * P<0.05 vs. 
0 µM represents statistically significant effects (as determined by multiple mean 
comparisons) only when distal and proximal data are combined, not when ana-
lyzed separately. Not indicated is a statistically significant main factor effect for 
resveratrol from the 2-factor ANOVA.
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Fig. 4.	 Duration of transient resveratrol-induced increases in PE-contractions observed 
after addition of resveratrol. None were observed at 0 µM. Durations were calcu-
lated as minutes between immediately when the PE-induced contractions began 
to rise after addition of resveratrol and the time when they returned to values ob-
served immediately before its addition. *P<0.05 vs. 2 µM represents statistically 
significant effects (as determined by multiple mean comparisons) only when distal 
and proximal data are combined, not when analyzed separately. Not indicated is a 
statistically significant main factor effect for resveratrol from the 2-factor ANOVA.

Fig. 5.	 Magnitude of sustained resveratrol-induced decreases in PE-induced contractions 
observed 2.5 h after addition of resveratrol. **P<0.05 vs. Distal only represents 
a statistically significant main factor effect for artery segment (proximal vs. dis-
tal). Multiple mean comparisons did not show statistically significant differences 
between proximal and distal segments at each individual concentration of resve-
ratrol. *P<0.05 vs. 0 µM represents statistically significant effects (as determined 
by multiple mean comparisons) not only when distal and proximal data were com-
bined but also when analyzed separately. Not indicated is a statistically significant 
main factor effect for resveratrol from the 2-factor ANOVA. 
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for distal vs. proximal segments were essentially the same (25 ± 3 vs. 27 ± 3 μM) and those values could only 
be calculated in the absence of data from the control tissues (tissues not given resveratrol). Thus, taken together 
these results do not convincingly indicate a greater relaxant action of resveratrol in distal vs. proximal tissue.

Study 2 (specific aim 2): determine if (hypothesis #2) resveratrol’s relaxation of rat tail arterial tissue in 
vitro can be antagonized by any of the following: tetraethylammonium, iberiotoxin, apamin, glibenclamide, 
barium, margatoxin and/or 4-aminopyridine; agents known to block different subpopulations of potassium 
channels in arterial smooth muscle. The results from this study can be found in Figs. 6, 7, 8 and 9. In these 
Figures, the measures expressed along the y-axis were subjected to 2-factor ANOVA in which factor 1 was K 
channel blockers (TEA, iberiotoxin, apamin, glibenclamide, barium, margatoxin, 4AP, and vehicles) and fac-
tor 2 was the type of arterial segment (distal vs. proximal). 

In Fig. 6, we see the effects of potassium (K) channel blockers on phenylephrine(PE)-induced contrac-
tions observed well over 20 min after they were administered, just prior to addition of resveratrol (here at a 
value of 26 μM to all, near its EC50 values from Study 1). While none of the K channel blockers produced 
significant effects when compared to controls (vehicles), 4AP was found to significantly inhibit PE-induced 
contractions but only when compared to TEA, iberiotoxin, and glibenclamide. Also, there were no effects of 
any K channel blockers on resting tensions observed prior to the addition of PE.

In Fig. 7, we see the effects of potassium (K) channel blockers on the magnitude of the unanticipated tran-
sient increases in PE-induced contractions observed (at their maximum) 6–12 min after addition of resveratrol 
(which was 26 μM in all tissues including controls given only the vehicles used for the K channel blockers). 
Similar to results found in Fig. 3 of Study 1, these transient increases were only observed in about half the total 

Fig. 6.	 Effects of potassium channel blockers on the magnitude of phenylephrine (PE)-
induced contractions observed prior to addition of resveratrol (26 µM) [PE=0.5 
µmol/L]. *P<0.05 vs. TEA, Iberio, Glib represents statistically significant effects 
(as determined by multiple mean comparisons) not only when distal and proximal 
data were combined but also, for Iberio, when analyzed separately. Not indicated 
is a statistically significant main factor effect for potassium channel blockers from 
the 2-factor ANOVA.



S. M. Stom and others

— 26 —

number of tissues exposed to resveratrol. Most importantly, the K channel blockers in general, and TEA and 
glibenclamide in particular, inhibited these increases. Also similar to Fig. 3, there was no significant difference in 
the magnitude of these transient increases between arterial segment types (distal vs. proximal). Results identical 
to Fig. 7 were observed in Fig. 8 but for effects of K channel blockers on the durations of the transient increases.

In Fig. 9, we see effects of potassium (K) channel blockers on sustained decreases in PE-induced contrac-
tions observed 2 h after addition of the 26 μM resveratrol to all tissues combined; i.e. those which did not and 
those which did show the transient increases in PE contractions much earlier (as shown in Fig. 7). The graph 
depicts about 50–60% relaxation by resveratrol overall and, most importantly, no statistically significant ef-
fects of any of the seven K channel blockers tested. Similar to Fig. 5 of Study 1, a small but significant differ-
ence was found between arterial segments; again, the distal segments relaxed more than proximal segments. 
This effect was only significant overall, not at the level of each individual K channel blocker (or vehicles) sepa-
rately. As in Fig. 5, it may be due to simply a slightly greater rate of gradual decay of PE-induced contractility 
by itself in distal vs. proximal segments over the considerable length of time (2 h) that PE remained present. 
Finally, the failure of K channel blockers to alter resveratrol’s relaxant effect 2 h after its administration, as 
seen in Fig. 9 for all tissues combined, was also observed much earlier (at 6–12 min after) in those particular 
tissues which did not show the transient increases in PE contractions as seen in Fig. 7. As expected, resvera-
trol’s ability to decrease PE-induced contractions in only those particular rings at that early time was small, 10 
± 4% for n=5 distal rings and 8 ± 2% for n=4 proximal rings. Most importantly, none of the K channel blockers 
administered in parallel to the rest of those rings were able to influence those early, small resveratrol-related 
relaxations (data not shown).

Fig. 7.	 Effects of potassium channel blockers on the magnitude of transient resveratrol-
induced increases in PE-induced contractions observed (at their maximum) 6-12 
min after addition of resveratrol (26 µmol/L). *P<0.05 vs. Vehicles represents sta-
tistically significant effects (as determined by multiple mean comparisons) only 
when the distal and proximal data are combined, not when analyzed separately. 
Not indicated is a statistically significant main factor effect for potassium channel 
blockers from the 2-factor ANOVA.
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Fig. 8.	 Effects of potassium channel blockers on duration of transient resveratrol-induced in-
creases in PE-induced contractions observed after addition of resveratrol (26 µM). Du-
rations were calculated as minutes between immediately when the PE-induced contrac-
tions began to rise after addition of resveratrol and the time when they returned to values 
observed immediately before its addition. *P<0.05 vs. Vehicles represents statistically 
significant effects (as determined by multiple mean comparisons) only when the distal and 
proximal data are combined, not when analyzed separately. Not indicated is a statistically 
significant main factor effect for potassium channel blockers from the 2-factor ANOVA.

Fig. 9.	 Effects of potassium channel blockers on the magnitude of sustained resveratrol-induced 
decreases in PE-induced contractions observed 2 h after addition of resveratrol (26 µM). 
*P<0.05 vs. Distal only represents a statistically significant main factor effect for artery 
segment (proximal vs. distal). Multiple mean comparisons did not show statistically sig-
nificant differences between proximal and distal segments at the level of each individual 
potassium channel blocker.
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Discussion

Specific aim related findings
For our first specific aim, we sought to determine if (hypothesis #1) the ability of resveratrol to relax arte-

rial smooth muscle in vitro is significantly greater in the distal (resistance) portion of the rat tail artery than 
in the proximal (conductance) portion of the same vessel. Before our results, resveratrol was already known 
to relax other resistance and conductance arteries in vitro (12–16) but only one laboratory had tested for a dif-
ference in that effect. Naderali et al. found that resveratrol’s relaxation effect was more potent in mesenteric 
resistance arteries (second order branches of the main mesenteric artery) than in uterine conductance arteries 
(segments of the main uterine artery itself) isolated from female guinea-pigs and tested in parallel under the 
same conditions (13). This was an important finding to confirm in other vessels because 1) resistance blood 
vessels play a larger role in regulating arterial pressure than conductance vessels (29) and 2) resveratrol’s abil-
ity to reduce arterial pressure over the long term when taken orally is not yet fully understood. Also, Naderali 
et al. produced their results by testing different arteries isolated from different organs. In our study, we tested 
separate segments of the same artery isolated from the same organ. Proximal and distal segments of the long 
ventral tail artery of the rat have been shown to exhibit both structural and functional characteristics typical 
of most conductance and resistance arteries in the body (17–19). 

If our results had supported our hypothesis that resveratrol’s relaxant effect is greater in the more distal 
resistance segment of the rat tail artery than the proximal conductance segment of the same vessel, we would 
have next examined what mechanism was responsible for that difference. If Aim #2 (see below) did not provide 
the answer to this question, we would have considered the role of arterial endothelium in future studies by 
repeating the Aim #1 experiment but with the endothelium deliberately removed. Mechanisms of endothelial-
dependent dilation are different in resistance versus conductance arteries (19, 30, 31). Luksha et al. (30) and 
Woodman et al. (31) both established that the nitric oxide (NO) released by endothelium has a greater role in 
dilation of conductance arteries while endothelium-derived hyperpolarizing factor (EDHF) has a greater role 
in endothelium-dependent dilation of resistance arteries. The same difference occurs in the rat tail artery (19). 
Conceivably, resveratrol might have been acting to enhance that difference. But our results did not convinc-
ingly support our hypothesis for this specific aim. Thus, we suspect that resveratrol’s relaxant effect is not 
greater in resistance versus conductance arteries in general, and that what Naderali et al. previously observed 
(13) was due to some other property that differed between their mesenteric and uterine arterial preparations.

For our second specific aim, we sought to determine if (hypothesis #2) resveratrol’s relaxation of rat tail 
arterial tissue in vitro could be antagonized by any of the following: tetraethylammonium, iberiotoxin, apa-
min, glibenclamide, barium, margatoxin and/or 4-aminopyridine; agents known to block different subpopula-
tions of potassium (K) channels in arterial smooth muscle. Channels blocked by these agents are defined under 
Study 2 (Aim 2) in Methods. Published studies on different arterial vessels isolated from different animals 
have already found that some of these agents antagonize relaxation by resveratrol while others do not (12, 14–
16), suggesting that resveratrol may cause relaxation by opening some but not other types of arterial smooth 
muscle K channels and that it varies notably in that regard from one type of artery to another. For example, one 
previous study on the rat mesenteric artery showed that 4-aminopyridine had a moderate antagonistic effect 
on resveratrol’s relaxation of phenylephrine contraction while glibenclamide, tetraethylammonium, charybdo-
toxin, margatoxin and barium had no effects (12). Another study on phenylephrine-contracted human mam-
mary arteries reported different results showing that glibenclamide, tetraethylammonium, and charybdotoxin 
did not block resveratrol’s relaxant effect while 4-aminopyridine and margatoxin each completely abolished it 
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(15). However, another paper reported that glibenclamide and tetraethylammonium did have an antagonistic 
effect on resveratrol’s relaxation of the norepinephrine-contracted rat abdominal aorta (16). And a study on 
pressurized porcine retinal arterioles reported that while tetraethylammonium and iberiotoxin antagonized 
resveratrol’s relaxant effect, glibenclamide and 4-aminopyridine did not (14). As discussed under Study 2 
(Aim 2) in Methods, we tested all of these agents (except charybdotoxin) in both resistance and conductance 
segments of the rat tail artery to identify any antagonistic effects on resveratrol’s relaxant action. In addition 
to these agents (as used in the abovementioned published studies) we also tested the effect of apamin, a blocker 
of small-conductance calcium-activated K channels (26), which was not tested in those studies. To allow room 
for apamin we omitted charybdotoxin because, of the three known blockers of large- and/or intermediate-
conductance calcium-activated K channels (tetraethylammonium, iberiotoxin and charybdotoxin), it was the 
only one that failed to affect resveratrol’s relaxant action in the abovementioned published studies (12, 15). 

If our results had supported our hypothesis, we would have then studied the role of endothelium in the 
future. We would have retested only those agents that proved to have an antagonistic effect in the present work 
but with endothelium removed from the vessels in future studies. This would have been important to determine 
whether the K channels affected by resveratrol belong to the endothelium or the smooth muscle of the vessel 
wall. Although not as well understood (in terms of their role), K channels do exist in endothelial cells (32, 33) 
as well as in arterial smooth muscle cells (26, 27). But since our results did not support our hypothesis, we will 
consider other possible mechanisms in the future that may be responsible for resveratrol’s relaxation of the 
rat tail artery, such as again the endothelium (though not focusing on its K channels) but also smooth muscle 
voltage-gated calcium channels for which others have already provided initial evidence suggesting they play a 
partial role in the rat mesenteric artery (12).

Unanticipated findings (relevance)
While resveratrol’s vascular relaxing action has been widely established there are no reports to our knowl-

edge of its potential to act as a contracting substance, at least not in vitro. Unexpectedly, we found that res-
veratrol caused immediate, transient increases in phenylephrine (PE)-induced (thus adrenergic) contractions 
in over half of our isolated rat tail arterial ring preparations (Figs. 2, 3 and 7), beginning well before any of 
its sustained relaxant effects became fully apparent (Figs. 2, 5 and 9). It is possible that others have already 
observed this enhancement of adrenergic contractility in other arteries in vitro but simply chose to ignore it, 
thinking it was not relevant in vivo. However, we reasoned that if this phenomenon is not limited to just the 
ventral tail artery of the rat but occurs systemically (in other arteries as well), then it should be possible to find 
in vivo evidence of it in the form of transient yet meaningful elevations in systemic arterial pressures imme-
diately after intravenous (as opposed to long-term oral) administration. We searched and found eight publica-
tions involving arterial pressure monitoring during intravenous administration of resveratrol (34–41); four in 
which arterial pressures did not change (34, 36, 38, 39) but three in which it was significantly elevated (35, 37, 
40) and one editorial review in which the therapeutic benefit of such elevation was presented and speculation 
offered as to why some investigators have seen it while others have not (41).

The three studies in which intravenous resveratrol raised arterial pressures involved different species and 
different experimental conditions. But all had one thing in common, i.e. abnormally low arterial pressures in 
the absence of resveratrol (35, 37, 40); so low that its ability to acutely elevate those pressures was considered 
an important part of its therapeutic benefit (35, 37, 41). In one study, resveratrol transiently increased arterial 
pressures while it was infused intravenously into hypotensive fetal sheep (40). The rise in their mean arterial 
pressures, from a low of approximately 45 mmHg before resveratrol, peaked at about 10 min and then disap-
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peared approximately 20 min later. Based on our results, this short duration of approximately 30 min can be 
readily explained by the fact that the dose of resveratrol (approximately 3 mg/kg) was high enough to produce 
a notably high circulating concentration, as calculated by the authors to be over 100 μM (40). As such, this in 
vivo effect is remarkably consistent with results we observed after direct administration of our high test con-
centrations of resveratrol to isolated rat tail arterial tissue in vitro. For example, at resveratrol concentrations 
of 40 and 80 μM we observed nearly an identical time course for its ability to transiently enhance PE-induced 
contractions (Fig. 4). In another study, adult endotoxemic rats were continuously infused with a 10-fold lower 
dose of resveratrol (0.3 mg/kg) which only produced a calculated blood concentration of 4.4 μM (35). This 
infusion significantly improved mean arterial pressure recovery in these rats from a low baseline level of 36 
mmHg (as induced by the experimental endotoxemia) and this recovery was much longer in duration (i.e. less 
transient). It was particularly noteworthy as late as 60–120 min after that induction (35). This in vivo effect 
is again remarkably consistent with our results but with administration of our lower test concentrations of 
resveratrol in vitro, as seen for example with 5 μM after which enhancement of our PE-induced contractions 
lasted much longer than after the higher concentrations (Figs. 2 and 4). Finally, in the third study (37), an even 
lower intravenous dose of resveratrol (0.1 mg/kg) raised even lower baseline levels of mean arterial pressures 
than those seen in the above two studies (35, 40). These particularly low arterial pressures were caused by 
infrarenal aortic clamping designed to experimentally induce traumatic ischemic spinal cord injury in adult 
rabbits. Resveratrol’s ability to correct them was seen both proximal and distal to the site of aortic clamping 
and considered by both the authors (37) and an editorial reviewer of the study (41) to be potentially as important 
as its known antioxidant action, in terms of the protection it afforded against permanent spinal cord damage. 
Authors of this third study (and the remaining studies discussed below) did not report blood concentrations for 
resveratrol.

None of the authors of these three in vivo studies (35, 37, 40) nor the editorial reviewer (41) commented on 
the mechanism responsible for resveratrol’s ability to acutely elevate arterial pressure during its intravenous 
administration. Our in vitro work now offers a reasonable explanation for it, i.e. enhancement of the whole 
body’s adrenergic vasoconstrictor support of arterial pressure in vivo by way of a direct enhancing action on 
adrenergic contraction of arterial vessels, as we observed in vitro in one such vessel.

But why did intravenous resveratrol only increase arterial pressures in some studies (35, 37, 40) and not 
in others (34, 36, 38, 39)? The most obvious answer is if the doses were simply too low to do so. And that may 
have been the case in at least one of them in which extremely low intravenous doses (at and below 0.001 mg/
kg) failed to acutely increase (or decrease) mean arterial pressures in rats with experimentally-induced cere-
bral ischemia (36). Admittedly, their baseline pressures were already elevated in the absence of resveratrol and 
in need of no further elevation. But more importantly, such extremely low doses may not be able to produce 
circulating concentrations of resveratrol capable of enhancing (or inhibiting) adrenergic support of arterial va-
soconstriction and related arterial pressure. However, it is also possible that there may be doses of resveratrol 
which are paradoxically too high to acutely increase arterial pressures during intravenous administration. The 
abovementioned editorial reviewer (41) raised this issue when comparing two different studies from two dif-
ferent laboratories treating the same condition (ischemia-reperfusion-induced spinal cord injury) in the same 
species (adult New Zealand white rabbits), but with a large difference in intravenous dose, i.e. 0.1 mg/kg which 
increased arterial pressure in the one study as already mentioned (37), and 1 mg/kg and 10 mg/kg neither of 
which increased arterial pressure in the other study (38). In our opinion, the latter might be explained as fol-
lows. At high enough intravenous doses (e.g. the 10 mg/kg dose) the duration of any acute increase in blood 
pressure might not last long enough to be detected. We think this can simply be extrapolated from the already 



Novel vascular effects of resveratrol

— 31 —

abovementioned notably shorter duration of increased arterial pressure in the fetal sheep given 3 mg/kg (40) 
compared to the endotoxemic rats given only 0.3 mg/kg in vivo (35). We could also extrapolate it from our own 
in vitro observation of decreasing durations in time for the transient enhancements of adrenergic contractions 
caused by resveratrol as we progressively increased its concentration from lower to higher levels (Fig. 4).

But that still leaves the 1 mg/kg dose given to the rabbits (38) plus two other rat studies (34, 39) in which 
intravenous resveratrol failed to increase arterial pressures even though administered within the range of 
doses that did increase pressures in the first three studies mentioned above (35, 37, 40). Thus, for these studies 
(and perhaps for all the abovementioned studies) there may be factors other than dose which are important in 
determining whether or not intravenous resveratrol increases blood pressure. Such factors could be similar to 
those which determine why some of our in vitro tissues do and some do not show transient increases in ad-
renergic contractions in response to resveratrol. Accordingly, more in vitro experiments with our isolated tail 
artery preparations designed to uncover these factors may shed light on better use of intravenous resveratrol 
in the future, especially in animal models (and patients) in which severe hypotension (in need of correction) 
accompanies traumatic ischemic tissue injury. One of several factors that we intend to study in the future is the 
composition of our physiological buffer, focusing especially on levels of glucose, electrolytes, oxygen, carbon 
dioxide and pH. Measuring these factors in blood samples was considered important in most of the abovemen-
tioned in vivo studies in which resveratrol was given intravenously to whole animals (35–37, 39, 40); many with 
experimentally-induced ischemic tissue injury (35–37, 39). In fact, marked and distinctly different changes in 
a number of these factors (due to the injuries) were reported in two of these studies, one in which intravenous 
resveratrol increased arterial pressure (35) and one in which it did not (39).

Unanticipated findings (mechanisms)
We were not able to identify the precise mechanism whereby resveratrol enhanced adrenergic contrac-

tions in our tail artery tissues but we did identify agents with which to further study it in the future. We found 
that at least two of the seven K channel blocking agents we employed in aim #2 above, TEA and glibenclamide, 
notably inhibited both the magnitude and duration of the transient increases in PE-induced contractions caused 
by resveratrol (Figs. 7 and 8). This would lead one to suspect that TEA-sensitive and glibenclamide-sensitive 
K channels might play a role in the mechanism involved. However, because of the well-known relaxing role 
of these and other K channels in smooth muscle, it is generally thought that K channel blockers only block 
smooth muscle responses to relaxing and not contracting substances (26, 27). Thus, we considered that when 
TEA and glibenclamide inhibited the transient contractions caused by resveratrol they were working at a 
site other than smooth muscle; either the adjacent endothelium and/or sympathetic nerve endings. Both are 
capable of releasing contracting substances onto the smooth muscle and resveratrol could potentially cause 
such release even if only transiently; e.g. norepinephrine from sympathetic nerve endings and endothelin-1 
from the endothelium. However, TEA is already known to facilitate, not inhibit, norepinephrine release from 
electrically-stimulated sympathetic neurons (42). Therefore, although we do not entirely rule them out, this 
would argue against the role of nerve endings in our results with TEA because it inhibited rather than facilitate 
the transient resveratrol-induced contractions that we observed. We think the more likely possibility is that 
TEA (and perhaps glibenclamide as well) may be blocking transient resveratrol-induced release of contracting 
factors from the endothelium. 

 Less is known about the role of endothelial K channels in endothelial release of contracting factors 
compared to relaxing factors (32, 33). However, it is known that vascular endothelial cells possess mechano-
sensitive ion channels which when stretched can directly alter the release of endothelial contracting factors 



S. M. Stom and others

— 32 —

(as well as relaxing factors) or indirectly alter the ability of various endogenous agonists like acetylcholine 
to release contracting factors (32, 33, 43–45). There are at least two reasons why we suspect that resveratrol 
may be acting as such an agonist; or more specifically, acting on such mechano-sensitive ion channels in the 
endothelium. First, some of those channels are known to be K-selective (33) and therefore potential sites for a 
K-channel related action of resveratrol that could conceivably be blocked by K channel blockers. Second, some 
of the endothelium-dependent contractions which have been observed in response to excess stretch of the wall 
of some arteries have been reported as transient in duration (44, 46), thus similar in that respect to what we 
observed with resveratrol. Studies of the effects of deliberate arterial wall stretch on release of endothelial con-
tracting factors have been conducted with experimentally-induced changes in both passive loading (resting) 
tensions as applied to isolated arterial rings (43–46) and perfusion pressures as applied to isolated but whole 
cannulated arteries (47). Either way yields essentially the same results, i.e. excess stretch when deliberately 
applied can not only impair arterial endothelium-dependent relaxations (including acetylcholine-induced) (43) 
but also promote release of endothelium contracting factors (43, 44, 46) and stimulate endothelial production 
of reactive oxygen species (48) which in turn can contribute to endothelium-dependent contractile responses 
to acetylcholine (45). Thus, in future experiments we will obviously test whether resveratrol’s contraction-
enhancing action is dependent on intact endothelium. If it is, we will then determine if experimentally adjust-
ing passive loading (resting) tensions up or down prior to administration of resveratrol can alter how many 
tissue rings respond to its transient contracting effect; and possibly even alter the magnitude and duration of 
those responses.

Finally, it is possible that the ability of glibenclamide in particular to inhibit resveratrol’s contraction-
enhancing action may not involve the endothelium (or even K channels) at all. Glibenclamide has been reported 
to inhibit contractions produced by prostaglandin F2α in rings prepared from rat aorta and canine femoral, 
mesenteric, renal, coronary and cerebral arteries (49). This inhibition was not dependent on the presence of 
intact endothelium (49). The authors concluded that glibenclamide was acting specifically at the level of the 
arterial smooth muscle receptor for only prostaglandin F2α and/or its intracellular smooth muscle signal trans-
duction pathway, but not on glibenclamide-sensitive K channels within the smooth muscle cell membrane (49). 
We will conduct future studies to determine if glibenclamide (and perhaps TEA as well) is acting similarly to 
inhibit the contraction-enhancing action of resveratrol, possibly at a yet to be identified polyphenol receptor 
site on smooth muscle that specifically binds resveratrol.
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