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ABSTRACT The last few years has seen a proliferation of wearable electrocardiogram (ECG) devices
in the market with applications in fitness tracking, patient monitoring, athletic performance assessment,
stress and fatigue detection, and biometrics, to name a few. The majority of these applications rely on the
computation of the heart rate (HR) and the so-called heart rate variability (HRV) index via time-, frequency-,
or non-linear-domain approaches. Wearable/portable devices, however, are highly susceptible to artifacts,
particularly those resultant from movement. These artifacts can hamper HR/HRV measurement, thus pose
a serious threat to cardiac monitoring applications. While current solutions rely on ECG enhancement as a
pre-processing step prior to HR/HRV calculation, existing artifact removal algorithms still perform poorly
under extremely noisy scenarios. To overcome this limitation, we take an alternate approach and propose
the use of a spectro-temporal ECG signal representation that we show separates cardiac components from
artifacts. More specifically, by quantifying the rate-of-change of ECG spectral components over time,
we show that heart rate estimates can be reliably obtained even in extremely noisy signals, thus bypassing the
need for ECG enhancement. With such HRmeasurements in hands, we then propose a new noise-robust HRV
index termed MD-HRV (modulation-domain HRV) computed as the standard deviation of the obtained HR
values. Experiments with synthetic ECG signals corrupted at various different signal-to-noise levels, as well
as recorded noisy signals show the proposed measure outperforming several HRV benchmark parameters
computed post wavelet-based enhancement. These findings suggest that the proposed HR measures and
derived MD-HRV metric are well-suited for ambulant cardiac monitoring applications, particularly those
involving intense movement (e.g., elite athletic training).

INDEX TERMS Electrocardiogram, heart rate variability, modulation spectrum, telehealth, wearables.

I. INTRODUCTION
According to the American Heart Association, cardiovas-
cular disease is one of the major causes of death globally
with 17.3 million deaths per year. The number of deaths is
expected to grow to more than 23.6 million by 2030 [1].
As such, electrocardiogram (ECG) monitoring technologies
are burgeoning and portable/wearable devices have emerged,
as well as numerous diagnostic and quantified self appli-
cations [2]. Such devices are capable of monitoring heart
rate (HR), a measure of the number of contractions of the
heart per minute (beats per minute, bpm), as well as the
so-called heart rate variability (HRV) index, a measure of
the variation in beat-to-beat intervals. HRV analysis has been

used as a viable technique for non-invasive assessment of the
automatic nervous system (ANS), both in healthy individuals
and in patients with cardiac disorders (e.g., [3]–[8]). The
ANS is comprised of the sympathetic and parasympathetic
nervous systems, where the former prepares the body for
action and maintains homeostasis, whilst the latter stim-
ulates the body for relaxation. In response to such ANS
activity, heartbeat intervals fluctuate causing a change in
the variability of the heart rhythm. This variability has been
shown to be related to cardiac autonomic function regula-
tion [9], [10], as well as to stress, anxiety, diabetes, hyper-
tension, fatigue, and drowsiness [11]–[15], fitness and sport
assessment [16]–[20], as well as emotional states [21].
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Over the years, several indices have been proposed to mea-
sure HRV, including linear (time domain, spectral domain)
and non-linear methods (e.g., geometric method, entropy,
and fractal dynamic methods). Time domain methods typi-
cally evaluate the variability in ECG peak-to-peak intervals
(also known as ‘RR’ periods) and in the so-called normal-
to-normal (NN) intervals between adjacent QRS complexes
resulting from sinus node depolarizations [22]. As such,
indices such as the standard deviation of the heart rate
(i.e., inverse of the RR periods, termed sdHR), standard
deviation of all NN intervals (SDNN), and standard deviation
of the averages of NN intervals in all 5 min segments of
the entire recording (SDANN) have been used. Frequency
domain methods, in turn, apply either auto-regressive mod-
els or Welch periodogram analysis on the RR interval series
in different frequency bands, such as ultra low frequency
(ULF, ≤ 0.003 Hz), very low frequency (VLF, 0.003 −
0.04 Hz), low frequency (LF, 0.04 − 0.15 Hz), and high
frequency (HF, 0.15−0.40Hz). LF andHF components have,
in the past, been linked to sympathetic and parasympathetic
nervous systems, respectively.

Non-linear methods, in turn, have been proposed and
shown to better characterize the complex dynamics of the
cardiac autonomic system [23]. As such, geometric methods
have been used to convert the RR intervals into a geomet-
ric form (e.g triangle or ellipse), thus representing different
classes of HRV [24], [25]. Other non-linear measures include
indices of the signal ‘‘randomness’’ (entropy), with measures
such as approximate, sample, multiscale, fuzzy, and fuzzy
measure entropy [26], titration method [27], as well as statis-
tical properties of fractals [28]–[30]. A complete description
of such HRV indices is beyond the scope of this paper and the
interested reader is referred to [22] and the references therein
for more details.

Despite the method used to measure HRV, one common-
ality between all methods is their sensibility to ECG arti-
facts and to errors in the detection of instantaneous heart
beats [31]–[33]. Movement artifacts are particularly trou-
blesome, especially with wearable devices [34]. As such,
robust peak detection algorithms have been proposed to
better generate RR time series [35]. More recently, ECG
enhancement (artifact removal) has also been explored to
improve the ECG signal-to-noise ratio prior to peak detec-
tion. To this end, wavelet-based enhancement has shown
to be powerful tool given its artifact removal capabili-
ties and low computational power requirements [36]–[38].
Once computed, additional pre-processing steps, such as
RR series detrending and inter-beat-interval resampling,
are performed prior to HRV measurement. Notwithstand-
ing, in extremely noisy scenarios, ECG enhancement and
peak detection algorithm performances are limited [39], thus
hampering HRV measurement and potentially leading to
e.g., a rise in false alarms in automated health monitoring
devices [40].

Here, we propose an alternate approach to noise-robust HR
and HRV measurement based on a spectro-temporal ECG

signal processing technique termed ‘‘modulation spectrum’’
processing. More specifically, we measure the rate-of-change
of ECG short-term spectral magnitude components and show
that cardiac components and noise components become sep-
arable in this new domain. Modulation spectrum processing
has been shown in the past to accurately separate signal
and noise components for speech enhancement [41], [42],
auscultatory sound analysis [43], and, more recently, for auto-
mated ECG quality assessment [44]. Within this new domain,
robust HR measurement in extremely noisy cases is possible
without the need for a priori ECG enhancement nor time-
domain peak detection. With such HR measures in hands,
we propose a new HRV metric termed modulation-domain
HRV (MD-HRV). This work builds on that of [45] and uses
synthetic and recorded signals to validate the proposed mea-
sure against several time-, frequency, and non-linear domain
HRV indices. To show the benefits of the proposed metric,
comparisons are performed against these benchmark indices
with and without a priori ECG enhancement; here, a wavelet-
based enhancement method was used.

The remainder of this paper is organized as follows.
Section II provides a description of the ECG modulation
spectral representation, how it is used to measure HR and
the proposedMD-HRVmetric, benchmark HR/HRVmetrics,
and performance figures-of-merit. Experimental results are
then presented in Section III and discussed in Section IV.
Finally, conclusions and future research directions are drawn
in Section V.

II. METHODS AND MATERIALS
This section presents the spectro-temporal ECG represen-
tation and describes the proposed HR calculation and the
MD-HRV metric extraction approach. Further, a description
of the synthetic and realistic datasets used, HRV metrics
in time and frequency domains, as well as nonlinear mea-
sures are introduced. Finally, figures-of-merit to gauge the
proposed HR calculation and MD-HRV performance are
presented.

A. SPECTRO-TEMPORAL ECG REPRESENTATION
The processing steps for the computation of the spectro-
temporal ECG representation are depicted in Figure 1. First,
the ECG signal x(n) (in our case, sampled at 256 Hz) is
segmented into overlapping frames employing a 32-point
sine window and 75% overlap to be then transformed to
the frequency domain (spectrogram) via a 512-point fast
Fourier transform (FFT). Then, the magnitude of the spectral
components ‖X (f ,m)‖ (f is the conventional frequency in
Hertz (Hz) and m is the frame index across time) is seg-
mented using a 128-point sine window with 75% overlap to
obtain the frequency-frequency representation X (f , fm,k ) via
a 512-point FFT. The frequency-frequency representation is
known as modulation spectrogram, where fm,k is the mod-
ulation frequency in Hertz (Hz) and k is the frame index
for the second FFT. The represented modulation spectro-
gram shows the rate-of-change of the different ECG spectral
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FIGURE 1. Signal processing steps involved in the spectro-temporal ECG representation. ECG signal, x(n), is first
segmented and transformed into the time-frequency representation via 512-point FFT. Modulation spectral
magnitudes are then segmented and transformed via a second transform (512-point FFT) into a
frequency-frequency representation. The right part of the figure shows modulation spectrograms frames
from 1 to k .

components. Synthesized clean ECG data were used to opti-
mize the base and modulation window sizes, as well as the
overlap rates reported above for 256 Hz sampled ECG data,
as detailed in [44]. This parameter configuration requires a
minimum of 4 seconds of ECG data in order to calculate one
modulation spectrogram.

Figure 2 (a) shows a typical modulation spectro-
gram of a synthetic clean ECG signal with 120 bpm.
Figures 2 (b) and (c), in turn, depict its noisy counterparts
with a signal-to-noise ratio (SNR) of 0 dB and −10 dB,
respectively. As can be seen fromFigure 2 (a), the first ‘‘lobe’’
centred at 2 Hz corresponds to the ECG heart rate, followed
by several harmonics across the modulation frequency axis.
While the first lobe energy decreases as the signal becomes
noisier, it is still possible to detect it even at SNR = −10 dB
(Figure 2 (c)), thus suggesting accurate HR measurement
even at very noisy scenarios. The corresponding time domain
waveforms can be seen in Figure 3. From the bottom plot,
it can be seen that detecting heart beats and RR time series
at an SNR = −10 dB could be very difficult, thus hampering
conventional HRV measurement. The clear advantage of the
modulation spectrum for heart rate detection in noisy ECGs
is the main motivation for using this representation for HRV
measurement, as described next.

B. MODULATION DOMAIN HR AND HRV MEASUREMENT
As outlined in Section II.A, the spectro-temporal ECG rep-
resentation allows measuring heart rates even in extremely
noisy scenarios, as depicted in Figure 2 (c). In order to
compute the ‘‘instantaneous’’ heart rate (HR), the central
frequency of the lobes, within each per-frame modulation
spectrogram X ∗(f , fm,k ), has to be detected. This is repre-
sented by the shaded lobes in the modulation spectrograms
of Figure 1. The central modulation frequency of the first
lobe represents the HR (given in bpmwhenmultiplied by 60),
whilst the central frequency of the other lobes correspond
to multiples (harmonics) of this HR value. In order to more
accurately measure HR, the energy calculation for each mod-
ulation frequency bin is constrained to the 0 ≤ f ≤ 40 range
(where most of the ECG energy is concentrated) and the
0.8 ≤ fm ≤ 3.3 range, thus covering heart rates between
48 and 198 beats per minute. Such HR range is representative
of the athletic and fitness applications explored herein, but
could be easily expanded to values outside this range. As can
be seen, with the proposed approach, heart rate measurement
has shifted from the conventional time-domain amplitude
peak detection approach, to a modulation frequency domain
peak energy detection approach. Notwithstanding, since the
latter relies on a signal representation in which cardiac
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FIGURE 2. Modulation spectrograms of synthesized ECG with (a) clean
120 bpm and its noisy counterparts signals with an (b) SNR = 0 dB, and
(c) SNR = −10 dB. The color bars show the range values in dB.

components and noise are separable, it becomes more robust
to artifacts.

With the computed per-frame central modulation frequen-
cies (i.e., ‘‘instantaneous’’ HRs), we propose the so-called

modulation domain HRV metric (MD-HRV) as the stan-
dard deviation over all frames. When computed in beats per
minute, MD-HRV is given as:

MD− HRV (bpm) = 60×

√√√√ 1
N − 1

N∑
k=1

(X ∗k − X̄ ∗)2, (1)

where N is the total number of ‘modulation frames’, X ∗k is
the central frequency (i.e., HR) at the k th modulation frame,
and X̄ ∗ is the mean central frequency calculated over all
per-frame modulation spectrograms. The multiplying factor
of 60 is used to convert the MD-HRVmetric from Hz to bpm.
Here, modulation spectrograms are estimated every 5 seconds
with 75% overlap. While alternate parameter configurations
(e.g., base window, modulation window, overlap, and number
of FFT points) can be used, the values reported herein were
empirically found to be optimal for the task and sampling
rate at hand [44]. For this particular configuration, a 5-second
duration ECG signal will generate an RR series with five
points. In the experiments herein, MD-HRV is computed over
10-minute ECG recordings, as detailed next.

C. DATASET 1: SYNTHETIC ECG
Synthetic ECG signals were generated using the ‘ecgsyn’
function in MatlabTM available in Physionet [46]. The func-
tion uses a dynamic model to generate the ECG waveform
described in [47] and allows configuring several parame-
ters such as mean heart rate, sampling frequency, standard
deviation of the heart rate, waveform morphology (i.e., P,
Q, R, S, and T duration, timing, and amplitude), and low-
frequency (LF) to high frequency (HF) ratio. Here, in total
700 signals of 10-minute duration sampled at 256 Hz were
generated by randomly sampling the heart rate standard devi-
ation between 1 and 10 bpm for heart rates ranging from
50 to 180 bpm. The heart rate standard deviation and heart
rate ranges were chosen in order to cover cardiac diseases
such as bradycardia, tachycardia, and arrhythmia as well as
different activity levels (i.e., resting, walking, and running).
Clean synthetic signals were corrupted by several artifacts
at known SNR levels. Baseline wander noise, and mus-
cle artifacts were taken from MIT-BIH Noise Stress Test
Dataset [48]. Moreover, pink noise was added to model
observation noise, as well as brownian noise to model elec-
trode movement artifacts. Noisy signals were generated at
6 SNR levels of −10 dB, −8 dB, −5 dB, 0 dB, 5 dB, and
10 dB. Figure 3 depicts synthesized 5-second excerpts of a
clean (top) and two noisy signals at SNR= −10 dB (bottom)
and 0 dB (middle). Overall, 4200 noisy 10-minute signals
(700 hours) were generated for HRV metric assessment.

D. DATASET 2: MIT-BIH ARRHYTHMIA DATASET
In order to test the proposed HRV metric in realistic sig-
nals, the MIT-BIH Arrhythmia database was also used [49].
Data sampled at 360 Hz were taken from 48 patients by
the BIH Arrhythmia Laboratory, comprising two-channel
ambulatory ECG recordings. Two cardiologists analyzed
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FIGURE 3. Five-second excerpts from the synthetic ECG signals with
120 bpm for clean and two noisy counterparts with an SNRs of 0 dB and
−10 dB. Vertical axis is given in millivolts.

independently the data, where disagreements were resolved
to obtain annotations for each beat. These annotation files
allowed ‘ground truth’ HRVmetrics to be calculated from the
human-derived RR time series. Each recording has 30-minute
duration. For the experiments described herein, the two-
channel signals were dowsampled to 256 Hz and segmented
into three 10-minute segments, thus similar to the synthetic
data described above. Thus, a total of 288 10-minute seg-
ments were created providing an overall of 48 hours for
testing. These segments were then grouped according to the
heart rate (HR) and heart rate standard deviation (sdHR),
similar to the synthetic ECG signals, thus allowing for easier
comparison between the two databases. Hence, four groups
were used: Group 1 (60± 10 bpm), Group 2 (80± 10 bpm),
Group 3 (100± 10 bpm), and Group 4 (120± 10 bpm).

E. BENCHMARKS AND FIGURES-OF-MERIT
The popular Pan-Tompkins ECG peak detection algorithm
was used to extract the RR time series [50] from the clean
ECG signals. These RR series were used to calculate the
‘ground truth’ HR in the case of the synthetic ECG sig-
nals, and then input to the open-source HRVAS software
package [51] to compute several benchmark HRV metrics
based on time domain, frequency domain, and non-linear
methods. For the recorded ECG dataset, human-derived RR
times series were used for benchmark HR and HRVmeasure-
ment. More specifically, time-domain HRV metrics include
i) the widely-used SDNN, corresponding to the standard devi-
ation of the normal-to-normal (NN) intervals, i.e., reflects
cyclic components which cause variability in the ECG sig-
nal [52]; ii) SDANN, i.e., the standard deviation of 5-minute
mean NN intervals, and iii) standard deviation of heart rate
estimates (stdHR) computed after peak detection and given
in bpm.

The frequency-domain metric, in turn, measures the
total spectral power contained in frequency sub-bands such
as very low frequency (VLF, 0-0.04 Hz), low frequency

(LF, 0.04-0.15 Hz), and high frequency (HF, 0.15-0.4 Hz).
The total power was calculated using an auto-regressive Burg
model order of 16 [53]. Lastly, non-linear Poincaré plots
are used to quantify self-similarity assuming that each inter-
beat interval (IBI) is influenced by the previous one [51].
Thus, an ellipse is fitted with a long axis representing the
line of identity as well as a perpendicular axis to it. If the
IBIs are longer than the previous ones, the points will be
located above the line of identity and below for the opposite
case. Consequently, the so-called SD2 parameter represents
the standard deviation along the line of identity and the
SD1 parameter the standard deviation over the perpendicular
line. Hence, SD1 indicates the standard deviation of instan-
taneous beat-to-beat (i.e., short term variability) and SD2 of
continuous or long-term variability [54].

As mentioned previously, a wavelet-based ECG enhance-
ment algorithm [55] was used for artifact removal prior
to peak detection and RR time series measurement
(i.e, enhanced HR calculation). Such setup exemplifies the
pre-processing pipeline typically used in existing state-of-
the-art HRV and HR monitoring applications [35]. Several
alternate enhancement algorithms were explored, such as
Wiener filtering and ones based on empirical mode decom-
position (EMD) [56]. Pilot experimentation [57] found the
wavelet-based benchmark to provide the best results within
the datasets used herein. Following insights from [58] and
the pilot experiment, Daubechies-6 wavelets with 8 levels
of decomposition, combined with soft thresholding and uni-
versal shrinkage were used [59]. To show the advantages of
the proposed HRV metric, comparisons are made between
MD-HRV computed directly from the noisy ECG signal
and benchmark HRV metrics computed from the noisy and
enhanced signals with RR time series computed using the
Pan-Tompkins algorithm [50]. Moreover, the HR computed
via time-domain RR time series analysis from the noisy and
enhanced signals are compared to the HR values obtained via
the proposed modulation spectrum domain method from the
noisy data.

As for figures-of-merit, Pearson (ρ) correlation and HR
error percentage were used to gauge the benefits of the
proposed MD-HRV metric and HR measurement method,
respectively. As mentioned above, due to the availability of
the original clean synthetic signal and the annotation files
for the arrythmia dataset, the proposed HRV metric and
estimated HR values could be compared with ‘ground truth’
benchmark HRV and HR values. Pearson correlation shows
the linear relationship between MD-HRV and the ‘true’ HRV
metrics with higher values corresponding to improved met-
rics. HR error percentage, in turn, shows the precision of
HR measurement in the modulation domain. Additionally,
to evaluate the bias and to estimate an agreement inter-
val between metrics, Bland-Altman plots were used [60].
A Bland-Altman plot depicts the differences (vertical axis)
against the averages (horizontal axis), hence, are used to
verify the level of agreement between the ‘true’ metrics and
MD-HRV [61]. Typically, Bland-Altman plots with a more
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TABLE 1. Performance comparison (ρ) of HRV metrics for noisy signals,
wavelet enhanced signals, and the proposed MD-HRV metric for
Dataset 1 at different SNR levels.

compact point distribution around zero (vertical axis) rep-
resent metrics in better agreement. Lastly, linear regression
analysis is performed to show the linear fitting with confi-
dence intervals at 95%; smaller confidence intervals represent
more reliable metrics.

III. RESULTS
Tables 1 and 2 show the performance comparison for
the different HRV metrics calculated from the noisy

TABLE 2. Performance comparison (ρ) of HRV metrics for noisy signals,
wavelet enhanced signals, and the proposed MD-HRV metric for
Dataset 2.

TABLE 3. Performance comparison (HR error percentage) of HR
measurement for noisy signals, wavelet enhanced signals, and the
proposed approach for Dataset 1.

ECG signals, their enhanced wavelet counterparts, and the
proposed MD-HRV metric for datasets 1 and 2, respec-
tively. The Pearson (ρ) correlation was obtained between the
‘true’ benchmark HRVmetrics for clean signals (i.e., SDNN,
SDANN, sdHR, total power, SD1, and SD2) andHRVmetrics
for noisy and enhanced signals, as well as between the ‘true’
metrics and the proposed MD-HRV. The results reported
in Table 2 correspond to the average over the four groups,
as described in Section II-D. Table 3, in turn, reports the
HR estimation error (expressed as percentage of the true HR)
obtained via time-domain RR series analysis from the noisy
and enhanced ECG signals, as well as with the proposed
method. These results correspond to the average over all per-
frame modulation spectrograms (computed every 5 seconds
herein). Focus is placed on Dataset 1 to explore the effects as
a function of very low SNRs below 0 dB.

Figures 4 (a)-(c) further depict the scatterplots (and lin-
ear fit curves) of the sdHR metric computed from the
noisy (subplot a) and enhanced signals (subplot b), as well
as the MD-HRV metric computed from the noisy signals
(subplot c). The sdHR metric is chosen as it closely resem-
bles the processing performed by the MD-HRV metric, but
with RR. To avoid cluttered plots, only 100 noisy signals
at 100 bpm and SNR=−10 dB are shown, thus representing
scenarios similar to high levels of exercise and movement.
Furthermore, Figures 5 (a)-(c) show the Bland-Altman plots
for the three cases mentioned above, respectively.

Lastly, Figures 6 and 7 show the scatterplots and
Bland-Altman plots for Group 2 (80± 10 bpm) in dataset 2,
respectively. As above, the sdHR benchmark metric com-
puted from the noisy signal, the enhanced signal, as well
as the proposed MD-HRV metric computed from the noisy
signal are shown in the plots. It is clear from the plots that
the proposed MD-HRV metric results in higher correlations,
tighter regression confidence intervals, and more compact
Bland-Altman plots around zero (vertical axis) than the sdHR
benchmark metric in both cases with and without wavelet
enhancement.
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FIGURE 4. Scatterplots for noisy ECG signals with 100 bpm and
SNR = −10 dB between (a) ‘true’ sdHR and noisy sdHR, (b) ‘true’ sdHR
and wavelet enhanced sdHR, and (c) ‘true’ sdHR and proposed MD-HRV.

IV. DISCUSSION
In this paper, a noise-robust method to estimate HR and
a new HRV metric were proposed based on a spectro-
temporal ECG representation termed ‘modulation spectrum.’
The goal of the metric was to reliably measure HR/HRV
in extremely noisy settings directly from the noisy ECG
signal, without the need for a priori ECG enhancement
nor time-domain peak detection. The proposed HRV met-
ric was compared to six benchmark HRV indices computed

FIGURE 5. Bland-Altman plots for noisy ECG signals with 100 bpm and
SNR = −10 dB between (a) ‘true’ sdHR and noisy sdHR, (b) ‘true’ sdHR
and wavelet enhanced sdHR, and (c) ‘true’ sdHR and proposed MD-HRV.

using time-domain, frequency-domain and non-linear meth-
ods reported in the literature, with and without ECG enhance-
ment and with RR time series computed using the popular
Pan-Tompkins algorithm. The proposed HR measurement
method, in turn, was compared to conventional RR time
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FIGURE 6. Scatterplots for Group 2 in Dataset 2 for (a) Noisy sdHR and
‘true’ sdHR, (b) Wavelet enhanced sdHR and ‘true’ sdHR, and (c) Proposed
MD-HRV and ‘true’ sdHR.

series analysis computed from the noisy and enhanced
signals.

From Table 1, it can be seen that benchmark HRV met-
rics computed from noisy synthetic signals are generally
well correlated with the true HRV values computed from
the clean ECG signals for SNR levels greater than 0 dB.
For extremely low SNR levels below −5 dB, however,

FIGURE 7. Bland-Altman plots for Group 2 in Dataset 2 for (a) Noisy sdHR
and ‘true’ sdHR, (b) Wavelet enhanced sdHR and ‘true’ sdHR, and
(c) Proposed MD-HRV and ‘true’ sdHR.

typical of those observed with wearables during intense
exercise [44], HRV measurement accuracy degrades quickly.
Wavelet-based enhancement, in turn, was shown to be useful
for most metrics, particularly for SNRs below −8 dB.
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The proposed MD-HRV metric, on the other hand, com-
puted only from the noisy ECG signal, showed stable corre-
lation values generally greater than 0.9 up to an SNR= −8dB,
with a drop to around 0.71 − 0.76 at an SNR= −10 dB.
In this extremely noisy scenario, it was difficult to accurately
detect the main lobe in the modulation spectrogram (corre-
sponding to the heart rate, see Section II-A), thus compromis-
ing HRV measurement. Notwithstanding, it can be seen that
with the SDNNmetric, while wavelet enhancement improved
ρ by about 99% relative to the noisy case, the proposed
metric outperformed the noisy case by 253%. Similar gains
were seen across all of the benchmark metrics, including
SDANN (177% compared to 63% post enhancement), sdHR
(239% compared to 27% post enhancement), SD1 and SD2
(385% and 184% compared to 161% and 68% post enhance-
ment, respectively), and total power (266% compared to 78%
post enhancement). Overall, the correlation values obtained
with theMD-HRVmetric at an SNR= −10 dB are inline with
those obtained with the benchmark metrics post enhancement
at −8 dB ≤ SNR ≤ −5 dB. Closer inspection showed that
the total power HRV benchmark metric resulted in the low-
est correlation with MD-HRV across all tested SNR levels.
Interestingly, this benchmark metric showed to be the most
sensitive to artifacts, and resulted in the lowest correlation
values of all benchmark metrics even for SNR= 10 dB.
These results are further validated from the scatter and

Bland-Altman plots shown in Figures 4 and 5, respectively,
for the proposed and sdHR (pre and post enhancement) met-
rics; plots correspond to 100 randomly-selected ECG signals
at 100 bpm and an SNR= −10 dB. The Bland-Altman
plots, for example, show that the discrepancies between the
true sdHR (computed from the clean signals) and the sdHR
computed from the wavelet enhanced signals had a mean dif-
ference of 11.3±8.1, whereas this difference was of 2.2±3.1
for the proposed MD-HRV metric computed from the noisy
signals. Overall, results from Table 1 and Figures 4 and 5
suggest that the proposed metric could be useful in extreme
conditions where wearable ECG signals are highly contami-
nated with motion artifacts, such as during peak performance
training.

Table 2, in turn, reported results obtained from ambula-
tory recorded ECG data. Relative to Table 1, the correla-
tion values suggest a fair amount of noise is present in the
recordings. Interestingly, wavelet based enhancement did not
result in performance improvements in terms of ρ correla-
tion for most of the benchmark metrics, thus highlighting
the limitations of existing enhancement algorithms for data
recorded in real-world settings. Notwithstanding, the pro-
posed metric achieved reliable results in terms of ρ corre-
lation without the need for a-priori enhancement; overall,
ρ values stayed between 0.8 − 0.9 for all six benchmark
metrics. Overall, an average gain in ρ of approximately 49%
was observed with the proposed MD-HRV metric over the
wavelet-enhanced case. As in the case for synthetic ECG
signals, the frequency-domain HR benchmark metric showed
to be the most sensitive to artifacts. In fact, for Dataset 2,

wavelet enhancement deteriorated benchmark HRVmeasure-
ment performance, likely due to the introduction of additional
unwanted artifacts post enhancement. As with the synthetic
signals, the scatter andBland-Altman plots in Figures 6 and 7
show smaller confidence intervals and tighter distributions
around the null bias, respectively. Overall, the proposed
MD-HRVmetric achieved a mean difference of 0.5±3.6 with
the true sdHR computed from the original heart rate labels,
thus comparing favourably to the −0.9 ± 5.5 obtained with
the wavelet enhanced benchmark metric.

Table 3 reports the HR estimation error (as a percentage
of the true HR) obtained from Dataset 1, averaged over
all per-frame modulation spectrograms for very low SNR
levels. As can be seen, noisy ECG severely degrades heart
rate estimation accuracy and errors greater than 40% can
be seen for SNRs ≤ −8 dB. Wavelet enhancement, in turn,
significantly improves HR measurement, but still results in a
7%HR estimation error. The error deviation is also high, with
a standard deviation of 9.9% in the case of SNR = −10 dB.
The proposed method, on the other hand, maintained errors
below 2% and error deviation at 2.6%, thus suggesting more
stable and precise measurement. Though not listed in the
table, the same analysis was performed on Dataset 2 and the
HR error (percentage) across all the 4 groups was 7.7± 22.4
for the noisy data, 7.9± 11.6 for wavelet enhanced data, and
3.0±4.3 with the proposed technique. These findings corrob-
orate those of Table 2 where the impact of enhancement was
not as pronounced for real-world recorded ECGs. It becomes
clear from this analysis, however, that wavelet enhancement
reduces the variability of the HR estimates, thus provides
some advantages over processing the noisy signals. Overall,
the proposed technique results in the lowest error and error
variability, thus suggesting a better suited method for realistic
scenarios.

In terms of computational complexity, the computation
time to calculate the MD-HRV metric for a 10-minute dura-
tion ECG signal was approximately 1.76 seconds. By pro-
cessing a number of ECG signals of varying duration ranging
from 1 minute to 10 minutes, it was observed that processing
time increased linearly with the number of time samples. For
the benchmark system, processing time for wavelet enhance-
ment, Pan-Tompkins peak detection and HRV measurement
ranged from 1.2-2.4 seconds for the SDNN and AR HRV
metrics, respectively. It is important to emphasize that the
MD-HRV Matlab codes developed herein have not been
optimized for speed, thus faster processing times could still
be achieved. Overall, these aforementioned findings suggest
that the MD-HRV metric is indeed an improved noise-robust
surrogate to existing HRVmetrics with a small computational
footprint. This can have important benefits for athletic and
fitness applications in which SDNN, SDANN, SD1, SD2 and
total power metrics have been widely used. For example,
they were used to monitor the cardiac autonomic activity in
free diving athletes in [17], for healthy elite/master athletes
in [62] and for teenager athletes in [19], as well as in judo
training in [18].
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V. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS
This paper has proposed a new method of estimating
heart rate and heart rate variability in extremely noisy
settings. The proposed metrics are based on the spectro-
temporal representation of the ECG signal, commonly
termed ‘‘modulation spectral’’ representation. The pro-
posed HR and MD-HRV (modulation domain HRV) metrics
were extensively tested using both synthetic and recorded
noisy ECG signals. MD-HRV was compared to six bench-
mark HRV metrics computed from the noisy, as well as
enhanced ECG signals, which had artifacts removed using
a state-of-the-art wavelet-based algorithm. HR measurement
performance, in turn, was gauged using HR measures com-
puted using time-domain peak detection algorithms and
RR series analysis. HR and HRV values computed using
the proposed methods from the noisy signals outperformed
those obtained from the benchmarks using the enhanced
signals whilst requiring comparable computational process-
ing time. Overall, these findings suggest that the proposed
HR/HRV metrics can play key roles applications involv-
ing wearable devices under extreme movement conditions
(e.g., high performance athletics). While the synthetic ECGs
(Dataset 1) used herein were generated by manipulating
parameters to simulate different cardiac diseases and the
recorded data (Dataset 2) contained a few instances of
arrhythmia, further research is still needed to validate the use
of the proposed metrics within more clinically-driven appli-
cations (e.g., sleep apnea and congestive heart failure). More-
over, given the burgeoning of wearable heart rate devices
based on photoplethysmograms, future research will explore
the use of MD-HRV computed from alternate modalities
beyond ECGs.
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