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Introduction. Cardiac reserve could be defined as the spontaneous magnitude from basal to maximal cardiac power under stress
conditions. The aim of this study was to evaluate the prognostic value of cardiac reserve parameters in resuscitated septic shock
patients. Methods. Seventy patients with septic shock were included in a prospective and observational study. Prior to inclusion,
patients were resuscitated to reach a mean arterial pressure of 65–75mmHg with an euvolemic status. General, hemodynamic, and
cardiac reserve-related parameters (cardiac index, double product, and cardiac power index) were collected at inclusion and at
day 1. Results. Seventy patients were included with 28-day mortality at 38.5%. Ten of the 70 patients died during the first day. In
multivariate analysis, independent predictors of death were SAPS II ≥58 (OR: 3.36 [1.11–10.17]; 𝑃 = 0.032), a high double product at
inclusion (OR [95% IC]: 1.20 [1.00–1.45] per 103mmHg⋅min; 𝑃 = 0.047), and at day 1, a decrease in cardiac index (1.30 [1.08–1.56]
per 0.5 L/min/m2; 𝑃 = 0.007) or cardiac power index (1.84 [1.18–2.87] per 0.1 W/m2, 𝑃 = 0.008). Conclusion. In the first 24 hours,
parameters related to cardiac reserve, such as double product and cardiac index evolution, provide crucial and easy to achieve
hemodynamic physiological information, which may impact the outcome.

1. Introduction

Myocardial dysfunction is a frequent (30%–70%) compli-
cation during septic shock characterized by a biventricular
systolic and diastolic dysfunction [1]. Usually, in septic shock
patients, meeting the increased metabolic demand requires
a rise in oxygen transport. In fluid-resuscitated septic shock
patients, cardiac output is generally elevated due to decreased
systemic vascular resistances but may be insufficient to meet
the increased oxygen demand and could therefore impact
outcome. However, it is very difficult to establish whether
septic cardiomyopathy independently affects the prognosis
of patients with septic shock. Vieillard-Baron et al. found
that prognosis is poor in the presence of a hyperkinetic
state, which reflects persistent and profound vasoplegia [2].
The severe reduction of afterload observed in septic shock
may often mask cardiac impairment, enabling a severely

diseased heart to pump a seemingly “normal” cardiac output.
Nevertheless, in the case of a severely depressed systemic
vascular resistance of 200–300 dynes, cardiac output should
be as high as 15–20 L/min to maintain arterial blood pressure
[3]. Cardiac contractile reserve (CCR) is one means to assess
the efficiency of cardiac adaptation to septic shock. In phys-
iology, CCR could be defined as the spontaneous magnitude
from basal to maximal cardiac power output and/or its
responsiveness under stress test [4]. The work performed at
each cardiac cycle to eject blood defines the stroke work. The
product of stroke volume and mean arterial pressure allows
an estimation of stroke work. By extension, cardiac power
output used to assess CCR is defined by the product of stroke
work and heart rate [5]. In critically ill patients, many CCR-
related parameters (oxygen consumption, stroke work, car-
diac power . . .) have been studied, most of which are derived
from cardiac index (CI) magnitude during a dobutamine test
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[6]. Double product (systolic arterial pressure × heart rate) is
an old hemodynamic tool, closely related to CR and known
to have low values in chronic heart failure [7–9]. Its evolutive
pattern has never been established during shock states.

Until now, no study has assessed the evolution of CCR-
related parameters without the use of a pharmacological
stress test in order to predict outcome in the setting of current
guidelines [10].Wehypothesized that (i) septic shock itself is a
sufficient stress condition to test CCRduring septic shock and
(ii) both the importance of vasoplegia and cardiac adaptation
are prognosis factors of septic shock evolution. Hence, the
present report is a prospective study aimed at evaluating
the predictive value of CCR parameters on mortality rate in
septic shock patients treated according to Surviving Sepsis
Campaign recommendations.

2. Methods

2.1. Patients. The study was conducted in a 13-bed medical
Intensive Care Unit of a University Hospital. Patients were
included in the first twelve hours after the diagnosis of
septic shock defined by a systolic arterial pressure (SAP)
<90mmHg (or a decrease>50mmHg in patients known to be
hypertensive), and persisting mean arterial pressure (MAP)
<70mmHg or diastolic arterial pressure (DAP) ≤40mmHg
despite adequate fluid resuscitation requiring vasoactive sup-
port by norepinephrine (>0.05𝜇/kg/min) during more than
one hour. Resuscitation followed the Surviving Sepsis Cam-
paign guidelines for themanagement of septic shock patients.
Norepinephrine was initiated at 0.2𝜇g/kg/min, and infusion
rate was rapidly increased and adjusted to maintain an MAP
of 65–75mmHg. Optimization of volemia before inclusion
and throughout the entire inclusion period was confirmed
by the following fluid responsiveness-prediction tests: delta
pulse pressure (PP)<12%, increase in cardiac index (CI)<10%
during a passive leg raising test and/or increase <5% in PP
during the end-expiratory occlusion test. Strategy included
at least two fluid responsiveness-prediction tests performed
every three hours or when deemed necessary according to the
physician in charge. Any discordance between these two tests
was followed by a 500mL fluid challenge. An echocardiogra-
phy was also performed to assess left ventricular fraction and
respiratory variation of the inferior vena cava (diameter max
− diameter min)/((diameter max + diameter min)/2) which
must be<12% before inclusion. Particular attentionwas given
to the normalization of the initial ScVO

2
and lactatemia.

When CI was <2.5 L/min/m2 or/and ScVO
2
<70% despite

optimization of volemia at an MAP maintained between 65–
75mmHg, dobutamine was initiated at 5𝜇g/kg/min and then
adapted to CI and ScVO

2
. Antibiotics were also administered

as soon as possible and adapted to the putative infection
site. Hydrocortisone (50mg × 4/day) was considered when
patients remained vasopressor-dependent after at least six
hours of norepinephrine therapy. This observational study
was approved by our local and institutional Ethics Com-
mittees (Comité de Réflexion Ethique Nancéien Hospitalo-
Universitaire). This observational and noninterventional
study did not require any consent. An information letter was

delivered to each patient (or patient’s representative) included
in this study.

2.2. Measurements. Patients were monitored using a PiCCO
2 device (Pulsion Medical Systems, Munich, Germany) con-
nected to a central venous jugular catheter and a thermistor-
tipped arterial catheter in the femoral artery (PV2015L20N,
Pulsion Medical Systems, Munich, Germany). The arterial
catheter was connected to a specific PV8215 pressure sensor
using a PV8215 monitoring kit (Pulsion Medical Systems,
Munich, Germany). The average of three thermodilutions
was systematically achieved during a hemodynamically sta-
ble period to obtain CCR-related parameters derived from
the PiCCO device: CI, cardiac power index (CPI = CI ×
MAP/451), double product (DP = SAP × Heart Rate [HR]),
left ejection fraction (LEF), global end diastolic volume
(GEDV). Pulse contour derived cardiac output was contin-
uously recorded on the PiCCO 2 device. Indexed systemic
vascular resistance (ISVR) was calculated fromMAP, CI, and
measurement of central venous pressure (CVP) by a standard
pressure transducer connected to the central venous jugular
catheter (ISVR = [MAP – CVP]/CI × 80).

Biological analyses were performed in parallel: blood
gases, central venous oxygen saturation (ScVO

2
), creatinine,

hemoglobin, platelets, leukocytes, prothrombin, B-type natri-
uretic peptide, troponin T, and procalcitonin.

2.3. Study Design. After patient optimization defining “day
0,” a first set of hemodynamic measurements and biological
analyses were performed. Twenty-four hours after inclusion
defining “day 1,” the same above hemodynamic and biological
data were collected. Duration of catecholamine infusion,
length of hospital stay, and mortality at 28 days were also
recorded.

3. Statistical Methods

All analyses were performed using SAS software R9.3 (SAS
Institute, Cary, NC, USA). The two-tailed significance level
was set at 𝑃 < 0.05. Continuous variables are presented as
mean± standard deviation (m± SD) and categorical variables
as frequency (percent). Univariate comparisons were carried
out using the Mann-Whitney or Chi-square test, as appro-
priate. Association of baseline characteristics (70 patients)
and 1-day change from baseline (60 patients) with mortality
were assessed in three separate models using multivariate
logistic regression: baseline factors were tested in 2 models
with andwithout SAPS II since this latter composite scorewill
expectedly be strongly associated with prognosis and could
mask other important factors; change at day 1 was analyzed
in a 3rd model in 24 h survivors. All factors listed in Table 2
were tested in these three separate models. The final models
retained only significant factors. Linearity of the association
between factors and mortality (relationship between the
independent and dependent variables which must be linear)
was assessed by plotting the regression coefficients against
the midpoints of tertiles of distribution. SAPS II, whose
effect cannot be considered as linear, was dichotomized
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Table 1: Comparison of preexisting conditions, bacterial source, site of infection, and ICU evolution.

28-day survival (𝑁 = 43) 28-day death (𝑁 = 27)
𝑃

m ± SD or 𝑛 (%) m ± SD or 𝑛 (%)
Age (years) 63 ± 17 62 ± 14 NS
Male gender 31 (72%) 19 (70%) NS
Body mass index (kg/m2) 26.3 ± 7.0 27.2 ± 6.8 NS
Duration of hospitalization in ICU (days) 14.0 ± 12.4 9.8 ± 10.1 —
Preexisting conditions

Diabetes 18 (42%) 3 (11%) 0.007
Denutrition 5 (12%) 4 (15%) NS
Hypertension 24 (56%) 15 (56%) NS
Ischemic heart disease 10 (23%) 4 (15%) NS
Congestive heart failure 6 (14%) 3 (11%) NS
Chronic renal failure 4 (9%) 4 (15%) NS
Chronic respiratory disease 11 (26%) 6 (22%) NS
Homeopathy and cancer 5 (12%) 7 (26%) NS
Immunosuppression 10 (23%) 11 (41%) NS

Bacterial source
Gram-negative 7 (16%) 10 (37%)

0.030Gram-positive 17 (40%) 8 (30%)
Other∗ 3 (7%) 5 (19%)
No pathogen 17 (40%) 4 (15%)

Site of infection
Lung 25 (36%) 18 (26%)

NS

Catheter 1 (1%) 3 (4%)
Endocardium 4 (6%) 0
Abdomen 6 (9%) 1 (1%)
Soft tissues 1 (1%) 3 (4%)
Kidney 5 (7%) 2 (3%)

∗Other: 2 Pneumocystis Jirovecii, 1 Geotrichum spp. ICU: intensive care unit.

according to the median (SAPS II ≥58) as the best balance
between sensitivity and specificity using ROC curves. Other
validity assumptions of the models (absence of interaction
and collinearity, goodness-of-fit) were thoroughly verified.
Odds ratios and event rates are illustrated, respectively, by
forest plots andKaplan-Meyer curves.Thresholds forKaplan-
Meyer plots were identified using ROC curves as above.

4. Results

4.1. Population Characteristics. Seventy consecutive patients
with septic shock were included (19 women, 51 men, mean
age 62 ± 16 years) among whom 43 (61.4%) were alive at 28
days. Ten patients died before 24 hours. Patient characteris-
tics (medical history, bacterial source, site of infection) are
summarized in Table 1.

4.2. Day 0 Characteristics (Table 2). In univariate analysis,
nonsurvivors had a significantly higher CI,HR,DP, and SAPS
II (CI: 3.91 ± 1.35 versus 3.28 ± 1.18 L/min/m2; 𝑃 = 0.036,
HR: 115 ± 26 versus 97 ± 23 bpm; 𝑃 = 0.07, DP: 13310 ±
3385 versus 10990 ± 2847mmHg⋅bpm (Figure 1); 𝑃 = 0.006
and SAPS II: 53 ± 16 versus 69 ± 22; 𝑃 = 0.005).

In multivariate analysis, a high DP (OR 1.20 [1.00–1.45]
per 103mmHg⋅bpm; 𝑃 = 0.047) and SAPS II ≥58 (OR: 3.36
[1.11–10.17]; 𝑃 = 0.032) were the only two factors associated
with 28-day mortality (Figure 2).

Biological parameters were also associated with
mortality at 28 days in univariate analysis (online
appendix; see Supplementary Material available online
at http://dx.doi.org/10.1155/2013/930673): nonsurvivors had
lower pH (7.27 ± 0.14 versus 7.34 ± 0.09; 𝑃 = 0.022), lower
hemoglobin levels (9.2 ± 1.7 versus 10.5 ± 1.8 g/dL; 𝑃 =
0.005), and lower platelet levels (152 ± 158 versus 241 ± 170
G/l; 𝑃 = 0.01).

4.3. Twenty-Four Hour Change from Day 0 (Table 2). At
day 1, except for platelet levels (nonsurvivors: 132 ± 108
G/l versus survivors: 211 ± 123G/l; 𝑃 = 0.04), no differences
in hemodynamic or biological data were found between 28-
day survivors and nonsurvivors (Table 2).

In univariate analysis, a decrease in CCR-related param-
eters was associated with 28-day mortality (CI: −0.55 ±
0.73 versus +0.18 ± 0.86 L/min/m2; 𝑃 = 0.004; (Figure 3),
CPI: −0.08±0.12+ versus +0.06±0.16W/m2; 𝑃 = 0.005, DP:
−2361 ± 3422 versus −22 ± 3446mmHg⋅bpm; 𝑃 = 0.029).
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Figure 1: Double Product at day 0 in survivors and nonsurvivors.
Dashed line: cut-off at 11000mmHg/s.
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Higher risk of death 
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SAPS II ≥58
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Model 2: ↓ CI at day 1
(per 0.5L/min/m2)

Figure 2: Multivariate analysis for Double Product (DP), SAPS II,
Cardiac Index (CI) and Cardiac Power Index (CPI). bpm, beats per
minute; SAPS II, Simplified Acute Physiology Score.

In multivariate analysis (Figure 2), 28-day mortality was
independently associated with a decrease in CPI (OR 1.84
[1.18–2.87] per 0.1W/m2; 𝑃 = 0.008) and CI (OR 1.30 [1.08–
1.56] per 0.5 L/min/m2; 𝑃 = 0.007).

4.4. Survival Curves (Figure 4). Figure 4 shows KaplanMeier
curves for all predicting significant factors from multivariate
analyses: baseline DP >11000mmHg⋅min and SAPS II >58;
day-1 CI and CPI unchanged or decreased.

5. Discussion

The key finding of the present study is that in septic shock
patients, without using any stress test, an early measurement
(within the first 24 hours) of static and dynamic CCR param-
eters such asDP, CI, andCPI is independently associatedwith
prognosis.

5.1. Cardiac Contractile Reserve and Prognosis. The prognos-
tic role of CCR parameters has been evaluated in different
populations of critically ill patients. Tan and Littler estimated
CCR in 28 cardiogenic shock patients by the response of the
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Figure 3: Cardiac index change from day 1 to day 0 in survivors and
nonsurvivors. Cut-off at 0 L/min/m2.

failing heart to incremental doses of dobutamine. A restingCI
<1.3 L/min/m2, a cardiac power output ≤0.35W, and a peak
cardiac power output in response to dobutamine stress <1W
were clearly associated with poor outcome [11]. Data from
the SHOCK trial registry demonstrated that, at inclusion, a
low cardiac power output <0.53W accurately predicted in-
hospitalmortality [5]. As expected, themean value of CPIwas
extremely low at inclusion in cardiogenic shock (0.22 ± 0.08
W/m2 versus 0.62 ± 0.08W/m2 in healthy subjects) while
elevated in initial septic shock (0.8 ± 0.13W/m2) [12, 13].

In severe sepsis and septic shock, the prognostic value
of a positive response to dobutamine challenge has already
been demonstrated in several studies using different indices,
including oxygen delivery/oxygen consumption relationship
and increase in cardiac and stroke volume indices [6, 14–17].

5.2. Initial and Spontaneous Evolution of CCR Parameters Is
Related to Prognosis. In the present study, both endogenous
and exogenous catecholamine stimulations were used to
test CCR parameters without performing any superimposed
pharmacological test.We found that, at inclusion, an elevated
DP was significantly associated with death. Considering that
SAP was not different between survivors and nonsurvivors,
it could be hypothesized that deceased patients increased
their HR in an attempt to compensate for a decreased stroke
volume due to septic cardiomyopathy. However, HR could
also have been increased as a result of other factors such
as hemoglobin level (which was slightly different between
survivors and nonsurvivors), acidosis, PaO

2
, and volemia.

After twenty-four hours, we found that the decrease in CI
and CPI predicted a higher mortality. Vieillard-Baron et
al. also reported a decreased cardiac contractility after 48
hours of evolution in 34% of septic shock patients. Of note,
cardiac index was also found to be decreased in nonsurvivors
between admission and day one [2]. Indeed, these parameters
are dependent on MAP, HR, and stroke volume, that is,
to preload, afterload, and inotropism. In the present study,
patients were resuscitated such as to obtain a relatively fixed
MAP (65–75mmHg). Therefore, all arterial pressure compo-
nents (SAP, DAP, MAP, ISVR) were similar for survivors and
nonsurvivors. Dobutamine was infused at very low doses;
its administration was not different between survivors and
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Figure 4: Kaplan-Meyer curves estimating the rate of death for a Double Product (DP) >11000mmHg/s (a), a SAPS II >58 (b), a Cardiac
Power Index (CPI) and a Cardiac Index (CI) either unchanged or decreased ((c) and (d)). bpm, beats per minute; SAPS II, Simplified Acute
Physiology Score.

nonsurvivors, and it is likely that its use did not influence
the interpretation of the findings. Given this particularity,
pressure components could be neglected and thus it would
appear that patients that were not able to increase their
CI displayed a worse prognosis, arguing for worse cardiac
performance and inotropism. Similar findings have been
reported byWerdan et al. who elegantly demonstrated, using
a mathematical model, that it is possible to quantify the
severity of septic cardiomyopathy by calculating the expected
values of afterload-relatedCO/CI. Interestingly, these authors
found a strong correlation between the intensity of septic
cardiomyopathy and prognosis [3]. Of note, in the present
study, CCR parameters were associated with prognosis in
multivariate analysis while factors related to static cardiac
function such as ejection fraction or related to vasoplegia
(norepinephrine doses, ISVR) were not. Thus, the severity
of septic cardiomyopathy was closely related to prognosis in
septic shock.Whether this is a cause or consequence remains
to be elucidated.

5.3. Study Limitations. This is a pilot, monocentric studywith
no validation cohort. Nevertheless, the most recent recom-
mendations were followed to reduce the monocenter effect,

and all our patients benefited from high level hemodynamic
monitoring (ScVO

2
, lactate, PICCO, echocardiography). We

made an effort to optimize the volemic status with a strategy
that included fluid responsiveness prediction tests. However,
this remained a genuine challenge, and we could not certify
that preload dependency was not fully ruled out. Secondly,
although we were able to identify patients with a high
risk of death likely related to an inadequate CCR, we are
currently unable to propose any demonstrated therapy to
improve CCR during septic shock. In particular, dobutamine
may be inefficient due to downregulation of myocardial
𝛽1-adrenoreceptors and may increase myocardial oxygen
consumption [18, 19].

5.4. Conclusions. The present study adds significant knowl-
edge regarding the importance of CCR during septic shock.
Our results suggest that both CCR at inclusion, assessed
using double product, as well as 24-hour CCR are important
factors in determining patient prognosis. Importantly, in a
therapeutic strategy in which arterial pressure is maintained
to preestablished levels using norepinephrine, CCR param-
eters appear to be more predictive than vasoplegia-related
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parameters. Further studies are needed to determine the best
therapeutic strategy in patients with decreased CCR.

Key Messages

(1) In septic shock patients, contractile cardiac reserve
can be easily assessedwith a nonpharmacological test.

(2) At a fixed mean arterial pressure, a high double
product at inclusion and a decrease in cardiac index
and cardiac power index in the first 24 hours are
related to poor outcome.
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