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ABSTRACT
Background. The traditional allometric analysis relies on log- transformation to
contemplate linear regression in geometrical space then retransforming to get Huxley’s
model of simple allometry. Views assert this induces bias endorsing multi-parameter
complex allometry forms and nonlinear regression in arithmetical scales. Defenders of
traditional approach deem it necessary since generally organismal growth is essentially
multiplicative. Then keeping allometry as originally envisioned by Huxley requires
a paradigm of polyphasic loglinear allometry. A Takagi-Sugeno-Kang fuzzy model
assembles a mixture of weighted sub models. This allows direct identification of break
points for transition between phases. Then, this paradigm is seamlessly appropriate for
efficient allometric examination of polyphasic loglinear allometry patterns. Here, we
explore its suitability.
Methods. Present fuzzy model embraces firing strength weights from Gaussian
membership functions and linear consequents. Weights are identified by subtractive
clustering and consequents through recursive least squares or maximum likelihood.
Intersection of firing strength factors set criterion to estimate breakpoints. A multi-
parameter complex allometry model follows by adapting firing strengths by composite
membership functions and linear consequents in arithmetical space.
Results. Takagi-Sugeno-Kang surrogates adapted complexity depending on analyzed
data set. Retransformation results conveyed reproducibility strength of similar proxies
identified in arithmetical space. Breakpoints were straightforwardly identified. Retrans-
formed form implies complex allometry as a generalization of Huxley’s power model
involving covariate depending parameters. Huxley reported a breakpoint in the log–log
plot of chela mass vs. body mass of fiddler crabs (Uca pugnax), attributed to a sudden
change in relative growth of the chela approximately when crabs reach sexual maturity.
G.C. Packard implied this breakpoint as putative. However, according to present fuzzy
methods existence of a break point in Huxley’s data could be validated.
Conclusions. Offered scheme bears reliable analysis of zero intercept allometries
based on geometrical space protocols. Endorsed affine structure accommodates
either polyphasic or simple allometry if whatever turns required. Interpretation of
break points characterizing heterogeneity is intuitive. Analysis can be achieved in an
interactive way. This could not have been obtained by relying on customary approaches.
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Besides, identification of break points in arithmetical scale is straightforward. Present
Takagi-Sugeno-Kang arrangement offers a way to overcome the controversy between
a school considering a log-transformation necessary and their critics claiming that
consistent results can be only obtained through complex allometry models fitted by
direct nonlinear regression in the original scales.

Subjects Ecology, Mathematical Biology, Plant Science, Statistics, Computational Science
Keywords Polyphasic log linear allometry, Takagi-sugeno-kang fuzzy model

INTRODUCTION
Julian Huxley introduced the theory of constant relative growth between a trait y and
overall body size x (Huxley, 1924; Huxley, 1932; Strauss & Huxley, 1993). This paradigm is
commonly refereed as Huxley’s model of simple allometry and is essentially formulated
through the power law y = βxα with α identified as the allometric exponent and β as the
normalization constant. In biology allometric relationships are to within species, as well as,
between species (evolutionary allometry) (Houle et al., 2011; Marquet et al., 2005; West &
Brown, 2005; Pélabon et al., 2014). Power functionmodels are also extensively used in other
research fields, e.g., physics (Newman, 2007), ecology (Harris, Duarte & Nixon, 2006;Hood,
2007) earth and atmospheric sciences (Hills, 2013), and economics (Li et al., 2015). This has
encouraged many research endeavors addressing interpretation of involved parameters, as
well as, suitability of analysis method for getting estimates. Indeed, concomitant toHuxley’s
theory of relative growth is theTraditional AnalysisMethodofAllometry (TAMAhereafter).
This is, a widespread device to acquire estimates of the parameters α and β. It contemplates
a logarithmic transformation of the original bivariate data in arithmetical scale in order
to consider a linear regression model in geometrical space, and then retransforming to
acquire Huxley’s model of simple allometry in the original scale. This approach implicitly
embraces a notion that variability of the response conforms to a pattern of multiplicative
growth. OnHuxley’s elucidation (Huxley, 1932) the intercept lnβ of TAMA’s line was of no
specific biological importance, but the slope b was significant enough as to mean allometry
itself. This interpretation has permeated contemporary research to such an extent that
many practitioners still consider it to be the valid theoretical perspective for static and
ontogenetic allometry (Eberhard, 2009; Houle et al., 2011; Pélabon et al., 2018). However,
views assert that a TAMA approach produces inconsistent results, thereby recommending
allometric examination by relying instead on nonlinear regression in the direct scales of
data (Packard, 2017a; Packard, 2013; Packard, 2009; Packard & Birchard, 2008). This is,
debatable for defenders of the traditional approach that claim that, as it is conceived in the
original theoretical context of allometry, a logarithmic transformation deems necessary
in the analysis (Lai et al., 2013; Klingenberg, 1998; Nevill, Bate & Holder, 2005; Kerkhoff &
Enquist, 2009; Xiao et al., 2011; White et al., 2012; Ballantyne, 2013; Glazier, 2013; Niklas &
Hammond, 2014; Lemaître et al., 2015; Pélabon et al., 2018). Yet steering further away from
Huxley’s perspective on covariation among different traits, other views conceive allometry
centered on the covariation between size and shape (Mosimann, 1970; Klingenberg, 2016).
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From this standpoint, analysis must rely inMultiple Parameter Complex Allometry (MPCA
after this) formalizations through all varieties of nonlinear or discontinuous relationships
(e.g., Frankino, Emlen & Shingleton, 2010; MacLeod, 2014; Bervian, Fontoura & Haimovici,
2006; Lovett & Felder, 1989; Packard, 2013). However, adoption of MPCA approaches
nourishes one of the most fundamental discrepancies among schools of allometric
examination. Indeed, for advocates of the traditional approach, examination based on
MPCA models fitted in arithmetical scale sacrifices appreciation of biological theory in
order to privilege statistical correctness (Houle et al., 2011; Lemaître et al., 2015; Pélabon et
al., 2018). A way to keep the analysis in geometrical space while amending unreliability
of a linearity assumption is conceiving the notion of non-log linear allometry (Packard,
2012b; Strauss & Huxley, 1993; Echavarría-Heras et al., 2019a). As every analytic function
can be expanded as a power series, curvature in geometrical space has been addressed
through polynomial regression schemes (Kolokotrones et al., 2010; Lemaître et al., 2014;
MacLeod, 2010; Glazier, Powell & Deptola, 2013; Tidière et al., 2017; Echavarría-Heras et
al., 2019a). But besides difficulties related to biological interpretation of a polynomial
mean response, this approach maintains a single functional form of the response over
the whole covariate range. This could not account for inherent heterogeneity in the
logtransformmed response as contemplated in Huxley’s theoretical perspective. Certainly,
Huxley reported a breakpoint in the log–log plot of chela mass vs. body mass of fiddler
crabs (Uca pugnax). It was attributed to a sudden change in relative growth of the chela
approximately when crabs reach sexual maturity (Huxley, 1924; Huxley, 1927; Huxley,
1932). This suggests a slant aimed at adding complexity in geometrical space while keeping
the theoretical essence of traditional allometry in the analytical set up. Is this conception
that hosts polyphasic loglinear allometry approaches (PLA afterwards) (Packard, 2016;
Gerber, Eble & Neige, 2008; Strauss & Huxley, 1993; Hartnoll, 1978). PLA characterizes
heterogeneity of the logtransformmed response by composing covariate range into sectors
separated by break points. Each subdivision associates to a linear sub model. Broken-
line regression (Beckman & Cook, 1979; Ertel & Fowlkes, 1976; Tsuboi et al., 2018; Ramírez-
Ramírez et al., 2019; Muggeo, 2003; Echavarria-Heras et al., 2019b). Forbes & López (1989)
furnish an empirical approach to identification of PLA patterns. Nevertheless, by relying in
nonlinear regression this technique requires starting values for the break-point estimation.
Therefore, complications set by local maxima, as well as, inferences on estimates could
make implementation difficult (Julious, 2001; Muggeo, 2003).

The quest for new tools that increase reliability of analytical methods has been always a
motivation in research. This drive explains the introduction of hybrid models that merge
different techniques with the aim of efficiently addressing complexity (Kimmins, Mailly
& Seely, 1999; Alur et al., 1995; Ajili & Wallace, 2004; Pozna et al., 2010; Hamilton, Lloyd &
Flores, 2017). In particular, soft computing techniques entail modelling procedures, which
are supplemental to customary statistics and probability approaches and that bear tolerance
to imprecision, uncertainty, partial truth and approximation (Baldwin, Martin & Azvine,
1998). For instance, identification and control of nonlinear systems exemplifies a subject
that has greatly benefited by adoption of related hybrid modeling schemes (Bonissone et al.,
1999; Kawaji, 2002; Vrkalovic, Lunca & Borlea, 2018; Chen, 2001; Echavarria-Heras et al.,
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2019b). Implementation of soft computing protocols include techniques of fuzzy set theory,
neural networks, probabilistic reasoning, rough sets, machine learning, and evolutionary
computing (Zadeh, 1993; Oduguwa, Tiwari & Roy, 2005; Bello & Verdegay, 2012; Ibrahim,
2016; Al-Kaysi et al., 2017; Herrera-Viedma & López-Herrera, 2010). In this upsurge of
nonconventional analytical tools, we can place adaptation of fuzzy logic procedures aimed
to lessen parametric uncertainty effects in allometry (Schreer, 1997; Schwetter & Bertone,
2018;Bitar, Campos & Freitas, 2016; Echavarría-Heras et al., 2018a;Näther & Wälder, 2006;
Dechnik-Vázquez et al., 2019).

An operating regime based modeling approach offers a structure supporting model
adaptation amid an empirical and mechanistic standpoint. Local models valid over
restricted domains are combined by smooth interpolation into an overall general output
(Johansen & Foss, 1997). Therefore, this structure naturally hosts heterogeneity as conceived
by PLA (Echavarria-Heras et al., 2019b). One example of a hybrid-operating regime based
modeling is the Takagi-Sugeno-Kang fuzzy model (Sugeno & Kang, 1988; Takagi & Sugeno,
1985) (TSK in what follows). This construct composes a fuzzy logic step intended to
characterize smoothing weight factors. Then, conventional statistical methods are used to
acquire estimates of parameters characterizing sub models. It turns out that the general
output of a first order TSK fuzzy model can uniformly approximate any continuous
function to arbitrarily high precision (Ying, 1998; Zeng, Nai-Yao & Wen-Li, 2000). As
we show in this examination, an advantage of TSK over conventional PLA, is that it
can offer convenient non-statistical proxies of break points for transition among phases.
Moreover, consideration of sub models of a TSK scheme as TAMA’s linear functions
in geometrical space not only offers a congruent PLA model, but it could also entail a
highly biologically meaningful model of allometry, because it can model the breakpoints
while keeping the meanings of allometric exponents as in Huxley’s original formulation. A
comprehensive exploration of suitability of the TSK scheme to examine PLA patterns has
not been undertaken so here we attempted to fill this gap. In what follows a formulation
of PLA by means of a the TSK fuzzy model will be referred as TSK-PLA for short.

The outstanding approximation capabilities of a TSK fuzzy model entail reliable
identification of whatever MPCA functional form renders necessary in arithmetical
space (Echavarría-Heras et al., 2018a; Echavarria-Heras et al., 2019b). Adaptation of the
TSK fuzzy model for that aim will be forward designated by means of the TSK-MPCA
abbreviation. As a criterion to evaluate the performance of the TSK-PLA proxy we verified
the dependability of linked retransformation results, including break point placement and
reproducibility strength of mean response function against corresponding estimations
produced via TSK-MPCA. It turns out that proposed TSK-PLA analysis method endorsed
reliable identification of heterogeneity of examined allometries. Furthermore, the affine
structure of the present fuzzy protocol can accommodate either complex or simple
allometry as required to analyzing the data. Thus, the presented TSK-PLA model can
be considered as a general tool for examination of zero intercept allometries. Moreover,
from a theoretical standpoint a TSK-PLA representation implies an allometric model in
arithmetical space that seemingly fits MPCA. This expresses the response as a generalized
power function including scaling parameters expressed as functions of the covariate
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(Bervian, Fontoura & Haimovici, 2006; Echavarría-Heras et al., 2019a; Echavarria-Heras
et al., 2019b). But, above all, present fuzzy approach contributes by offering a way of
overcoming the controversy between a school considering analysis in geometrical space
as a must in allometry, and critics claiming that consistent results can only come along
by using a MPCA formulation followed by nonlinear regression protocol in the original
scale of data. Interestingly, present TSK-PLA arrangement also contributed on qualitative
grounds. Certainly, Huxley reported a breakpoint in the log–log plot of chela mass vs. body
mass of fiddler crabs (Uca pugnax). Packard (2012a) inferred this point was only putative.
In his own interpretation, perhaps due to combined effects of a log transformation itself
and the format of graphical display of Huxley’s data. However, application of present
Takagi-Sugeno-Kang protocol supports existence of a break point in Huxley’s Uca pugnax
log–log plot.

This article is organized as follows: In the Materials and Methods section, we formally
explain the steps backing the identification of the offered TSK-PLA scheme. There, we
explain why this construct can be considered as a generalized protocol for allometric
analysis in geometrical space. We also clarify why the offered TSK model implies a MPCA
scheme in arithmetical space. The presentation includes an elucidation of sufficient
conditions under what the asymptotic mode of the acquired TSK proxy behaves as the
power function in Huxley’s model of simple allometry. There, we also suggest a correction
factor (CF here after) for bias of retransformation of the regression error that grants
highest reproducibility for derived mean response function in arithmetical space. The
Results section highlights on the advantages of the present approach over conventional
counterparts. A Discussion section elaborates on the contribution that our approach bears
for the general subject of suitability of analysis method in bivariate allometry. An Appendix
includes a detailed explanation of the steps involved in the construction and identification
of the general form of the addressed TSK models.

MATERIALS & METHODS
Data
Allometric examination here mainly relied on a primary data set exhibiting curvature in
geometrical space. This composes 10,412 measurements of Zostera marina (Eelgrass) leaf
biomasses y and corresponding leaf areas x as reported in Echavarría-Heras et al. (2019a)
and Echavarría-Heras et al. (2018b). For comparison, we also considered data reported in
Mascaro et al. (2011) comprising 30 Biomass-Diameter at Breast Height measurements on
Metrosideros polymorpha. Analisis also extended to data reported inDe Robertis & Williams
(2008) including 29,363 Length–Weight measurements on Gadus chalcogrammu. This last
data set allowed illustration of the performance of the TSK paradigm in a circumstance
where the TAMA protocol is consistent. Finally, we analysed the fitness of the TSK in
detecting break points in the log–log plot of chela mass vs. body mass of fiddler crabs (Uca
pugnax) (Huxley, 1924; Huxley, 1932).
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Models
General formula of allometry
The methods engaged here aim to identification of the suitable form of the allometric
function representing the variation of a trait y depending on a descriptor x. For that
purpose, we firstly introduce the formal framework and the notation convention used
through. We assume that a response y and its covariate x belong to domains Y and X
of positive real numbers one to one and with y having a zero limit when x approaches
zero. We also consider that there exist a function w

(
x,p

)
:X→ Y where p= (p1,...,pn)

is a parameter set, and a concomitant approximation error function ε(x) : X→ Y that
combine to model whatever form, the linkage between x and y acquires. Moreover, we
take on, that such a relationship can be expressed through an additive error description

y =w
(
x,p

)
+ε(x) (1)

or else through the multiplicative error alternate

y =w(x,p)eε(x). (2)

In order to get w
(
x,p

)
, we can consider the error term ε(x) as a random variable ε.

Then, specifications above offer two commonly addressed analysis protocols in allometry.
A regression model with additive error in arithmetical scale

y =w(x,p)+ε (3)

with ε taken asψ−distributedwith zeromean and variance generally expressed as a function
σ 2(x) of covariate, that is, ε ∼ ψ

(
0, σ 2(x)

)
. Fitting Eq. (3) generally requires direct

nonlinear regression protocols. This returns a mean response function Eaw
(
y|x
)
=w(x,p).

For the sake of facilitating comparison aims in further developments, this a subscript
will be maintained to typify a mean response function gotten by means of identification
protocols applied in arithmetical space.

A second procedure circumscribes to the multiplicative error model of Eq. (2) and
relies in a logtransformation procedure in order to consider a parallel regression model in
geometrical space. Formally, we contemplate a mapping (y,x)→ (v,u) such that u= lnx
and v = lny. This sets variation domains U and V for u and v to one. We concomitantly
have the regression model with additive error in geometrical space

v = v (u,π)+ε, (4)

where formally

v (u,π)= ln
(
w(x,p)

)
(5)

and ε is random variable as specified above. It follows that back-transforming Eq. (4) to
arithmetical space yields,

y = exp(v (u,π))eε . (6)

Then, concomitant mean response function is symbolized through Egw(y|x) and becomes

Egw(y|x)= exp(v (u,π))δ (7)
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where δ = E (eε). Notice that in Egw(y|x) we have used the notation convention of a
subscript g referring to identification of w(x,p) based on the regression model of Eqs. (4)
and (5).

The CF, δ above provides the necessary adjustment for bias of retransformation of
the regression error ε (Mascaro et al., 2011; Baskerville, 1972; Newman, 1993). Assuming
ε∼N

(
0,σ2

)
sets eε to be lognormally distributed. Then, CF becomes

δ= eσ
2/2. (8)

But, Newman (1993) asserts that whenever εis not normally distributed, δis given by the
smearing estimate of bias ofDuan (1983). Nevertheless, in some settings this nonparametric
form can produce bias overcompensation (Manning, 1998; Smith, 1993; Koch & Smillie,
1986). Zeng & Tang (2011a) propose an alternate nonparametric form of δ namely

δ= 1+σ 2/2. (9)

Actually, δ given this way corresponds to a three terms partial sum approximation of the
power series expression of E(eε) assuming E (ε)= 0. By the same token, Echavarría-Heras
et al. (2019a) suggest a representation for δ given by a n-terms partial sum of series
representation of E (eε), that is,

δ=

n∑
0

E(εk)
k!

. (10)

Maximization of Lin’s Concordance Correlation Coefficient (CCC) (Lin, 1989) between
observed values and mean response Eg (y|x) resulting using this form of δ sets criterion to
choose n.

Huxley’s formula of Simple Allometry
A characterization of w

(
x,p

)
as a power function βxα has been traditionally referred as

Huxley’s formula of simple allometry (Strauss & Huxley, 1993). This model will be ahead
epitomized by a subscript s as a mnemonic device for ‘‘simple’’. Equation (3) becomes

y =ws
(
x,p

)
+ε (11)

withws
(
x,p

)
=βxα and ε assumed to be normally distributed with zeromean and variance

σ 2, that is, ε∼ψ
(
0, σ 2). According to our notation convention Eq. (11) yields the mean

response function Eas
(
y|x
)
=βxα .

Similarly, the logtransformation method produces the TAMA’s regression model, that
is,

v = vs(u,π) +ε (12)

with

vs(u,π)= lnβ+αu (13)

and ε as specified above. Equations (12) and (13) determineEs(v|u)= vs(u,π). Accordingly,
back transformation of Eq. (12) to arithmetical space brings up a mean response Egs

(
y|x
)

given by

Egs
(
y|x
)
=βxαδ, (14)
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where δ stands for necessary CF.
It often occurs that even after contemplation of proper form for δ this TAMA’s derived

proxy for w
(
x,p

)
produces biased projections of observed values of the response y .

This means, that complexity of Huxley’s formula of simple allometry ws
(
x,p

)
becomes

inappropriate to identify the true w
(
x,p

)
form (Gould, 1966; Huxley, 1932; Bervian,

Fontoura & Haimovici, 2006; MacLeod, 2014; Echavarría-Heras et al., 2019a). From the
settings of Eq. (1) it is reasonable assuming that adapting complexity as it is needed
to identify w

(
x,p

)
could depend on MPCA forms. Corresponding logtransformmed

expression v (u,π) is inferred to be a nonlinear function of covariate u. This rears PLA as a
likely device to acquire complexity for identification of MPCA through geometrical space
methods. We adopt the affine structure of a first order TSK fuzzy model as a device for
identification both MPCA or PLA alternates.

The TSK account of w
(
x,p

)
The general output of a first order TSK fuzzy model bears a fuzzy alternate to a statistical
mixture regression model (Cohn, Ghahramani & Jordan, 1997). It is then reasonable
to assume that such an structure could efficiently address the problem of identifying
w
(
x,p

)
expressed as a MPCA model in arithmetical scale or its assumed PLA forms in

geometrical space. The symbol wTSK
(
x,p

)
will stand for the TSK-MPCA surrogate for

w
(
x,p

)
. Accordingly, adaptation of Eq. (3) becomes

y =wTSK
(
x,p

)
+εTSK (15)

with εTSK aψ−distributed residual random variable with zeromean and variance expressed
as a function σ 2

TSK (x) of x , that is, εTSK ∼ψ(0,σ
2
TSK (x)).

Denoting through the symbol EaTSK
(
y|x
)
the mean response function determined by

Eq. (15), we have

EaTSK
(
y|x
)
=wTSK

(
x,p

)
. (16)

Since, the general output of a first order TSK fuzzymodel can uniformly approximate any
continuous function to arbitrarily high precision (Ying, 1998; Zeng, Nai-Yao & Wen-Li,
2000) then whatever MPCA form w

(
x,p

)
embraces, this can be accurately projected

through a consistent identification of EaTSK
(
y|x
)
.

In turn, according to Eq. (4) the TSK-PLA regression protocol becomes,

v = vTSK (u,π)+εTSK (17)

where according to Eq. (5), vTSK (u,π)= ln(wTSK
(
x,p

)
) and εTSK as specified in Eq. (15).

In turn, equation Eq. (17) yields ETSK (v|u) = vTSK (u,π). Additionally, a back-
transformation ev of Eq. (17) sets

y = exp(vTSK (u,π))eεTSK . (18)

Then, corresponding mean response function in arithmetical space turns out to be

EgTSK
(
y|x
)
= exp(vTSK (u,π))δ. (19)
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By assumption, we take vTSK (u,π) in the form given by Eq. (A14), that is,

vTSK (u,π)=
q∑
1

ϑ i(u)f i(u) (20)

with ϑ i(u) and f i(u) a one to one the firing strengths and consequent functions for
i= 1,2,...,q. Since, the domain U of covariate is R, we can assume membership functions
µ8k (u) to have a Gaussian form i.e.,

µ8k (u)= exp

{
−
1
2

[(
u−θk
λk

)2
]}

(21)

being θk and λk for k = 1,2,...,q, parameters. We also consider that consequent local
models f i(u) have a description, that is,

f i(u)= lnβi+αiu (22)

being αi and lnβi parameters. Readily, Eqs. (20) through (22) entail a TSK-PLA
arrangement. As it will be clarified ahead a similar adaptation of Eq. (A14) stablishes
the TSK-MPCA form wTSK (x,p) in Eq. (15).

Identification of vTSK (u,π) as given by Eqs. (20) through (22) is performed by means of
the Matlab function: main_fun_tsk_pla_model_fit.m. available from the Supplementary
Information section. Heterogeneity and reproducibility strength features of vTSK (u,π)
can be interactively explored through different characterizations of the clustering radius-
training parameter ra as specified by Eqs. (B7) through (B9).

As described in Appendix A, acquiring vTSK (u,π) requires on first stage a fuzzy partition
Lu of the input domain U (cf. Eq. (A3)). Achieving this relies on a Subtractive Clustering
(SC after this) technique to establish the value of the parameter q (Castro et al., 2016; Chiu,
1994). A brief description of the SC method is provided in Appendix B. This stage also
sets the number of inference rules Ri specified by Eq. (A10) and concomitant number
local models in vTSK (u,π). The SC step also produces estimates for the parameters θk
and λk in characterizing the membership functions µ8k (u). Then, the normalized firing
strength functions, ϑ i(u) follows from (Eqs. A11) and (A12). A second step targets at
characterization of the linear consequents f i(u) as given by Eq. (22). This is achieved
by replacing the identified factors ϑ i(u) and the assumed form of the consequents f i(u)
into Eq. (20) to characterize the regression model of Eq. (17). Then, the parameters in
the consequents f i(u) are estimated by implementing a Recursive Least Squares (RLS)
routine (Jang, Sun & Mizutani, 1997; Wang & Mendel, 1992). This identification step
could be also performed through a maximum likelihood approach (Kalbfleisch, 1985).
The whole identification algorithm is explained in Appendix B. Codes are included in the
Supplementary Information section.

Assessment of reproducibility strength of models
Following Echavarria-Heras et al. (2019b) reproducibility will be primarily estimated by
comparing values of Lin’s concordance correlation coefficient, symbolized by means of
ρC (Lin, 1989). Agreement will be defined as poor whenever ρC < 0.90, moderate for
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0.90≤ ρC < 0.95, good for 0.95≤ ρC < 0.99, or excellent for ρC ≥ 0.99 (McBride, 2005).
Assessment of reproducibility will also rely on model performance metrics, such as the
Coefficient of Determination (CD), Standard Error of Estimate (SEE), Mean Prediction
Error (MPE), and Mean Percent Standard Error (MPSE) (Gupta, Sorooshian & Yapo,
1998; Hauduc et al., 2011; Zeng et al., 2017; Zeng & Tang, 2011b; Parresol, 1999; Meyer,
1938; Schlaegen, 1982). Related statistics are included in Appendix C. Matlab and R codes
are provided in the supplemental files section.

RESULTS
Data
Plots in Fig. 1 display the spread response–covariate in geometrical space for data sets
included in this examination. Figure 1A relates to the Echavarría-Heras et al. (2019a)
data. Figure 1B is for Mascaro et al. (2014) data. Figure 1C shows Huxley’s plot of chela
mass vs. body mass of fiddler crabs (Uca pugnax) in log–log scale (Huxley, 1924; Huxley,
1932). Figure 1D displays spread for the De Robertis & Williams (2008) data. Assessment
of curvature will be performed for all data sets by analyzing fitting results of the TSK-PLA
and TSK-MPCA models. For easy of presentation detailed results on a TAMA-TSK model
comparison will only circumscribe to the Echavarría-Heras et al. (2019a) data.

Representation of the back-transformed TSK-PLA proxy as a MPCA
formula
This section explains that assuming TSK-PLA implies a multiple parameter complex
allometry form in direct arithmetical scales. Indeed following Bervian, Fontoura &
Haimovici (2006), Echavarría-Heras et al. (2019a) proposed an extension of Huxley’s
formula of simple allometry ws

(
a,p
)
= βaα that includes scaling parameters α and β

depending in the covariate, that is,

y =β(x)xα(x) (23)

where β(x) and α(x) are continuous functions and with β(x) assumed to be positive. This
sets

w
(
x,p

)
=β(x)xα(x). (24)

Thus, formally whenever the scaling functions β(x) and α(x) are not simultaneously
constant w

(
x,p

)
as given by Eq. (24) entails MPCA (Echavarría-Heras et al., 2019a;

Echavarria-Heras et al., 2019b).
We now demonstrate that the mean response function EgTSK (y|x) in arithmetical space

derived from a TSK-PLA arrangement implies MPCA in the form set by Eq. (24). For that
drive, we notice that replacing Eq. (22) into Eq. (20) and then rearranging leads to

vTSK (u,π)= lnβTSK (u)+αTSK (u)u (25)

where

βTSK (u)= e
∑q

1ϑ
i(u)lnβi (26)
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Figure 1 Spreads of allometric response and covariate in geometrical space. This plot shows the spread
response–covariate in geometrical space for the included data sets. (A) depicts dispersion for Echavarría-
Heras et al. (2019a), (B) presents that associating toMascaro et al. (2014) (C) shows that for Huxley (1932)
and (D) is for the De Robertis & Williams (2008) data sets.

Full-size DOI: 10.7717/peerj.8173/fig-1

and

αTSK (u)=
q∑
1

ϑ i(u)αi. (27)

Thus, Eq. (17) takes on the equivalent representation,

v = lnβTSK (u)+αTSK (u)u+εTSK . (28)

The functions lnβTSK (u) and αTSK (u) above, suggest u− dependent forms of the
parameters lnβ and α involved in the regression model of the TAMA approach. Then,
under the assumption of Eq. (22) a TSK–PLA arrangement interprets as generalization of
the TAMA scheme (Echavarría-Heras et al., 2019a). Applying the back-transformation ev

of Eq. (28) and recalling Eq. (19) yields

EgTSK (y|x)=βTSK (x)xαTSK (x)δ. (29)

This sets exp(vTSK (u,π))= βTSK (x)xαTSK (x). But, from Eq. (5) we have vTSK
(
x,p

)
=

ln(wTSK
(
x,p

)
) then w

(
x,p

)
as identified by retransformation of vTSK

(
x,p

)
admits the

form specified by Eq. (24).
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Table 1 Fitting results of the TAMA protocol for the Echavarría-Heras et al. (2019a) data set.

Residual statistics
Minimum 1Q Median 3Q Maximum

−4.7535 −0.2642 0.0042 0.2151 8.3509

Coefficient values
Parameters Estimate Std. Error t value Pr(>|t|) Confidence Interval (95%)
α 1.022775 0.003662 279.3 <2e−16 (1.015597, 1.029953)
lnβ −11.202199 0.021515 −520.7 <2e−16 (−11.24437,−11.16003)

Fitting test.
Test Value
Residual standard error 0.5723 on 10410 degrees of freedom

Multiple R-squared 0.8823

Adjusted R-squared 0.8823

F-statistic 7.802e+04 on 1 and 10410 DF

p-value <2.2e−16

Fitting results of the TAMA protocol: Zostera marina
For comparison aims, we present fitting results of the TAMA on the Echavarría-Heras
et al. (2019a) data. Estimates for the allometric parameters α and β derive from linear
regression on log-transformed data (v,u) (cf. Eq. (12)). Table 1 summarizes the results
of the analysis. Corresponding, mean response Es(v|u) in geometrical scale is shown in
Fig. 2A. Log-transformation is a mechanism aimed to reduce variability of data (Feng et al.,
2014). Nevertheless, Fig. 2A still displays a significant dispersion of v values about Es(v|u).
Spread may lead on first sight to the impression that the distribution of v around the mean
response line Es(v|u) for small values of u is fair. Agreeing with (Packard, 2017b), on the
importance of graphs in allometry, led to a careful revision of the spread which suggested
curvature. Moreover, the assessment of dispersion of residuals ε of Eq. (12) suggested lack
of normality, as well as, heteroscedasticity (Fig. 2B). Further, QQ plot shows heavier tails
than expected for a normal distribution (Fig. 2C). Indeed, an Anderson & Darling (1952)
test to ascertain normality of ε residuals produced a test statistics value of A= 310.848
and a : p-value< 2.2e–16. In turn a Lilliefors (Kolmogorov-Smirnov-type) test, delivered
D= 0.1305, as well as, a relatively small p-value< 2.2e–16. Therefore, the hypothesis of
normally distributed errors in the analysis should be rejected since obtained p-values are
extremely small (< 2.2e–16). What is more, a lack of normality of εerrors in the linear
regression analysis of Eq. (12) can be also ascertained from the normal QQ plot shown in
Fig. 2C. It can be perceived that the distribution of ε residuals exhibits heavier tails than
those expected for a normal distribution.

Besides, a Breush-Pagan statistic (Breusch & Pagan, 1979), provided a way to assess
heteroscedasticity of the ε residuals. In order to perform this test, the squared errors in the
linear model of Eq. (12) were assumed to depend linearly on the independent variable i.e.,

ε(u)2= b+du+ζ (30)

where b and d are parameters and ζ the error term. The null hypothesis is that the
parameter d in Eq. (30) vanishes. Rejection of the null hypothesis not only corroborates
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Figure 2 Dispersion plots for the TAMA fit on the Echavarría-Heras et al. (2019a) data set. (A) shows
dispersion of log transformed eelgrass leaf biomasses v around the estimated form of mean response line
of Eq. (13). Residuals for the regression model of Eq. (12) show irregular spreading about the zero line
(B). Besides, the QQ plot in (C) displays heavier tails than expected for a normal distribution.

Full-size DOI: 10.7717/peerj.8173/fig-2

heteroscedasticity but also provides information on variability. The test statistics turned
out to be BP= 808.8119 with one degree of freedom with a p−value (< 2.2e–16), that is
sufficiently small as to provide strong evidence against homoscedasticity, while undoubtedly
favoring heteroscedasticity. Thus, the presently fitted straight line does not comply the
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essential assumptions of normality and homoscedasticity of the analysis. Therefore,
the TAMA protocol turned out unsuited for analyzing the allometric relationship in the
Echavarría-Heras et al. (2019a) data. Consequently, characterization of the general function
w(x,p) entailed by Huxley’s model of simple allometry (cf. Eq. (11)) does not fit required
complexity. Thus data spread shown in Fig. 2A, submits curvature in geometrical space.
We now turn to explore the capabilities of the TSK-PLA construct to identify this pattern.

Fitting results of the TSK-PLA assembly: Zostera marina
Identification of firing strength factors ϑi(u)
In order to identify the required firing strength factors ϑi(u) for i= 1,2,...,q. We executed
the main_fun_tsk_pla_model_fit.m code on log-transformed values (v,u) from the
Echavarría-Heras et al. (2019a) data set. This try assumed membership functions µ8k (u)
having a form given by Eq. (21) for k= 1,2,...,q. Setting ra= 0.47 returned a value of q= 2.
Then, we have to consider two membership functions characterizing the fuzzy partition of
imput spaceU . Moreover, in compliance with Eq. (A12) normalized firing strength factors
ϑ1(u) and ϑ2(u) turn out to be

ϑ1(u)=
1

1+exp
{
−

1
2

[(
u−θ2
λ2

)2
−

(
u−θ1
λ1

)2]} (31)

ϑ2(u)=
exp

{
−

1
2

[(
u−θ2
λ2

)2
−

(
u−θ1
λ1

)2]}
1+exp

{
−

1
2

[(
u−θ2
λ2

)2
−

(
u−θ1
λ1

)2]} . (32)

Plots of the estimated membership functions µ81(u) and µ82(u) and normalized firing
strength factors ϑ1(u) and ϑ2(u) appear in Fig. 3A and Fig. 3B respectively. We observe
that agreeing curves intersect at a point ub= 3.998.

Identification of consequent functions f i (u)
A second step in the procedure to get vTSK (u,π) concerns acquiring the consequent
functions f i(u) in Eq. (22). Since, for this data, we obtained q= 2, the code ought to
establish consequent functions f 1(u) and f 2(u),each one assumed to be linear, that is,

f 1(u)= lnβ1+α1u (33)

and

f 2(u)= lnβ2+α2u. (34)

With the aim of assessing heteroscedasticity, we replaced the forms of ϑ1(u) and
ϑ2(u) identified by SC technique in regression Eq. (17). In turn the involved consequent
functions f 1(u) and f 2(u) were assumed to have both the form given by Eqs. (33) and (34)
correspondingly. Then, we assumed the involved εTSK residuals to be normally distributed
with zero mean, but with a standard deviation set as a function σTSK (u) of the covariate u,
Namely

σTSK (u)= log(σ +ku), (35)
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Figure 3 Elements of the TSK-PLA fuzzy model identified on the Echavarría-Heras et al. (2019a) data
set. Shown results associate to a value ra = 0.47 for the clustering radius that corresponded to a q= 2, het-
erogeneity index. (A) displays plots of membership functions both given in the Gaussian form of Eq. (21).
(B) presents plots of normalized firing strength factors given by Eqs. (31) and (32) one to one. A break
point at ub = 3.98 is shown. (C) displays consequent linear functions as given by Eqs. (33) and (34). (D)
portraits component products.

Full-size DOI: 10.7717/peerj.8173/fig-3

where σ and k are parameters to be estimated and such that σ +ku> 1. Table 2 presents
maximum-likelihood parameter estimates and associated uncertainties for the related
fit. We can ascertain a highly significant fit, since, in all cases the standard error is
extremely small, this mainly explained by the large amount of data in the analysis. To
judge heteroscedasticity of residuals we study the confidence interval of parameter k. This
parameter determines the change in residual variability per unit change in u. It turns out
that figures in Table 2 show that confidence interval of parameter k does not include a
zero value. Therefore, we may conclude that with high probability the variability of the
residuals changes as u changes.

Meanwhile, setting k = 0 in Eq. (35) allowed consideration of a parallel maximum
likelihood fit of homoscedastic case of the TSK regression model of Eq. (17). Table 3
provides fitting results. Model performance metrics allow assessment of the fits of the
heteroscedastic and homoscedastic versions of the TSK–PLA protocol. Accordingly,
we can assert that the heteroscedastic model stands a better fit than its homoscedastic
counterpart. Particularly, in the heteroscedastic case we have a negative log-likelihood
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Table 2 Fitting results of the TSK-PLA regressionmodel of Eq. (17) for the Echavarría-Heras et al.
(2019a) data set, assuming heteroscedasticity in the form given by Eq. (35).

Residual statistics

Minimum 1Q Median 3Q Maximum
−4.4478 −0.2273 −5.99×10−5 0.1936 7.5718

Fitting results
Parameters Estimate Std. Error t value Pr(>|t|) Confidence Interval (95%)

lnβ1 −11.7672 0.0259 −454.09 <2.2× 10−16 (−11.8180613−11.7164792)
α1 1.1148 0.0036 302.84 <4.0× 10−16 (1.1076198 1.1220501)
lnβ2 −9.2326 0.0803 −114.93 <2.2× 10−16 (−9.3901440−9.0752428)
α2 0.3629 0.0278 13.02 <4.2× 10−39 (0.3083460 0.4175571)
σ 2.5063 0.0169 147.93 <2.2× 10−16 (2.4731764 2.5395905)
k −0.1580 0.0021 −73.21 <2.2× 10−16 (−0.1623302−0.1538654)

Table 3 Fitting results of the TSK-PLA regressionmodel of Eq. (17) for the Echavarría-Heras et al.
(2019a) data set, assuming homoscedasticity.

Residual statistics
Minimum 1Q Median 3Q Maximum

−4.4569 −0.2264 0.0017 0.1943 7.5545

Fitting results
Parameter Estimate Std. Error t value Pr(>|t|) Confidence Interval (95%)

lnβ1 −11.7029 0.0369 −316.34 <2.2× 10−16 (−11.7754563,−11.6304399)
α1 1.1047 0.0058 189.14 <2.2× 10−16 (1.0932778, 1.1161734)
lnβ2 −9.1869 0.0562 −163.27 <2.2× 10−16 (−9.2972775,−9.0767044)
α2 0.3437 0.0205 16.69 <7.1× 10−63 (0.3033585, 0.3840624)
σ 0.5273 0.0036 144.30 <2.2× 10−16 (0.5201765, 0.5345015)

value of −logL= 6304.60, which turns out to be notably smaller than −logL= 8111.49
obtained for the homoscedastic model. These figures bear a notable difference that backs
the selection of the heteroscedastic model. This difference in fit quality favoring the
heteroscedastic model is mainly due to the fact that the latter models the pattern of
variation of the errors in a more reliable way. Plots of identified consequents appear in Fig.
3C, component products ϑ1(u)f 1(u) and ϑ2(u)f 2(u) appear in Fig. 3D. As it occurs for the
membership functions and firing strength factors for this data the component products
also intersect at value of ub= 3.98. This estimate of ub is consistent with value previously
reported by Echavarría-Heras et al. (2019a) for this data and deriving from conventional
maximum likelihood biphasic regression. Figure 4A displays dispersion about resulting
mean response function vTSK (u,π). Figure 4B shows residual scattering about the zero
line. Region bounded by red lines determine (95%) confidence intervals. Figure 4C shows
corresponding QQ plot.
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Figure 4 Fitting results of the TSK -PLAmodel for the Echavarría-Heras et al. (2019a) and
Echavarría-Heras et al. (2018b) data set. (A) shows the dispersion about the mean response curve
identified through the regression model of Eq. (17) assuming heteroscedasticity in the form set by
Eq. (35). (B) displays residual spread about the zero line. Region bounded by red lines determine (95%)
confidence intervals. (C) presents corresponding QQ plot. Opposing a biased spreading about the mean
response in Fig. 2A, distribution around the TSK-PLA mean response is fair all over the domain of the log
transformed response. It is shown that the breaking point separates two phases conforming the identified
non-log linear allometry.

Full-size DOI: 10.7717/peerj.8173/fig-4
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Table 4 Comparison of model performance metrics for TAMA and TSK-PLAmodels fitted on the
Echavarría-Heras et al. (2019a) data set. Included metrics are: AIC, CCC, R2, SEE, MPE, and MPSE. Het
refers to heteroscedastic and Hom to homoscedastic model.

Method ra q AIC ρc R2 SEE MPE MPSE

vs(u,π) – – 17928.42 0.9375 0.8823 0.5723 −0.2077 6.4777
vTSK(u,π) :Het 0.47 2 16240.77 0.9475 0.9000 0.5276 −0.1915 5.7908
vTSK(u,π) :Hom 0.47 2 16237.40 0.9474 0.9000 0.5275 −0.1915 5.8064

Comparison TAMA vs. TSK–PLA
Compared with corresponding fitting results for the TAMA protocol (Fig. 2A) we can
verify that plots in Fig. 4 show fairer residual spread patterns. Nevertheless, the QQ plot
in Fig. 4C, still suggest deviation of εTSK residuals from a normal distribution pattern.
Table 4 allows further comparison of performances of the TAMA and TSK proxies. This
undoubtedly favor selection of the TSK scheme. Therefore, opposed to the linear model
vs(u,π), the affine characterization of variability granted by vTSK (u,π) can better refer to
inherent non-log linear allometry for the Echavarría-Heras et al. (2019a) data set. Certainly,
the point ub= 3.98 shown in Fig. 3B can be interpreted as a point separating two phases
describing the variation pattern of the log transformed response v . One for small leaves
valid over the region u< uc and another for large leaves over u≥ ub. The form of the
component products ϑ i(u)f i(u) shows that while u drifts away from ub taking smaller
and smaller values the closer the TSK output vTSK (u,π) will be to the component product
ϑ1(u)f 1(u). Conversely, the larger the distance between u and ubfor leaves in the large phase
u≥ ub the closer vTSK (u,π) will be to ϑ2(u)f 2(u). Relating to Es(v|u) shown in Fig. 2A, we
can assess from Table 4 and Fig. 4A that the reproducibility strength of ETSK (v|u) is higher.
Besides compared with Fig. 2B, the plot in Fig. 4B shows that distribution of residuals
about the zero line for the TSK fit improved. Also compared to Fig. 2C, normal QQ plot
in Fig. 4C shows a larger plateau where εTSK residuals track a normal distribution pattern.
Nevertheless, application of anAnderson & Darling (1952) test to the residuals of regression
Eq. (17) resulted in AD= 370.17. This associates a p-value < 2.2×10−16, that provides
evidence against a normality assumption for the εTSK residuals. This is, in agreement with
the observation that he normal Q–Q plot shown in Fig. 4C showing heavier tails than
those expected for a normal distribution. It is worth pointing out that the break point ub
identified by the fuzzy proxy vTSK (u,π) coincides with corresponding value obtained by
Echavarría-Heras et al. (2019a) using conventional biphasic regression methods.

Correspondingly, Fig. 5A displays the plot of the estimated form of the mean response
function EgTSK (x|y) of Eq. (19). Since, residuals εTSK are not normally distributed, Eq. (10)
provided CF form. Figure 5B allows a visual assessment of the extent of biased projections
in arithmetical scale tied to the TAMA surrogate Egs(x|y) calculated with Duan’s form of δ.
Compared with spread deriving from the TSK model, TAMA’s bias is significant. Besides,
Table 4 allows assessment of differences in associated predictive strengths. All indices favor
the TSK–PLA scheme. As suggested by perceptible bias shown in Fig. 5B, CCC value for
TAMA’s projections point to poor reproducibility of observed values. Besides, relevance

Echavarria-Heras et al. (2020), PeerJ, DOI 10.7717/peerj.8173 18/59

https://peerj.com
http://dx.doi.org/10.7717/peerj.8173


 

 

 

 

 

 

 

 

 

Figure 5 Comparison of TAMA and TSK-PLAmean responses in arithmetical scales fitted on the
Echavarría-Heras et al. (2019a) data set. (A) shows the distribution of observed eelgrass leaf biomass val-
ues y about the mean response Eg TSK (y|x) (cf. Eq. (19)). Equation (10) provided the form of the correc-
tion factor. (B) shows the extent of bias tied to proxies Egs(y|x) calculated through the TAMA scheme and
a Duan’s form of the correction factor. (C) exhibits a remarkable correspondence between Eas(y|x) de-
rived from a fit of Huxley’s formula of simple allometry and the asymptotic mean response derived from
the TSK-PLA model (cf. Eq. (47)).

Full-size DOI: 10.7717/peerj.8173/fig-5

of accounting for curvature, this assessment highlights on the importance of choosing a
proper form of δ for assuring consistency or retransformation results.
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Asymptotic analysis of TSK-PLA assembly
In this section we explain that adoption of a TSK-PLA approach allows exploration of
asymptotic behavior of the allometric mean response function in arithmetical space. After
replacing f 1(u) and f 2(u) as given by Eqs. (33) and (34) in Eq. (20) direct algebraic
manipulation yields

vTSK (u,π)= ln
(
β
(1−ϑ2(u))
1 β

ϑ2(u)
2

)
+ (α1

(
1−ϑ2(u)

)
+α2ϑ

2(u))u. (36)

Similarly, it can be directly verified that firing strengths ϑ1(u) and ϑ2(u) as given by
Eqs. (31) and (32) can be also expressed in the form

ϑ1(u)=
1

1+eτ(u,θ,λ)
(37)

and

ϑ2(u)=
eτ(u,θ,λ)

1+eτ(u,θ,λ)
, (38)

where

τ (u,θ,λ)=ψ(λ)φ(u,θ,λ)+ξ (θ,λ), (39)

ψ(λ)=

(
λ22−λ

2
1
)

2(λ1λ2)2
, (40)

φ(u,θ,λ)= [u+ (
λ22θ1−λ

2
1θ2

λ21−λ
2
2

)]2 (41)

ξ(θ,λ)=

(
λ22θ1−λ

2
1θ2
)2
−
(
λ21−λ

2
2
)[
(λ1θ2)

2
− (λ2θ1)2

]
2
(
λ21−λ

2
2
)
(λ1λ2)2

. (42)

with θ,λ standing for parameter vectors (θ1,θ2) and (λ1,λ2) one to one. We can then
ascertain that φ(u,θ,λ) remains positive for all values of u. Also, the term ξ (θ,λ),does not
depend on u. Consequently, whenever the factor ψ(λ) in Eq. (40) is positive, τ (u,θ,λ) will
approach infinity as u approaches infinity. Then, Eq. (37) implies ϑ1(u) asymptotically
vanishing as u approaches infinity. Reversely, wheneverψ(λ)is negative, the firing strength
factor ϑ1(u) will asymptotically approach one as u approaches infinity. For the Echavarría-
Heras et al. (2019a) data set we obtained ψ(λ)= 0.2756, then we must have

lim
u→∞

ϑ1(u)= 0 (43)

and since Eq. (A13) implies ϑ2(u)= 1−ϑ1(u), we also have

lim
u→∞

ϑ2(u)= 1. (44)
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Agreeing with Eqs. (19) and (20) back-transformation ev produces

EgTSK
(
y|x
)
=β

(1−ϑ2(u(x)))
1 β

ϑ2(u(x))
2 a(α1(1−ϑ

2(u(x)))+α2ϑ2(u(x)))δ. (45)

We denote by means of the symbol, E∞gTSK
(
y|x
)
the limit of EgTSK

(
y|x
)
as x approaches

infinity, that is,

E∞gTSK
(
y|x
)
= lim
x→∞

EgTSK
(
y|x
)
. (46)

Then, Eqs. (31), (32) and (44) through (46) imply

E∞gTSK
(
y|x
)
=β2xα2δ. (47)

Then, the asymptotic mode E∞gTSK
(
y|x
)
identified for the Echavarría-Heras et al. (2019a)

data set, is attains a form like Huxley’s formula of simple allometry ws
(
x,p

)
. Estimated

parameters are α2 = 1.1126 and β2 = 7.8398× 10−6. Figure 5C displays observed leaf
biomass values y and their projections through the E∞gTSK

(
y|x
)
proxy. We can learn of a

remarkable correspondence between the power function ws
(
x,p

)
= βxα of Eq. (11) fitted

by direct nonlinear regression methods and the asymptotic mean response E∞gTSK
(
y|x
)
.

Besides as established by Eq. (45) we can directly asses from Fig. 5C that for sufficiently large
values of x in the Echavarría-Heras et al. (2019a) data set, the mean response EgTSK (y|x)
behaves as the power function E∞gTSK

(
y|x
)
. Moreover, the order relationship u≥ ub holds

for about 86% of analyzed data. This explains why corresponding phase of the TSK output
can be considered dominant. This by the way elucidates the apparent benefit of fitting
Huxley’s formula of simple allometry by means of nonlinear regression model directly in
arithmetical scale for the considered data. Indeed, such a fitting could deliver reasonable
model adequacy results. But, as the present results show direct nonlinear examination
based on Huxley’s formula of simple allometry will fail to detect the different allometrical
phases conforming the real variation pattern in the data. Then, as we have elaborated a log
transformation step followed by nonlinear model identification in geometrical space could
overcome the reproducibility deficiency of the TAMA approach.

Fitting results of the TSK-PLA assembly: Metrosideros polymorpha
For trying the main_fun_tsk_pla_model_fit.m function on the Mascaro et al. (2011)
data we set ra = 0.80. This returned q= 2,heterogeneity. Figure 6 displays the plots of
membership functions µ8i(u), firing strength factors ϑ i(u), consequent linear segments
f i(u) and component products ϑ i(u)f i(u) identified by the fit of the TSK fuzzy model to
theMascaro et al. (2011) data set. Membership functions are shown in Fig. 6A. Fit suggests
heterogeneity determined by a break point ub = 1.575 as shown in Fig. 6B displaying
firing strength factors. This estimate of ub is consistent with value previously reported by
Echavarría-Heras et al. (2019a) for this data and deriving from conventional maximum
likelihood biphasic regression. Break point suggest a growth phase 0< u≤ ub and a
complementary u> ub. We can interpreted these regions as dominance realms for the
component product functions ϑ1(u)f 1(u) and ϑ2(u)f 2(u) one to one (Figs. 6C and
6D). Correspondingly, Fig. 7A shows spread about mean response function regions in
geometrical space matching identified phases. Moreover, residual plot in Fig. 7B displays a
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Figure 6 Elements of the TSK-PLA fuzzy model identified on theMascaro et al. (2011) data set. Shown
results associated to a value ra = 0.80 for the clustering radius and corresponding to a q= 2, heterogeneity
index. (A) plots of membership functions both given in the Gaussian form of Eq. (21). (B) presents plots
of normalized firing strength factors given by Eqs. (31) and (32) one to one. A break point at ub = 1.575 is
shown. (C) displays consequent linear functions as given by Eqs. (33) and (34). (D) portraits component
products.

Full-size DOI: 10.7717/peerj.8173/fig-6

fair distribution about the zero line. And, normal QQ-plot in Fig. 7C shows a large plateau
where residuals track a normal distribution pattern. We can also ascertain from goodness
of fit statistics in Table 5, that compared to the linear regression scheme of the TAMA
protocol, the affine modeling approach composing the TSK-PLA scheme entails consistent
identification of curvature in geometrical space.

Identification of the TSK-PLA proxy: Uca pugnax
Huxley conceived a breakpoint in the log–log plot of chela mass vs. body mass of fiddler
crabs (Uca pugnax) (Huxley, 1924; Huxley, 1932). Huxley situated this point between
the 15th and 16th observations and assumed it meant a to a sudden change in relative
growth of the chela approximately when crabs reach sexual maturity. Examination of
Huxley’s data by Packard (2012a) implied such a break point to be only putative and in
Packard’s own interpretation, perhaps explained by the fact that Huxley could have been
misled by the effects of the log transformation itself, along with the format of graphical
display that might have exaggerated the slopes of segments before and after the change
point. In order to test the performance of the TSK-PLA protocol in analyzing Huxley’s
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Figure 7 Spread plots for the TSK-PLAmodel fitted on theMascaro et al. (2011) data set. The spread
about the TSK-PLA mean response displays remarkable reproducibility and consistency of biphasic al-
lometry (A). The residual plot displays a fair spread about the zero line (B). The Normal-QQ plot shows a
large plateau where residuals track a normal distribution pattern (C). (D–F) show the spread about mean
response, residual and QQ-plot of TAMA’s fit to this data one to one.

Full-size DOI: 10.7717/peerj.8173/fig-7

Uca pugnax data, we took averages of both body mass and chela mass form Table 1 in
Huxley’s report (Huxley, 1932). Concurrent log transformed values appear in Fig. 1C.
For easy of presentation a break point as conceived by Huxley’s will be denoted here
through the symbol ubH . One substantial advantage of the fuzzy logic approach over
conventional probabilistic slants is that the former facilitates knowledge based modeling.
In order to incorporate previous knowledge, we we abided by Huxley’s assertion of
biphasic allometry in Uca pugnax. Then, we examined heterogeneity patterns predicted by
the TSK-PLA system for different values of clustering radius ra. Particularly, setting ra= 0.8
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Table 5 Model performance metrics for TAMA and TSK-PLAmodels fitted on theMascaro et al.
(2011) data set. Included metrics are: AIC, CCC, R2, SEE, MPE, and MPSE.

Method ra q AIC ρc R2 SEE MPE MPSE

vs(u,π) —- — 53.4608 0.9767 0.9544 0.5712 10.5825 47.7494
vTSK(u,π) 0.80 2 23.4700 0.9943 0.9888 0.3200 5.9292 24.4923

returned q= 2, arranging biphasic allometry. Acquired firing strengths appear in Fig. 8A,
exhibiting a break point at ub= 5.831. Figure 8B display consequent linear functions with
estimated slopes α1= 1.2676 and α2= 1.4708 one to one respectively. In the settings of
performed TSK-PLA analysis these correspond to exponents characterizing allometric
phases as conceived in Huxley’s original theoretical standpoint. Correspondingly, Fig. 8C
portrays consequent component products ϑ1(u)f 1(u) and ϑ2(u)f 2(u). Similarly, Fig. 8D
shows spread about mean response vTSK (u,π) including placement of ub in a display in
compliance with that in Fig. 3 in Huxley (1932). We can be aware that location of ub is
shifted back relative to ubH . Figure 8E displays placement of ub and spread about vTSK (u,π)
in the original scale of data (cf. Fig. 1C). But instead, we may integrate previous knowledge
by considering for that the break point ubH actually exists. Then, we can search among
different values of ra, the one for what the TSK-PLA arrangement compromises a break
point ub placed as ubH and also a maximum reproducibility strength of interpolation
by vTSK (u,π). Accordingly, setting ra= 0.2 brought about q= 7 sub models, inducing a
maximum reproducibility strength of interpolation function vTSK (u,π) and where ubI ,
one of six detected break points is placing as ubH . (Fig. 8E and Table 6). Interestingly, visual
examination of plot showing vTSK (u,π) suggests a pattern accommodating two linear
segments that alternate about ubI . Moreover, using the interpolation points (u,vTSK (u,π))
we fit two linear segments of slopes α1I= 1.626 and α2I= 1.274 before and after ubI one to
one (Fig. 8F). Since ubI . can be taken as a proxy for ubH the TSK-PLA interpolation mode
could suggest Huxley’s reasoning of biphasic allometry in in Uca pugnax as consistent. In
the meantime acquired q= 7, interpolation confirms the outstanding capabilities of the
TSK-PLA device to approximate the dynamics of the logtransformmed allometric response.
This can be better ascertained from Fig. 9A through Fig. 9C presenting spread about the
high order interpolation function vTSK (u,π), as well as, concomitant residual and QQ
plots in conforming order. Moreover, Fig. 9D through Fig. 9F allow visual comparison
of parallel results by a TAMA’s fit. Additionally, Table 6 compares model performance
metrics for the TSK-PLA interpolation and TAMA’s output fits. We can ascertain that the
TSK-PLA interpolation stands a better fit. In any event, the non-probabilistic interpretation
of uncertainty backing the TSK–PLA approach seems to advocate biphasic heterogeneity
in geometrical space for Huxley’s Uca pugnax data.

Fitting results of the TSK- PLA assembly: Gadus chalcogrammu
A fit of the TSK-PLA protocol to Gadus chalcogrammu data reported in De Robertis &
Williams (2008), can exhibit reliability of this paradigm in further way. Visual examination
of spread in geometrical space may suggest curvature. But, setting ra= 0.5 led to highest
reproducibility of vTSK (u,π) characterized in a linear form. Indeed, plots in Fig. 10 show
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Figure 8 TSK-PLAmodel identified onHuxley (1932) Uca pugnax data. For ra = 0.8 the fuzzy infer-
ence system returned q = 2 heterogeneity. (A) exhibits firing strengths intersecting at a break point ub =
5.813 in original log scales. (B) acquired linear consequents. (C) component products. (D) shows posi-
tion of ub relative to Huxley’s break point ubH in a display conforming that in Fig. 3 of Huxley (1932). (E)
spread about TSK-PLA interpolation function produced by ra = 0.2 and q = 2 in original log scales. This
plot shows ubI = 6.78 one of detected breakpoints. This can be considered as a proxy for Huxley’s des-
ignated break point ubH . Interpolation results in (E) suggest the biphasic arrangement of linear segments
about ubI shown in (F).

Full-size DOI: 10.7717/peerj.8173/fig-8

Table 6 Model performance metrics for TAMA and TSK-PLAmodels fitted on theHuxley (1932) Uca
pugnax data set. Included metrics are: AIC, CCC, R2, SEE, MPE, and MPSE.

Method ra q AIC ρc R2 SEE MPE MPSE

vs(u,π) – – −51.4477 0.9986 0.9972 0.0832 0.6519 1.5399
vTSK(u,π) 0.8 2 −97.8184 0.9999 0.9997 0.0301 0.2359 0.4239
vTSK(u,π) 0.2 7 −127.57 0.9999 0.9999 0.0166 0.1301 0.2058
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Figure 9 Comparison TAMA vs. TSK-PLA fuzzy model fitted onHuxley (1932) Uca pugnax data. (A)
exhibits spread about TSK-PLA mean response as determined by a ra = 0.8 and q= 2 fit on Huxley’s Uca
pugnax data. Associating residual and QQ-plots are shown in (B) and (C) one to one. (D) trough (F) dis-
play corresponding spreads produced by TAMA’s fit to referred data.

Full-size DOI: 10.7717/peerj.8173/fig-9

that identification of the TSK-PLA model for this data, produced only one membership
function µ81(u) (Fig. 10A). This corresponds to a firing strength ϑ1(u) set to one (Fig.
10B), and a conforming single TAMA’s form linear consequent f 1(u) (Fig. 10C). This
matched the single linear component product function shown in Fig. 10D. As a result, no
heterogeneity as determined by breaking points ub was detected for this data. Consequently,
the TSK arrangement suggests a fit equivalent to the TAMA approach. Moreover, spread
abut mean response, residual and Normal QQ-plots for a TAMA fit performed in this data
(Fig. 11A through Fig. 11C respectively) seem to faithfully agree to corresponding plots
(Fig. 11D, through Fig. 11F) associating to the TSK-PLA fit. In turn model performance
metrics in Table 7 corroborate these alternate fits as equivalent. Therefore, the TSK-PLA
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Figure 10 Elements of the TSK-PLAmodel identified on theDe Robertis &Williams (2008) data. A
single membership function in the Gaussian form given by Eq. (21) is shown in (A). Corresponding fir-
ing strength is displayed in (B). Consequent function appears in (C). Component product appears in
(D). These components rule out nonlinearity in geometrical space, suggesting consistency of a TAMA ap-
proach.

Full-size DOI: 10.7717/peerj.8173/fig-10

assembly seemingly adapts required complexity. This supports judgement on this paradigm
being considered as a generalized tool for allometric examination in geometrical space.

Assembly of the TSK- MPCA proxy
We assume that w

(
x,p

)
as intended for MPCA can be modeled by wTSK

(
x,p

)
as expressed

by means of Eq. (A14), in arithmetical space, namely

wTSK
(
x,p

)
=

q∑
1

ϑ i(x)f i(x) (48)

with firing strengths ϑ i(x) given by

ϑ i(x)=
µ8i(x)∑q
1µ8k (x)

(49)

being µ8i(x) for i= 1,2........q the involved membership functions. We also undertake
that both w

(
x,p

)
and x remain positive, and that

lim
x→0+

w
(
x,p

)
= 0. (50)
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Figure 11 Comparison of TAMA and TSK-PLA fuzzy model fitted on theDe Robertis &Williams
(2008) data set. (A–C) display spread about mean response, residual plot and QQ-Normal plot for the fit
of the TAMA protocol one to one. (D–F) present corresponding plots for the fit of the TSK fuzzy model.

Full-size DOI: 10.7717/peerj.8173/fig-11

Table 7 Model performance metrics for TAMA and TSK-PLAmodels fitted on theDe Robertis &
Williams (2008) data set. Included metrics are: AIC, CCC, R2 , SEE, MPE, and MPSE.

Method ra q AIC ρc R2 SEE MPE MPSE

vs(u,π) – – −55181 0.9940 0.9881 0.0945 0.0185 1.274
vTSK(u,π) 0.5 1 -55169 0.9941 0.9882 0.0946 0.0186 1.274
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This sets the imput space X to be R+.We then contemplate that membership functions
can be expressed through a composite log normal form that satisfies the constrain by
Eq. (50), namely

µ8i (x)= c(ehi(x)−1) (51)

where c = (1−e)−1 and

hi(a)= e

{
−

1
2

[(
lna−θi
λi

)2]}
(52)

with θi and λi for i= 1,2,....,q parameters. Correspondingly we consider the consequents
f i(x) to be linear functions, that is,

f i(x) = ci1+ ci2x. (53)

It is worth recalling that Eq. (15) provides the form of linked regression protocol.
Identification of wTSK

(
x,p

)
as given by Eq. (48) through Eq. (53) from

data pairs (y,x) in direct scale is performed by means of the Matlab function
main_fun_tsk_mpca_model_fit.m supplied in the supplemental files section.
Heterogeneity and reproducibility strength features of wTSK

(
x,p

)
can be explored in

an interactive way through different characterizations of the clustering radius parameter ra
as specified by Eq. (B7) through Eq. (B9).

Identification of the TSK–MPCA proxy: Zostera marina
For the Echavarría-Heras et al. (2019a) data a try of themain_fun_tsk_mpca_model_fit.m
code setting ra= 0.5416 returned q= 2 for a biphasicmode and amaximum reproducibility
of wTSK

(
x,p

)
. Figure 12A displays acquired firing strength functions. The estimated break

point was xb = 49.632 consistent with the retransformed value of ub = 3.9 for this data
set. This means that variability of the response y indeed conforms to a MPCA pattern
in the direct scale of data. Corresponding spread about fitted mean response function
EaTSK

(
y|x
)
appear in Fig. 12B. This plot allows comparison to its counterpart EgTSK

(
y|x
)

produced by retransformation of mean function vTSK (u,π) to arithmetical space. We can
be aware of remarkable correspondence through x values. This validates adequacy of a
TSK-PLA analysis for this data. Figures 12C and 12D show residual spread and QQ-plot
for the TSK-MPCA fit. Figures 12E and 12F show corresponding plots for retransformed
TSK-PLA fit. Besides Table 8 allows assessment of addressed proxies through model
performance metrics. This could endure a judgement that concurrent MPCA pattern in
arithmetical space can be consistently characterized by retransformation of PLA results.

Identification of the TSK-MPCA proxy: Metrosideros polymorpha
Correspondingly, taking as previous knowledge a manifestation of biphasic allometry as
detected by the TSK-PLA scheme, for theMascaro et al. (2011), we examined the possibility
of the TSK-MPCA arrangement identifying a similar pattern in direct scales. Indeed, by
setting ra = 0.855 the main_fun_tsk_mpca_model_fit.m function returned q= 2 for a
biphasic mode and a wTSK

(
x,p

)
of reliable reproducibility. Identified firing strengths,

display in Fig. 13A. Again analysis in direct scale detected by the TSK-MPCA approach
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Figure 12 TSK-MPCA fitted on the Echavarría-Heras et al. (2019a). Setting ra = 0.5416 returned q= 2
for present eelgrass data analyzed by means of the TSK-MPCA fuzzy model of Eq. (48) through Eq. (53).
(A) firing strength factors detecting a break point placed at xb = 49.632. (B) spread about fitted mean re-
sponse function EaTSK (y|x) compared to EgTSK (y|x) derived from retransformation of the TSK-PLA out-
put. We can be aware that reproducibility strengths are equivalent. This can be stressed by performance
metrics in Table 8. (C) through (D) presenting residual and QQ-plots confirm equivalence of EaTSK (y|x)
and EgTSK (y|x).

Full-size DOI: 10.7717/peerj.8173/fig-12

corroborates the consistency of break point allometry assumption for this data. We can
learn of a break point estimated at ab= 8.8662. This estimate is consistent with resulting
from a two linear segment mixture regression model performed by present authors.
Spreads about fitted mean functions shown in Fig. 13B reveal remarkable correspondence
of projections by EaTSK (y|x) and EgTSK (y|x). This can be stressed by performancemetrics in
Table 9. In turn this demonstrates adequacy of a TSK-PLA approach for the analysis of this
data. Figures 13C and 13D display residual and QQ plots for TSK-MPCA fit toMetrosideros
polymorpha. Equivalent plots associating to the retransformed TSK- PLA are displayed in
Figs. 13E and 13F, correspondingly. Exploring interpolation capabilities of the TSK-MPCA
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Table 8 Model performance metrics for TSK-PLA and TSK-MPCAmodels fitted on the Echavarría-
Heras et al. (2019a) data set. Included metrics are: AIC, CCC, R2 , SEE, MPE, and MPSE.

Method ra q AIC ρc R2 SEE MPE MPSE

EaTSK
(
y|x
)

0.5416 2 −73038.16 0.9294 0.8678 0.007 1.0993 59.31
EgTSK

(
y|x
)

0.47 2 −73107.75 0.9282 0.8688 0.007 1.0956 63.00

for this data led to considering an alternate clustering radius set at a value ra = 0.52.
Resulting heterogeneity index was q= 3 that resulted in good model assessment metrics
(Table 9) and a break point placed at xb= 4.832. This is in agreement with retransformed
TSK-PLA estimation for this data. Nevertheless, forcing an interpolation mode of the
TSK-MPCA to achieve a break point placed in agreement with previous estimation brings
about complexity that renders biological interpretation difficult.

Identification of the TSK-MPCA proxy: Uca pugnax
Firing strengths, of a ra= 0.668, q= 2, TSK-MPCA fit to Huxley’s Uca pugnax data set
are displayed in Fig. 14A. We can be aware of heterogeneity as corresponds to dominance
of sub models before and after the break point placed at xb = 340.7, matching exp(ub)
with ub= 5.83 the break point determined by a TSK-PLA fit to this data. Figure 14B show
spread about resulting mean function EaTSK (y|x) and compares to EgTSK (y|x) gotten by
retransformation of fitted TSK-PLA. Plot suggest equivalent reproducibility strengths.
Nevertheless as it can be made certain by model performance metrics in Table 10 the
EgTSK (y|x) proxy entails relatively higher reliability. Figures 14C and 14D one to one show
residual and QQ plots corresponding to the TSK-MPCA fit. Similarly, residual and QQ
plots for the back-transformed TSK-PLA fit appear in Figs. 14E and 14F. Table 10 also
includes performance metrics for EgTSK (y|x) gotten by retransforming the output of the
ra= 0.2 and q= 7, fit of the TSK-PLA.We can assert that resulting interpolation EgTSK (y|x)
yields a relatively better fit. Therefore, results of the retransformed form of a TSK-PLA
approach entails consistent results in direct scales. In other words, logtransformation based
procedures do not lead to biased results for this data. But above all, results of a TSK-MPCA
fit could provide a clue clearing an apparent misinterpretation of Huxley about existence
of a break point in his analysis of Uca pugnax data. Indeed, as stated above we have
ub= ln(ab). This implies ub being the image of ab under logtransformation. Then, claiming
existence of ub attributable to distortion set by a logtransformation itself is inappropriate.
Agreeing with Packard (2012a), we have no doubt that conventional statistical methods
do not put up with existence of ub as detected by the present fuzzy inference system. But,
this fact cannot be exhibited to question fuzzy methods. These relying in non-probabilistic
approaches have provided reliable interpretation of uncertainty as it can be inferred by
fuzzy approach solutions to many problems of identification and control of nonlinear
systems.

Identification of the TSK-MPCA proxy: Gadus chalcogrammu
Whenwe assessed the performance of the TSK-MPCA device on theDe Robertis & Williams
(2008) data we found results consistent to the TSK-PLA fit reported above. Indeed, a TSK-
MPCA analysis based on ra= 0.50 for this data returned q= 1, for a single membership
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Figure 13 TSK-MPCA fitted onMascaro et al. (2011) data set. (A) displays the q = 2 firing strength
factors deriving from a ra = 0.855 of the TSK-MPCA fit. We can learn of a break point estimated at xb =
8.8662. Spreads about fitted mean functions shown in Fig. 13B reveal remarkable correspondence of pro-
jections by EaTSK (y|x) and EgTSK (y|x). This can be stressed by performance metrics in Table 9. (C) and (D)
residual and QQ plots for TSK-MPCA fit one to one. Equivalent plots for retransformed results of TSK-
PLA fitted on this data are displayed in (E) and (F).

Full-size DOI: 10.7717/peerj.8173/fig-13

function. This consequently associates to a single firing strength ϑ1(x)= 1. As a result, we
have to contemplate a single component product of a linear form in Eq. (48). No break point
composed heterogeneity in direct scales can be verified for this data. Moreover, implied
linear form of Eq. (48) does not fit required complexity in direct scales. Nevertheless,
previous knowledge on consistency of corresponding TSK-PLA fit suggest using the
interpolation features of TSK-MPCA to grant adequacy. For this empirical aim, for
instance taking the clustering parameter ra= 0.22 in Eq. (B7) we can manage to obtain an
heterogeneity index of q= 3. This entails three submodels composing Eq. (48). Figures 15A
through 15C display spread about resulting form of interpolation mean response function

Echavarria-Heras et al. (2020), PeerJ, DOI 10.7717/peerj.8173 32/59

https://peerj.com
https://doi.org/10.7717/peerj.8173/fig-13
http://dx.doi.org/10.7717/peerj.8173


  
 

 

 

 
 

 

 

 
 

Figure 14 TSK-MPCA fitted onHuxley (1932) Uca pugnax data. (A) displays the q = 2 firing strength
factors deriving from an ra = 0.668 fit of the TSK-MPCA. A break point places at xb = 340.7. (B) shows
spread about resulting mean function EaTSK (y|x) and compares to EgTSK (y|x) gotten by retransformation
of fitted TSK-PLA. Plot suggest corresponding reproducibility strengths. Nevertheless, as it can be made
certain by model performance metrics in Table 10, the EgTSK (y|x) proxy entails relatively higher reliabil-
ity. (C) and (D) display residual and QQ plots one to one for EaTSK (y|x). (E) and (F) show corresponding
plots for EgTSK (y|x). We may be aware that log-transformation based procedures do not lead to biased re-
sults for this data.

Full-size DOI: 10.7717/peerj.8173/fig-14

EaTSK (y|x), as well as, residual and normal QQ plots in that order. Figure 15A also allows
visual appraisal of a better reproducibility by EgTSK (y|x). Figure 15D presents spread about
Eas(y|x) and compares to EgTSK (y|x). We can observe that both proxies entitle similar
reproducibilities. Figures 15E and 15F present residual spread and QQ plot accompanying
Eas(y|x). Table 11 compares reproducibility metrics for the EaTSK (y|x), EgTSK (y|x) and
Eas(y|x) proxies for this data. Again confrontation of model performance metrics shows
that retransformation of the TSK- PLA output stands reliable results in direct scales.
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Figure 15 TSK-MPCAmodel identified on theDe Robertis &Williams (2008) data. (A) shows spread
about the interpolation mean response EaTSK (y|x) produced by a ra = 0.22 and q = 3 fit of the TSK-
MPCA fuzzy model. Plot exhibits a greater adequacy of EgTSK (y|x) obtained by retransformation of output
of TSK-PLA fitted to this data. (B) and (C) residual spread and QQ plots for EaTSK (y|x) one to one. (D)
presents spread about the mean response Eas(y|x) produced by a fit of Huxley’s formula of simple allom-
etry compared to EgTSK (y|x). We can be aware that EgTSK (y|x) grants similar reproducibility features. (E)
and (F) residual spread and QQ plots accompanying Eas(y|x).

Full-size DOI: 10.7717/peerj.8173/fig-15

Table 9 Model performance metrics for TSK-PLA and TSK-MPCAmodels fitted on theMascaro et al.
(2011) data set. Included metrics are: AIC, CCC, R2, SEE, MPE, and MPSE.

Method ra q AIC ρc R2 SEE MPE MPSE

EaTSK
(
y|x
)

0.855 2 305.32 0.9785 0.9579 35.09 15.7416 33.14
EaTSK

(
y|x
)

0.52 3 308.62 0.9749 0.9530 37.0804 16.6307 111.49
EgTSK

(
y|x
)

0.80 2 314.21 0.9720 0.9434 40.7013 18.2547 22.31

DISCUSSION
A logarithmic transformation in allometry is often vindicated as a natural way to lodge
a variation pattern resulting from multiplicative growth in plants and animals. Indeed,
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Gingerich (2000) and Kerkhoff & Enquist (2009) state that a number of biological processes,
(i.e., growth, reproduction, metabolism and perception), are essentially multiplicative
and are therefore prone to fit in better to a geometric error model. Beyond biological
arguments supporting the traditional approach, Kerkhoff & Enquist (2009) underline that
fitting models to log-transformed data is seamlessly adequate, since taking into account
proportional rather than absolute variation is more significant. Therefore, from this
standpoint, the fact that log-transformation places numbers into a geometric domain
could bestow advantages beyond a purely statistical convenience. Nevertheless, there
are remarks that a logtransformation approach procedure produces biased results, and
that direct nonlinear regression methods in arithmetical scale, should be preferred in
parameter identification tasks (e.g., Packard, 2013; Packard, 2009; Packard & Birchard,
2008; Packard & Boardman, 2008). But, these views are debatable for a school of defenders
of the traditional protocol. For instance, Mascaro et al. (2014), stress on an important
drawback in findings in Packard (2013) that refuted the traditional analysis method
of allometry. This concerns the apparent significant bias linked to small values of the
explanatory variable, that result from a use of nonlinear regression with the assumption
of homoscedastic errors. Besides, Mascaro et al. (2014), underline that a lack of a CF
misled Packard (2013), thereby explaining his assertion of biased results attributed to
the logarithmic transformation protocol. Other practitioners have also placed a vigorous
defense of this procedure, (e.g., Ballantyne, 2013; Glazier, 2013; Lai et al., 2013;White et al.,
2012; Xiao et al., 2011). This is reasonably understood since inferences of many allometric
studies could be invalidated by a substantiated rebuttal of this analysismethod. But, Packard
(2017a) asserts for instance, that adherence to a TAMA approach has been maintained
even in situations when the resulting bivariate distribution is curvilinear in geometrical
scale. Consequent pattern is generally referred as non-log linear allometry (Packard,
2012b; Strauss & Huxley, 1993; Echavarría-Heras et al., 2019a). Moreover, G.C. Packard
has considered deviations from linearity in log-log plots of allometry as mainly attributable
to a logtransformation itself (Packard & Boardman, 2008; Packard, 2012a; Packard, 2012b;
Packard, 2013). From this perspective, overcoming the bias due to curvature in log scale
requires extending complexity of Huxley’s model of simple allometry in direct scales, which
bears a paradigm of multiple parameter complex allometry (Gould, 1966; Lovett & Felder,
1989; MacLeod, 2014; Bervian, Fontoura & Haimovici, 2006; Packard, 2012a). Again, for
promoters of the traditional approach this viewpoint sacrifices appreciation of biological
theory in order to privilege statistical correctness (Houle et al., 2011; Lemaître et al., 2015;
Pélabon et al., 2018). The approach underwent here demonstrates that a merging of points
above can be achieved by evoking Huxley’s report on the existence of a breakpoint in
the log–log plot of chela mass vs. body mass of fiddler crabs (Uca pugnax) (Huxley, 1924;
Huxley, 1927; Huxley, 1932). A generalization of this perspective explains adoption of a
polyphasic loglinear allometry paradigm (Packard, 2016;Gerber, Eble & Neige, 2008; Strauss
& Huxley, 1993; Hartnoll, 1978). This notion bestows curvature in geometrical space as
determined by breakpoints interpreted as thresholds for transition among successive growth
phases. Formally, this conception adds complexity for improving statistical consistency
while keeping the meanings of allometric exponents as Huxley’s original formulation.
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Table 10 Model performance metrics for TSK-PLA and TSK-MPCAmodels fitted on theHuxley
(1932)Uca pugnax data set. Included metrics are: AIC, CCC, R2, SEE, MPE and MPSE.

Method r a q AIC ρc R2 SEE MPE MPSE

EaTSK
(
y|x
)

0.668 2 232.81 0.9986 0.9972 22.42 2.52 32.35
EgTSK

(
y|x
)

0.8 2 199.72 0.9996 0.9993 11.56 1.30 1.8548
EgTSK

(
y|x
)

0.2 7 160.43 0.9999 0.9998 5.27 0.59 0.9577

Table 11 Model performance metrics for TSK-PLA and TSK-MPCAmodels fitted on theDe Robertis
&Williams (2008) data set. Included metrics are: AIC, CCC, R2, SEE, MPE and MPSE.

Method ra q AIC ρc R2 SEE MPE MPSE

Eas
(
y|x
)

—– — 324,010 0.9812 0.9630 60.2367 0.1401 7.3767
EaTSK

(
y|x
)

0.22 3 330,531 0.9762 0.9539 67.3087 0.1565 11.6985
EgTSK

(
y|x
)

0.50 1 324,613 0.9812 0.9622 60.0856 0.1415 7.2992

Conventional approaches have handled curvature in geometrical space by means
of polynomial regression (Kolokotrones et al., 2010; Lemaître et al., 2014; MacLeod,
2010; Glazier, Powell & Deptola, 2013; Tidière et al., 2017; Echavarría-Heras et al., 2019a).
Nevertheless, complexity underneath precludes accounting for heterogeneity as determined
by break-point allometry. Conventional identification procedures also offer refined
broken-line regression protocols (Beckman & Cook, 1979; Ertel & Fowlkes, 1976; Muggeo,
2003; Tsuboi et al., 2018; Ramírez-Ramírez et al., 2019; Echavarría-Heras et al., 2019a).
Nevertheless, this slant relies on nonlinear regression that requires starting values for
break-point estimation. Besides, crucial profile log likelihood could be log-concave so
local maxima problems may exist. Surpassing this inconvenience may depend on using
smoothed scatter plots to get candidate break points and consider several additional trials
for estimation sensitivity to different starting points. Also necessary inferences on estimates
could make implementation difficult (Julious, 2001; Muggeo, 2003).

The approaches in Bitar, Campos & Freitas (2016), Echavarría-Heras et al. (2018a) and
in Echavarria-Heras et al. (2019b) typify fuzzy logic based hybrid paradigms aimed to
allometric examination. Present TSK constructs can be placed in this framework.Moreover,
as our results demonstrate offered fuzzy paradigm can naturally host complexity as intended
in a break point assimilation of allometry. Moreover, conceived TSK arrangements offer
direct-intuitive and starting value free identification of breakpoints. Certainly, beak points
as conceived here correspond to points of intersection of TSK-firing strength factors.
Besides, intervals in between break points can be interpreted as dominance realms of
corresponding sub models. The TSK break point identification in geometrical space
for the Echavarría-Heras et al. (2019a) and the Mascaro et al. (2011) was paralleled by
conventional broken-line regression. This confirms consistent capabilities by the fuzzy
paradigm to identify heterogeneity in of the logtransformmed response. Thus, the offered
TSK fuzzymodel can be considered a tool entailing efficient automatic detection ofweighted
polyphasic log linear allometry patterns. And, the fact that the TSK model identified
linearity in geometrical space for the De Robertis & Williams (2008) data demonstrates this
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approach can adapt complexity as necessary in an efficient way. But, we must emphasize
that consistency of results in arithmetical space hinges on suitability of CF form.We suggest
contemplating the optimal reproducibility criterion around Eq. (10) for this matter.

Motivation for the present researchmainly stirred from the idea that identification based
on a logarithmic transformation is suited for allometric examination. Visual inspection
of TSK proxies fitted in geometrical space, as well as, included model performance
metrics provides partial validation of our assertion. But, from the perspective of MPCA
proponents, validation of detected heterogeneity should be made on the original arithmetic
scales. Moreover, the addressed TSK-MPCA proxy corresponds to an expression of the
general output of the TSK fuzzy model involving linear consequents in arithmetical scales.
This arrangement is consistent with a MPCA approach as conceived in Lovett & Felder
(1989). Furthermore, identification of a TSK-MPCA arrangement allows examination
of break point allometry in arithmetical scales. Existence of break points in direct scales
of data, confirms that a corresponding structure detected in geometrical space was not
induced by effects of a logtransformation itself. And, using the Weierstrass approximation
theorem, it can be demonstrated that the general output of a TSK fuzzy model can
uniformly approximate any continuous function to arbitrarily high precision (Ying, 1998;
Zeng, Nai-Yao & Wen-Li, 2000). Therefore, the high order interpolation capabilities of
the TSK-MPCA scheme sets criterion to evaluate performance of retransformed TSK-PLA
output EgTSK

(
y|x
)
. Certainly, as our results demonstrate this can be achieved by comparing

the reproducibility strength of EgTSK
(
y|x
)
against that of EaTSK (w|a) for a given data set.

And in the present settings the offered TSK-PLA or TSK-MPCA approaches were equally
suited. This demonstrates that it is possible to maintain a logtransformation as part of
a consistent allometric examination arrangement. This is a controversial subject whose
clarification seems to be overcome by adopting presently offered analytical arrangement.

Packard (2012a) applied conventional statistical methods to conclude that a break point
in Huxley’s Uca pugnax data (Huxley, 1932) was inexistent. Nevertheless, application
of present fuzzy methods detected a break point shifted back from the locus Huxley
conceived. Corroboration of existence of this point seems to endure a biologically
meaningful interpretation by Huxley of existence of a threshold for a sudden change
in relative growth of the chela at about the time crabs reach sexual maturity. Likewise,
detected break point in Zostera marina could be interpreted as a threshold beyond which
plant assigns to leaves a relatively greater amount of tissue to resist damage and separation
from shoots induced by drag forces. This implies different scaling parameters among small
and large leaves (Echavarría-Heras et al., 2019a; Echavarría-Heras et al., 2018b; Echavarria-
Heras et al., 2019b). Similarly, a detected break point in Metrosideros polymorpha may
suggest different allometric scaling depending on tree size. Certainly, resource allocation
to different tree traits like diameter or height could vary through growth in response to
different environmental-biotic settings, and also to changes in resource availability. In
this perspective, a risk of suppression by competitors may drive small trees to assign more
resources to increase height (Echavarria-Heras et al., 2019b). Then, past a threshold height at
which suppression risk is at a minimum resource may be apportioned to horizontal growth
parameters such as diameter, crown and root cover (Weiner, 2004; Ramírez-Ramírez et al.,
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2019; Echavarria-Heras et al., 2019b). Therefore since the aim of allometric examination is
understanding the biological processes that bring about covariance among traits, analytical
approaches entailing break point identification must be preferred over conventional
complex multi-parameter approaches (Echavarria-Heras et al., 2019b). Indeed, on spite of
any gains in statistical fit attributable to the latter, characterization of inherent heterogeneity
by the former could enhance biological insight. Particularly, a TSK-PLA slant could be a
highly biologically significant model of allometry, because it can model the breakpoints
while keeping the meanings of allometric exponents as Huxley’s original formulation
(Echavarria-Heras et al., 2019b).

As it is demonstrated by the steps in the derivation of Eq. (29), an imbedding of the TSK-
PLA in the original theoretical perspective of allometry makes MPCA in arithmetical scale
its logical consequence. By the same token the TSK-PLA approach grants direct–intuitive
and starting values-free estimation of break points for transition among growth phases. We
can also refer to benefits derived from the outstanding high order interpolation capabilities
by this device. This functional mode of the TSK paradigm can be achieved by adjusting
the value of the clustering parameter ra in Eq. (B7) (radii in supplied code) as to let the
identification algorithm increase the number q of interpolation sub models in Eq. (20) or
Eq. (48). And, if we can manage to include a suitable CF form, we can assure a remarkable
reproducibility strength of projections of values of the response in arithmetical scales.
Nevertheless, unsuitable forms of membership functions could lead to inconveniences in
the present TSK approach. Moreover, fitting results of the TSK-MPCA on the Mascaro et
al. (2014) data exhibit the extent on what a combination of membership functions form
and ra value can influence both break point detection and reproducibility strength (Table
9). We can be aware for instance that for membership functions in the form set by Eq. (51)
consistent break point transference among geometrical and arithmetical scales is only
achieved when ra= 0.52 which implies heterogeneity set by q= 3. Nevertheless, this by the
way leads to a penalization in reproducibility strength relative to a fit by ra= 0.855. Setting
a compromise between both fits depends on integration of previous knowledge into the
analysis. This could help for instance by suggesting ad hoc forms of membership function
with the aim of achieving high reproducibility and consistent break point placement
relative to that previously estimated on geometrical space. In any event present digression
on integration of subjective knowledge in the analysis of Huxley’s data illustrates the extent
on which a fuzzy logic approach can elucidate issues in allometric examination.

CONCLUSIONS
The offered TSK-PLA as formalized by the vTSK (u,π) paradigm can be interpreted as
a generalized tool for the analysis of log transformed allometric data, that allows to
contemplate: (1) the regression arrangement of the TAMA way (the case q= 1 and
ϑ1(u)= 1), (2) a generalized nonlinear model for identification of weighted polyphasic
nonlinear allometry (the case q> 1). (3) A direct–intuitive identification of concomitant
break points for transition among successive growth phases.

On spite of a seemingly complicated formal set up of the vTSK (u,π) scheme, this can be
conveniently identified by loading logtransformmed data into the provided code. Analysis
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of model performance metrics show that the mean response function EgTSK
(
y|x
)
deriving

from retransformation of vTSK (u,π) to arithmetical space produces similar reproducibility
strength as its counterpart EaTSK

(
y|x
)
following from identification of its arithmetical

space TSK-MPCA counterpart wTSK
(
x,p

)
. Available conventional like broken line or

weighted linear segment mixture regression approaches could offer reasonable analytical
paradigms. Nevertheless, the offered TSK approach bears a flexible computational assembly
for previous knowledge integration in an intuitive-interactive way. The present digression
on Huxley’s break point illustrates this advantage in a more proper way.

Present results confirm the pertinence of the quotation of Kerkhoff & Enquist (2009),
on the uselessness of a distinction between logarithmic transformations and nonlinearity
in many instances of allometric examination. Moreover, in our view, whenever we can
manage to exhibit a suitable CF form proposed Takagi Sugeno Kang generalization can
elucidate a glowing controversy. Surely, this paradigm allows the coexistence of the log
transformation step claimed by practitioners as a must in allometry, and the unbiasedness
of parameter estimates attributed to alternate direct nonlinear regression approaches in
the original scale defended by many others.

However, the fact that TSK-PLAmodeling providedmeaningful interpretation in present
settings does not rear this paradigm as a general tool of allometric examination. In the
elucidating around Eq. (1) we established a condition on the response being positive and
having a zero limit as covariate approaches zero. Therefore, the TSK-PLA slant essentially
aims to analyse zero intercept allometries. And, there are instances where the initial timing
of development of the trait itself and overall size are different. This situation will lead
to consideration of a negative intercept in direct scales, ruling out transference of the
examination into geometrical space. Then, modeling should be necessarily kept in direct
scales and relying inMPCA turns out to be biologically reasonable. There are also situations
where the error structure can be additive while the biological process underlying allometry
is multiplicative. Again, this requests keeping the analyses on the arithmetic scales or
modeling heteroscedastic errors in geometrical space. Certainly, we briefly addressed this
approach while analyzing the eelgrass data. However, offering a heteroscedastic TSK-PLA
protocol suited for the general settings requires further exploration.
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APPENDIX A. FORMAL ELUCIDATION OF THE WTSK (X ,P)
PROXY FOR W (X ,P)
Azeem, Hanmandlu & Ahmad (2000) proposed the Generalized Fuzzy Model (GFM)
from which the Mamdani (1977) & Larsen (1980) or the Takagi-Sugeno-Kang additive
fuzzy models can be derived as particular cases. And Gan, Hanmandlu & Tan (2005)
demonstrated that the conditional mean of a Gaussian Mixture Model and the defuzzified
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output of a Generalized Fuzzy Model (GFM) are mathematically equivalent. From this
it follows that the probability density function of a Gaussian mixture can be reduced to
accommodate the TSK fuzzy model. Likewise, by using the Weierstrass approximation
theorem, Ying (1998) demonstrated that the general output of a TSK fuzzy can uniformly
approximate any continuous function to arbitrarily high precision. In what follows we
describe steps in the derivation of a wTSK

(
x,p

)
proxy for w

(
x,p

)
when the former is

expressed as the general output of a first order TSK fuzzy model. In what follows, we review
the steps in order to conceive a TSK surrogate wTSK

(
x,p

)
for w(x,p). For that aim, we

recall our definition ofw(x,p) as a continuous functionw
(
x,p

)
:X→Y with both domain

and range as sets of real numbers and p a set of parameters, and such that the allometric
response y admits the representation y =w

(
x,p

)
.

In assembling a TSK fuzzy model, we consider a set Tx containing a number q of
linguistic terms 8k associated to the input variable x (Dernoncourt, 2013; Mendel, 2001;
Zadeh, 1989; Zadeh, 1972; Echavarría-Heras et al., 2018a; Echavarria-Heras et al., 2019b).
Namely

Tx =
{
8k |k= 1,2,....,q

}
. (A1)

Each linguistic term8k is described by means a membership function µ8k (x) :X→ [0,1].
Then, if x1,x2,...,xn are the values that x takes on, the characterization

Ak =
∑
x∈X

µ8k (x)/x =
{
µ8k (x1)/x1, ..,µ8k (xn)/xn

}
(A2)

is defined as a fuzzy set (Dernoncourt, 2013; Mendel, 2001; Zadeh, 1965).
In what follows, we use the symbol Lx to denote the collection of membership functions

describing the input variable x , that is,

Lx =
{
µ8k (x)|k= 1,2,....,q

}
. (A3)

Lx is known as a fuzzy partition of the input variable x in the domain X (Mendel, 2001;
Bodjanova, 1993; Bezdek, 1981).

In the same way, we designate a collection Ty of linguistic terms 9j associating to the
output variable y . Namely

Ty =
{
9j |j = 1,2,...,r

}
. (A4)

Likewise, each linguistic term 9j is described by means a membership function
µ9j (y) : Y → [0,1] such that, if y1,...,ym are the values that y acquires (Dernoncourt,
2013;Mendel, 2001; Zadeh, 1965), then we can also consider the fuzzy set

Bj =
∑
y∈Y

µ9j (y)/y =
{
µ9j

(
y1
)
/y1,...,µ9j

(
ym
)
/ym

}
. (A5)

(Mendel, 2001). Concurrently, we have the collection Ly of membership functions
describing the output variable y

Lv =
{
µ9j

(
y
)
|j = 1,2,....,r

}
. (A6)
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This way, the Ly sets a fuzzy partition for the output variable y in the domain Y (Mendel,
2001; Bodjanova, 1993; Bezdek, 1981).

Additionally, for i= 1,2,...,q, we advance correspondences i→ Ak(i) and i→ Bj(i),
therefore, we can contemplate antecedents P i(x) of the form

P i(x) : [x is Ak(i)] (A7)

and consequents Qi(y)
Qi(y) : [y is Bj(i)] (A8)

backing inferential rules Ri

Ri
:

{
if : P i(y)
then : Qi(y)

}
. (A9)

We may now think about a single input-single output fuzzy inference system (Mendel,
2001). This is conceived as an application F : X→ Y incorporating (1) a fuzzification
module that characterizes the fuzzy partitions Lx and Ly , (2) an inference engine that uses
the rules R=

⋃p
1
{
Ri} to convert a fuzzy input into a fuzzy output, and (3) a defuzzification

operator D that transforms the fuzzy set obtained by the inference engine into a crisp value
y in Y .

A first order single input-single output Takagi-Sugeno-Kang fuzzy inference system
(Sugeno & Kang, 1988; Takagi & Sugeno, 1985) considers decision rules Ri having an
antecedent P i(x) of the form given by Eq. (A7) but with the consequentQi(y) in expression
(A8) taking a crisp functional form f i(x). That is, in the TSK fuzzy inference system we
consider Ri rules of the form

Ri
:

{
if : x is Ak(i)

then : y = f i(x)

}
(A10)

for i= 1,2,...,q. We notice also that being the consequent a real number the use of a
defuzzification operator is not necessary.

An important component in a TSK fuzzy model is the firing strength ϕi(x) of the
antecedent P i(x) of a rule Ri. For a first order single input-single output TSK fuzzy model
we take

ϕi(x)=µ8k(i)(x). (A11)

A normalized firing strength ϑ i(x) takes a form (Mendel, 2001)

ϑ i(x)=
ϕi(x)∑q
1ϕ

i(x)
. (A12)

It follows that
q∑
1

ϑ i(x)= 1. (A13)
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The final output wTSK
(
x,p

)
of the Takagi-Sugeno-Kang inference system is the normalized

firing strength weighted average of all rule outputs (Sugeno & Kang, 1988; Takagi & Sugeno,
1985), that is,

wTSK
(
x,p

)
=

q∑
1

ϑ i(x)f i(x). (A14)

Where p stands for the set of parameters identifying the membership and consequent
functions in Eqs. (A3) and (A10) one to one.

APPENDIX B. IDENTIFICATION PROCEDURES FOR WTSK
(X ,P)
Description of structure and parameter estimation of the TSK fuzzy model interrelate
(Echavarría-Heras et al., 2018a). A first stage relies on Subtractive Clustering (Castro et al.,
2016; Chiu, 1994). This technique sets decision rules Ri and produces parameter estimates
for the µ8k (x) membership functions. This acquires as well the forms of the normalized
firing strength factors ϑ i(x). A second stage of the identification task is achieved by placing
weight factorsϑ i(x) in Eq. (A14) in order to obtain parameter estimates for the consequents
of the rules f i(x). Regularly, this is achieved by means of recursive least squares methods
(Jang, Sun & Mizutani, 1997; Wang & Mendel, 1992).

The subtractive clustering method
The subtractive clustering method (SC) is an extension of the Mountain Function
Clustering method (MFC) proposed originally by Yager & Filev (1994). This procedure
estimates cluster centers based on the notion of a density function. For clarifying aims,
before we explain the SC procedure, it is convenient to describe theMFCmethod. Following
Yager & Filev (1994) and Chiu (1994), the MFC procedure assembles the following steps:
1. The set of n data to be analyzed is arranged as a vector X namely:

X ={x1,x2,...,xn}. (B1)
2. Generation a nth dimensional space grid on which the data is located. Intersections

of grid lines provide nodes Ni. i= 1,...,m. Cluster centers to be are restricted to grid
nodes. The set of cluster centers to be denotes through C .
Based on the distribution of the data devise a mountain function (MF). This represents
a data density measure. The height of the mountain function at a node point Ni is

MF (Ni)=

n∑
k=1

e−αd(xk , Ni),i= 1,2, (B2)

where α is a positive constant and d (xk,Ni) is a measure of the distance between data
point xk and grid node Ni. Equation (B2) enunciates that the data density measure at
a point Ni is influenced by all data points xk . Such a density measure varies inversely
proportional to distance between data points and node Ni. The parameter α not only
influences the maximum value ofMF (Ni) but also its smoothness.
It can be ascertained that the values of the mountain function on nodes are closely

dependent on density of data points in the neighborhood of Ni. Mountain function
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values can be also interpreted as the potential suitability of a grid node to become a
cluster center estimate. A node with many neighboring data points will have a large
mountain function value. Cluster center C1 is chosen as node Ni such that MF (Ni)

attains the maximum value among all remaining nodes, formally
MF1(C1)=max

i
[MF (Ni)]. (B3)

Since the nodes close to C1 will also have high mountain-function values, it deems
necessary to remove the effect of C1 before obtaining the next cluster center C2. A
new mountain function MF2(Ni) is shaped by taking off a scaled Gaussian function
centered at C1 this eliminates the effect of the first cluster. Iteratively the mountain
function, after eliminating the effects of the cluster center that was previously identified
becomes

MF k+1(Ck+1)=max

[
MF k (Ni)−MF k(Ck)

n∑
k=1

e−βd(Ck−Ni),0

]
. (B4)

3. The previous step is repeated until the number of desired cluster centers is found or
until a stopping condition is met. This expresses in terms of the ratio of first maximum
value of mountain function found MF1(C1) to corresponding penultimate maximum
value found MF k−1(Ck−1). Iteration stops when this ratio attains a value less than a
certain positive constant δ,

MF1(C1)

MF k−1(Ck−1)
< δ (B5)

Since, the mountain function has to be evaluated at each grid point the processing
time of the mountain clustering method rises exponentially with dimension of task. A
SC scheme amends these difficulties by taking data points as potential cluster centers.
This implies processing time becoming proportional to problem size instead of problem
dimension. Since this method does not take into account any grid intersections execution
time is reduced. Nevertheless, the real clusters centers do not necessarily place at data
points, but in most cases this approach offers a good approximation, to cluster center
identification. The SC approach also bases on a function representing the distribution of
the data. Actually, the SC method consists of equations very similar to those used in the
MF method, steps in the later are:
1. The set of n data to be analyzed is defined as follows:

X ={x1,x2,...,xn} (B6)
2. Since, each data point is an aspirant for a cluster center a density measure at data point

xi is defined as

Di=

n∑
j=1

exp

(
−
d
(
xi, xj

)
(ra/2)2

)
(B7)

where ra is a positive constant, this constant acts as the radius that defines the area of
proximity to the potential cluster center. Once all density assessments are obtained, the
one with the highest value is taken. Formally
C1=Max [Di] (B8)
this will identify a first cluster center C1,
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3. Next cluster center is acquired by subtracting a scaled Gaussian function centered at
C1, that is

Di=Di−C1exp
(
−
d (xi, C1)

(ra/2)2

)
(B9)

where rb< ra, is a radius that defines the proximity area of the cluster center C1.
4. The maximum value of rescaled densities Di of Eq. (B9) is chosen as cluster center C2.

This procedure is repeated until a desired number m of cluster centers C1,C2,....Cm is
determined.

The recursive least squares method
The general least-squares problem establishes the output of a model y as given by a linearly
parameterized expression, namely

y = γ1h1(x)+γ2h2(x)+···+γnhn(x), (B10)

where x =
[
x1,··· ,xp

]T is the model’s input values vector, h1(x),··· ,hn(x) are known
functions of x, and γ1,··· ,γn called regression coefficients are to be fitted.

Without loss of generality, we address the case q= 2 assuming consequent linear
functions in the form given by Eq. (53), so that the general output of the TKS of Eq. (A14)
is

wTSK
(
x,p

)
= p11ϑ

1(x)x+p21ϑ
2(x)x+p12ϑ

1(x)+p22ϑ
2(x). (B11)

with ϑ i(x) given by Eq. (A12). Then, wTSK
(
x,p

)
as given by Eq. (B11) becomes a particular

characterization of Eq. (B10) by taking model’s input values x = [x]T , and p11, p
1
2, p

2
1 and

p22 unknown parameters in the consequent functions.
To obtain parameter estimates, we take into account that in the present settings the

target system to be modeled involves an input-output relationship x→wTSK
(
x,p

)
being

x the descriptor variable and wTSK
(
x,p

)
standing for the response y . Therefore, we have

a training data composing pairs
(
xk : yk

)
, for k = 1,··· ,m that stand for replicates of

the considered input-output relationship. Therefore, in order to identify the unknown
parameters p11, p

1
2, p

2
1 and p22, we must fill in for each data pair

(
xk : yk

)
, into Eq. (B11) in

order to obtain the set of m linear equations:
p11ϑ

1(x1)x1+p21ϑ
2(x1)x1+p12ϑ

1(x1)+p22ϑ
2(x1) = y1

ϑ1(x2)p11x2+p
2
1ϑ

2(x2)x2+p12ϑ
1(x2)+p22ϑ

2(x2) = y2
...

...
...

ϑ1(xm)p11xm+p
2
1ϑ

2(xm)xm+p12ϑ
1(xm)+p22ϑ

2(xm) = ym

 (B12)

This system of equations can be equivalently written in a concise form BP = y , where B is
the m×n matrix,

B=


ϑ1(x1)x1 ϑ1(x1) ϑ2(x1)x1 ϑ2(x1)
ϑ1(x2)x2 ϑ1(x2) ϑ2(x2)x2 ϑ2(x2)

...

ϑ1(xm)xm ϑ1(xm) ϑ2(xm)xm ϑ2(xm)

 (B13)
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P the n×1 vector of unknown parameters,

P =


p11
p12
p21
p22

 (B14)

and being y the m×1 output values vector:

y =


y1
y2
...

ym

. (B15)

The i-th row of the data matrix
[
B
...y
]
is denoted by

[
bTi ,yi

]
and formally represented by,

bTi =
[
ϑ1(xi)xiϑ1(xi)ϑ2(xi)xiϑ2(xi)

]
. (B16)

Then, Eq. (B12) modifies to include an error vector e that accounts for random noise or
modeling error, that is,

y =BP+e. (B17)

Since e = y−BP then eT e =
(
y−BP

)T (y−BP), and if we let E (P)= eT ewe will have

E (P)=
m∑
i=1

(
yi−bTi P

)2
. (B18)

We call E (P) the sum of squared errors. Then, we need to search for a characterization
P̂ of the vector P , which minimizes E (P). Furthermore, the vector P̂ is known as the
least-squares estimator (LSE) of P . Since E (P) is in quadratic form, P̂ is unique. It turns
out that P̂ satisfies the normal equation

BTBP̂ =BTy. (B19)

Furthermore, P̂ is given by

P̂ =
(
BTB

)−1
BTy. (B20)

A n-order least squares estimator P̂n of P̂ defined by means of the expression

P̂n=
(
BTB

)−1
BTy (B21)

is a description of P̂ that associates to n data pairs taken out of the training data set
(
xi : yi

)
.

Once we have gotten P̂n we can acquire the following estimator P̂n+1 with a minimum of
effort, through a recursive least-squares estimator (RLSE) technique, a procedure where

the nth row of
[
B
...y
]
, with (1≤ n≤m) denoted by

[
bTn
...yn

]
is recursively obtained. We

now explain the procedure behind the RLSE method.
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A new pair
(
bTn+1;yn+1

)
becomes available as the (n+1)th entry in the data set, producing

the P̂n+1 estimate,

P̂n+1=

[ B
bTn+1

]T [
B

bTn+1

]−1[ B
bTn+1

]T [
y

yn+1

]
. (B22)

Further, in order to simplify the notation, the pair
(
bTn+1;yn+1

)
will be symbolized by

(bT ;y) and we also introduce the p×p matrices Hn and Hn+1 defined by means of

Hn=
(
BTB

)−1
, (B23)

and

Hn+1=

[ B
bT

]T [
B
bT

]−1 (B24)

or equivalently

Hn+1=
(
BTB+bbT

)−1
.

Then Hn and Hn+1 are related through

Hn+1=
(
H−1n +bb

T )−1. (B25)

Therefore, using Hn from Eq. (B23) and Hn+1 from Eq. (B25), we explain why Eqs. (B21)
and (B22) can be equivalently written in the form

P̂n=HnBTy (B26)

and

P̂n+1=Hn+1
(
BTy+by

)
. (B27)

From Eq. (B26) we have BTy =H−1n P̂n, then replacing this result in Eq. (B27) we get

P̂n+1=Hn+1
(
H−1n P̂n+by

)
. (B28)

Now, from Eq. (B25) we have H−1n P̂n=
(
H−1n+1−bb

T )P̂n, so replacing this result in the
above expression we get

P̂n+1=Hn+1
[(
H−1n+1−bb

T )P̂n+by
]
,

then simplifying yields

P̂n+1= P̂n+Hn+1b
(
y−yT P̂n

)
. (B29)

Thus P̂n+1 can be recursively identified in terms of the preceding estimate P̂n and the new
data pairs

(
bT ;y

)
. Furthermore, the current estimate P̂n+1 is expressed as the previous

one P̂n plus a correcting term based on the new data
(
bT ;y

)
; this adjusting term can be

understood as an adaptation gain vector Hn+1 multiplied by a prediction error (y−bT P̂n)
linked to the previous estimator P̂n.
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Calculating Hn+1 as given by Eq. (B24) is computationally costly and requires the
adaptation of a recursive formula. From Eq. (B25) we have

Hn+1=
(
H−1n +bb

T )−1
Using the matrix inversion formulation of Lemma 5.6 in Jang, Sun & Mizutani (1997) with
A=H−1n , B= b, and C = bT , we obtain the successive recursive formula forHn+1 in terms
of Hn:

Hn+1=Hn−Hnb
(
I+bTHnb

)−1
bTHn

equivalently,

Hn+1=Hn−
HnbbTHn

I+bTHnb
. (B30)

Summarizing, the recursive least-squares estimator for the problem of AP+e = y ., where

the nth(1≤ n≤m) row of
[
B
...y
]
, denoted by

[
bTn
...yn

]
, is sequentially obtained. It can be

calculated as follows:
P̂n+1= P̂n+Hn+1bn+1

(
wn+1−bTn+1P̂n

)
Hn+1=Hn−

Hnbn+1bTn+1Hn

I+bTn+1Hnbn+1
.

(B31)

Notice that in stablishing this result we have recalled Eq. (B30) and the fact that we had
previously set the convention that for easy of presentation, the pair

(
bTn+1;yn+1

)
would be

symbolized by the expression (bT ;y).

genfis2.m + anfis.m training
Examination in geometrical space is achieved by the code: main_fun_tsk_pla_model_fit.
Similarly, analysis in direct arithmetical scales relies on the:main_fun_tsk_mpca_model_fit
counterpart, both based on a genfis2.m + anfis.m training (both functions are included
into the code in the supplementary files section). As it is explained in Matlab user’s manual
for genfi2.m and anfis.m functions, given sets of input and output data, genfis2 produces
a Fuzzy Inference System (FIS). Output by genfis2 suggest a primary FIS for anfis.m
training. This is achieved through subtractive clustering. This is achieved by genfis2.m by
means the subclust.m function that extracts a set of rules that model the behavior of the
data. Once the antecedent membership functions are obtained the procedure uses RLS
estimation to determine the consequent functions of each rule.

For the given input-output data the genfis2.m function produces a FIS of a TSK type.
Moreover, the XIN and XOUT matrices yield one column per input and output of the FIS,
respectively. radii (e.g., ra in Eq. (B7)) specifies the influence range or proximity area of
the cluster center for each input and output dimension, assuming that the data falls within
a hypercube unit (range [0 1]). Specifying a smaller cluster radius will generally produce
smaller clusters in the data and, therefore, more rules. When radii is a scalar, it applies to
all input and output dimensions. When radii is a vector it has an input for each input and
output dimension (Chiu, 1994).
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The descending gradient method is one of the oldest techniques to minimize, a given
function defined in a multidimensional input space. This method bases many direct
optimization methods for restricted and unrestricted problems. On spite of its slow
convergence, its simplicity makes it the most used non-linear optimization technique.
Formally

ϕnext =ϕnow−ηG. (B32)

A slightly different formulation of Eq. (B32) results from a gradient normalization, that is

ϕnext =ϕnow−κ
G
‖G‖

(B33)

being κ the actual size of step ,which interprets as the Euclidean transition distance from
ϕnow to ϕnext , namely

κ =
∥∥ϕnext −ϕnow∥∥. (B34)

In order to typify (Eqs. B32) and (B33) the former one refers as simple descendent gradient
and the later as its normalized version.

The term ηG in Eq. (B32) stands for the extent of step. With a fixed η, step magnitude
changes automatically in each iteration due to different gradients of G. If the minimum
point is on a flat surface or plateau, G tends to be infinitesimally small. Consequently, the
simple descendent gradient in Eq. (B32) exhibits a slow convergence. On the other hand,
for a fixed κ the normalized simple descending gradient in Eq. (B33) always does the same
steps, neglecting how steep the slope is Chan & Fallside (1987) and Rumlhart, Hinton &
Williams (1986). It is then necessary to actualize step size κ for efficiency.

Actualizing the κ value
Adjusting κ dynamically requires an adaptive strategy. Based on empirical observations,
an initial step size κ = 0.01 can be updated according to the following couple of heuristic
rules (Jang, 1993):
1. If the objective function (MRSE) undergoes m consecutive reductions, increase by p%.

IF SSE(ϕnext)< SSE(ϕnow)THENκ = κ ∗κinc (B35)

2. If the objective function (MRSE) manifests n consecutive combinations of an increase
and a decrease, decrease by q%.

IF MRSE(ϕnext)/MRSE(ϕnow)> 1.04(maxSSEinc)THENκ = κ ∗κdec. (B36)

Representative values for m,: n,: p and q :are 4, 2, 10% (κinc = 1.1) and 10% (κdec = 0.9),
respectively. These typical values are more or less arbitrarily chosen. This update strategy is
incorporated into hybrid learning (anfis.m: descending gradient to update the parameters
in the antecedents and RLS to update the parameters of the linear consequents).

Summarizing, the radii specifies the range of influence of the cluster centers
(membership function centers (e.g., θ vector in Eq. (21)) for each input and output
dimension. Specifying a smaller cluster radius will generally produce smaller clusters in the
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data and, therefore, more rules. The value of λ in a membership function is related to the
radii value and the range of entries through >

λ= (radii.*Range(X))/ sqrt(8.0) (B37)

(Chiu, 1994). The κ in the descendent gradient method adapts the θ and λ values of the
membership functions (cf. Eqs. (21) and (52)) in the antecedents of each iteration or epoch
while minimizing the objective function.

APPENDIX C. MODEL PERFORMANCE METRICS
Besides AIC and ρ indices, model assessment in this examination relies on the SEE, MPE
and MPSE indices based on statistics of squared and absolute deviations of observed to
predicted values. According to Parresol (1999), SEE, MPE and MPSE statistics as model
performance metrics were first recommended by Meyer (1938), then by Schlaegen (1982)
and have subsequently been used by Zeng & Tang (2011a); Zeng & Tang (2011b). We
provide ahead related formulae and explanation.
Akaike information criterion (AIC)

AIC =−2l
(
θ̂
)
+2p. (C1)

Lin’s Concordance Correlation Coefficient (ρC )

ρC =
2ρσYσX

(µX −µY )
2
+σ 2

Y +σ
2
Y

(C2)

with ρ standing for Pearson’s correlation coefficient. The ρC index estimates through

ρ̂C =
2SYX

(Ȳ − X̄)2+S2Y +S
2
X

(C3)

where

Ȳ =
1
n

∑
yi,X̄ =

1
n

∑
xi,

S2Y =
1
n

∑(
yi− Ȳ

)2
,S2X =

1
n

∑(
xi− X̄

)2
,

SXY =
1
n

∑(
xi− X̄

)(
yi− Ȳ

)
.

Determination coefficient (R2)

R2
=

∑(
Ŷi− Ȳ

)2∑(
Yi− Ȳ

)2 (C4)

Standard error of estimation (SEE)

SEE =
√∑(

yi− ŷi
)2
/(n−p) (C5)

Mean prediction error (MPE)

MPE = tα(SEE/Ȳ )/
√
n×100 (C6)
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Mean percent standard error (MPSE)

MPSE =
1
n

∑∣∣(yi− ŷi)/ŷi∣∣×100 (C7)

AIC (Akaike, 1974) compares performance of candidatemodels. Themodel with lowermost
AIC is considered the best among competitors. AIC sets a compromise between goodness of
fit and complexity, expressing through log-likelihood and number of parameters this way
penalizing inclusion of needless ones. AIC often interprets as an estimate of lost information
when a model replaces the process generating the data. Lin’s Concordance Correlation
Coefficient (ρC) symbolized also by means of (CCC) measures the extent on what one
variable (Y) reproduces another (X), that is, it represents a measure of the similarity (or
agreement) between the two variables. CCC can be estimated, with sample sizes of at least
ten pairs (x, y). The R square (R2) also named determination coefficient interprets through
the ratio (SS due to regression/Total SS corrected for the mean) and is mainly intended as a
measure of closeness between response values and fitted linear regression models. R square
takes values between zero and one and measures the proportion of the total variation of
the response, around the average, explained by the model (Echavarria-Heras et al., 2019b).
When R2 attains its maximum value the response is fully explained by the predictors in
the fitted linear regression model. According to Parresol (1999) using the coefficient of
determination as a fit index aimed to compare performance of biomass models was firstly
suggested by Schlaegen (1982). Nevertheless, for nonlinear models a high R2 value does
not necessarily entails high reproducibility strength. SEE takes on non-negative values and
is of extensive use in statistical texts and statistical software. It stands a comprehensive
valuation of goodness of fit of a model to observed data, by measuring the accuracy of (ŷi)
predictions gained from a fitted regression model. When SEE attains its minimum value,
observed values of the response coincide with the fitted mean response function, that the
model displays exact reproducibility of observed values (Echavarria-Heras et al., 2019b).

The MPE, which is signifying currently used to assess goodness of fit of a model, is a
standardized version of the coefficient of variation CV = (SEE/Ȳ )×100 expressed as a
percentage, as proposed by Schlaegen (1982). MPSE bears a measure of the average absolute
relative error, expressed as a percentage. The use of MPSE as a model assessment index
was proposed by Schlaegen (1982), but it had been previously suggested by Meyer (1938),
who regarded it as a measure of the absolute deviation of the expected and predicted
responses, relative to the size of the prediction (

∣∣yi− ŷi∣∣ŷi) expressed as a percentage
average (Echavarria-Heras et al., 2019b).
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