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Chromosome-level assembly of the water buffalo
genome surpasses human and goat genomes in
sequence contiguity
Wai Yee Low 1, Rick Tearle1, Derek M. Bickhart 2, Benjamin D. Rosen 3, Sarah B. Kingan 4,

Thomas Swale5, Françoise Thibaud-Nissen6, Terence D. Murphy 6, Rachel Young 7, Lucas Lefevre 7,

David A. Hume8, Andrew Collins9, Paolo Ajmone-Marsan 10, Timothy P.L. Smith11 & John L. Williams 1

Rapid innovation in sequencing technologies and improvement in assembly algorithms have

enabled the creation of highly contiguous mammalian genomes. Here we report a

chromosome-level assembly of the water buffalo (Bubalus bubalis) genome using single-

molecule sequencing and chromatin conformation capture data. PacBio Sequel reads, with a

mean length of 11.5 kb, helped to resolve repetitive elements and generate sequence con-

tiguity. All five B. bubalis sub-metacentric chromosomes were correctly scaffolded with

centromeres spanned. Although the index animal was partly inbred, 58% of the genome was

haplotype-phased by FALCON-Unzip. This new reference genome improves the contig N50

of the previous short-read based buffalo assembly more than a thousand-fold and contains

only 383 gaps. It surpasses the human and goat references in sequence contiguity and

facilitates the annotation of hard to assemble gene clusters such as the major histo-

compatibility complex (MHC).
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A finished, accurate haplotype-resolved reference genome is
necessary to understand the biology of a species, manage
genetic diversity and, in the case of livestock, to apply

genomic selection for genetic improvement1. However, despite
advances in sequencing technologies, our ability to generate long
contiguous DNA sequence reads is still limited, necessitating the
use of a number of assembly algorithms and technologies to piece
together the genomic jigsaw. For smaller haploid genomes, such
as bacteria, complete assembly is now possible at relatively low
cost2 but the same does not apply to larger complex diploid or
polyploid genomes. Mammalian genomes contain large families
of repeats that are difficult to span, even with longer sequence
reads, which, together with insufficient sequence coverage, result
in breaks in sequence contiguity. Therefore, additional data types
are required to correctly order and orient contigs. Fully assem-
bling a mammalian genome is still challenging, and even the
current human genome assembly (GRCh38), that has received
considerable input of money and resources from more than 10
institutions and over 1000 researchers, still contains hundreds of
gaps3.

The latest PacBio single-molecule sequencing technologies4

deliver mean read lengths above 10 kb, with reads as long as 60
kb5. This has facilitated the high quality assembly of mammalian
genomes, including the gorilla6 and the goat7. However, the
relatively low throughput and higher error rates (~11–15%)
remain a problem. Fortunately, PacBio sequencing errors appear
randomly distributed, therefore, with sufficient depth, a con-
sensus with high per base sequence quality can be achieved.
Besides PacBio, other long-read sequencing platforms such as
Oxford Nanopore are being used to assemble genomes at high
accuracy8.

Even with the improvement in long-read sequencing, addi-
tional approaches are required to accurately scaffold contigs. Hi-
C9, a modified version of chromosome conformation capture
(3C)10, identifies in vivo chromatin interactions across the whole
genome, with the majority of interactions occurring within the
same DNA molecule, often over many hundreds of kb. Chicago11,
a modified form of Hi-C, uses chromatin reconstituted in vitro
with interactions limited to ~100 kb. The combination of Chicago
followed by Hi-C enables contigs to be ordered and orientated at
short- and long-range, respectively. Using both, the scaffolding
processes create large scaffolds reaching to full length
chromosomes.

Collapsing haplotypes from diploid organisms in genome
assemblies can lead to errors in the sequence resulting from
differences between homologous chromosomes12. One solution is
to sequence haploid clones, as demonstrated by the use of tiled
fosmids to assemble the human genome13. However, this
approach requires the generation of clones, which is technically
difficult and may introduce errors (e.g. chimeric clones). Com-
plete haplotype-resolved diploid assembly has now been
demonstrated using parental genotype data to separate sequence
into haplotypes prior to assembly14. However, the ultimate goal
would be to phase haplotypes from a single organism without
having to generate clones or sequence the parents. The release of
FALCON-Unzip15 and more recently, FALCON-Phase16 pro-
vides an advance towards this goal. FALCON-Unzip takes
advantage of long reads to generate haplotigs (i.e. a contig con-
sisting of a sequence with sufficient variation to define an alter-
native haplotype). FALCON-Phase combines PacBio and Hi-C
data to resolve phase between haplotigs, thereby creating longer
phased regions.

Here we present a near-finished genome assembly for the water
buffalo (B. bubalis), a mammal with 25 chromosomes and a
genome size of 2.66 Gb, which is comparable to human. The
genome assembly was created using PacBio long reads assembled

using FALCON-Unzip and scaffolded with Chicago- and Hi-C-
based chromatin interaction maps. Illumina paired-end sequence
was used for indel correction. This assembly strategy for the B.
bubalis has achieved high sequence contiguity and accuracy,
facilitating a substantially improved gene annotation and pro-
viding an exceptionally high-quality reference genome sequence
for a species with global economic relevance.

Results
De novo assembly of a B. bubalis genome. A female Medi-
terranean buffalo with the same bull as the paternal and maternal
grandsire was used for sequencing. Sequence data comprised:
~75x PacBio Sequel long-reads, ~24x Chicago reads, ~58x Hi-C
reads, and ~82x Illumina paired-end reads. The diploid
FALCON-Unzip15 assembler produced an initial PacBio-based
contig assembly with 953 primary contigs, N50 of 18.8 Mb and a
total length of 2.65 Gb (Fig. 1, Table 1). The assembler also
generated a combined 1.53 Gb of haplotype-resolved sequence, or
58% of the total length of the primary contigs. The alternate
haplotype sequence from the unzipped regions was output as
7956 haplotigs16,17. The haplotig N50 was 0.394Mb and the
longest haplotig was 2.77Mb. Only the primary contigs were used
in downstream scaffolding but the resolution of haplotypes
improved contiguity and the accuracy of the assembly12,14.

Scaffolding of the primary contigs was carried out in a series of
HiRise analyses, initially using the Chicago data, followed by
inclusion of the Hi-C reads. The HiRise program checks for
incorrectly assembled contigs and introduces breaks, some of
which were incorrect. The contig breaks were therefore classified
as: (1) a break introduced into a region with the expected PacBio
coverage, (2) a break in a region with an unusually high PacBio
coverage, and (3) a break in a region of unusually low PacBio
coverage (Supplementary Figure 1). A HiRise break in the first
category was considered a false break. In total, 69/108 HiRise
Chicago breaks and 4/6 HiRise Hi-C breaks were classified as
false breaks and ignored. The most likely explanation for the high
count of false breaks is where there is phase shift in the assembly
between haplotigs (Supplementary Figure 2). This serial scaffold-
ing step produced 509 scaffolds with an N50 of 117.2 Mb.

To further improve the assembly, sequence continuity was
assessed by generating linkage disequilibrium (LD) maps for each
of the 457 contig joins in the major 29 scaffolds that represent the
25 buffalo chromosomes. LD was assessed based upon SNP
genotypes of 529 animals obtained using the current 90 K buffalo
Axiom chip (see Methods). A total of 119 contig joins were found
to be associated with LD jumps and also interrupted conservation
of synteny with the cattle or goat sequence. These were
considered potential mis-assembly points and were manually
inspected, resulting in 18 scaffolds being reordered (Supplemen-
tary Note 1). Three pairs of scaffolds were joined to maintain LD,
one on each of chromosomes 12, 21, and 25. The LD guided
corrections produced longer scaffolds, which conserved synteny
with the cattle and the goat genomes.

The final assembly, UOA_WB_1, after gap filling and error
correction, covered the 25 buffalo chromosomes with only ~1%
bases in 484 small unplaced scaffolds. All buffalo chromosomes
were scaffolded in an order consistent with the buffalo whole
genome radiation hybrid (RH) map and conserved synteny with
the homologous Bos taurus (UMD3.1) chromosomes18 (Fig. 2).
As the RH data were not used to order or orient the scaffolds, this
provides-independent evidence that the contig assembly and
scaffolding are accurate. Additionally, the chromosome sizes and
proportion of sequences aligned to corresponding homologous B.
taurus chromosomes are in good agreement (Supplementary
Figure 3 and Supplementary Table 1). It is noteworthy that, for all
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five of the sub-metacentric buffalo autosomes, the scaffolds span
the centromeres.

Assembly benchmarking. The previous de novo water buffalo
assembly (UMD_CASPUR_WB_2.0) was generated mainly from

Illumina paired-end reads19, which were assembled with
MaSuRCA20. The resulting genome was highly fragmented, with
the final assembly containing 2.84 Gb scattered in 366,983 scaf-
folds with a contig N50 of ~22 kb. Both UOA_WB_1 and
UMD_CASPUR_WB_2.0 assemblies were benchmarked with the
same assembly evaluation pipeline used to validate other long-

Assembly of contigs

Raw PacBio reads

Create pre-assembled reads

Assemble pre-assembled reads

Falcon-unzip haplotype
resolved assembly

Scaffolding with HiRise

Validate scaffold joins

Linkage disequilibrium map + conservation of synteny with cattle and goat

Gap filling and polishing

Gap fill with PBJelly

Polish with blasr/arrow Error correction with pilon
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Fig. 1 An overview of assembly methods. Contig assembly was carried out with the diploid assembler FALCON-Unzip to produce primary contigs and
haplotigs. It began with selection of longest “seed” reads and shorter reads were aligned to them to create pre-assemble reads using a consensus approach.
The primary contigs were carried forward to the scaffolding step that began with Chicago reads for short range scaffolding (1–100 kb) with HiRise. Then
long-range scaffolding (10–10,000 kb) was carried out with Hi-C reads to cluster scaffolds to the chromosome level. Each join of contigs to create a
scaffold was checked against an LD map and for conservation of synteny with cattle and goat. Then long-reads were used to fill gaps and polish the
sequence, followed by indel correction with short reads
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Fig. 2 A circos plot of B. bubalis chromosome mapping to B. taurus. Chromosome 1–5 in B. bubalis are sub-metacentric and clear mapping to the expected
homologous B. taurus (UMD3.1) chromosomes is found. Conservation of synteny of all B. bubalis chromosomes to B. taurus matched the whole-genome RH
map

Table 1 Assembly statistics

Assembly Software Assembly level Number of sequencesa Number of gaps N50 (Mb) Assembly size (Gb)

PacBio FALCON-Unzip contig 953 0 18.8 2.654
PacBio+Chicago HiRise scaffold 737 255 30.3 2.654
PacBio+Chicago+Hi-C HiRise scaffold 506 488 117.2 2.654
UOA_WB_1 PBJelly, Aarow,

Pilon
chromosome 25 383 117.2 2.622

aThere are 484 unplaced contigs in the final chromosome-level assembly. These unplaced contigs comprise ~1% of total bases in the assembly and are not counted in the final UOA_WB_1 assembly size

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-08260-0

4 NATURE COMMUNICATIONS |          (2019) 10:260 | https://doi.org/10.1038/s41467-018-08260-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


read reference assemblies7 (Supplementary Note 1 and Supple-
mentary Table 2). The per-base substitution quality values (QVs)
for the UMD_CASPUR_WB_2.0 and for the UOA_WB_1
reference assemblies were 36.46 and 41.96, respectively. As the
QV represents the phred-scaled probability of an incorrect base
substitution in the assembly, a difference of 5 QV points indicates
that UOA_WB_1 contains nearly half an order of magnitude
fewer single nucleotide errors than UMD_CASPUR_WB_2.0.
The contig N50 and scaffold N50 in UOA_WB_1 have a 1023-
fold and 83-fold improvement, respectively, over the previous
short-read based assembly (Supplementary Table 3).

Contigs constructed from long-reads should, in principle, be
better than those produced from short-reads, as the former will
span longer repeat regions. However, it is rare to be able to
directly compare long-read to short-read-based assemblies of a
complex genome with all sequencing data from the same
individual. Both UMD_CASPUR_WB_2.0 and UOA_WB_1 were
produced from the same female water buffalo, Olimpia. Contigs
from UMD_CASPUR_WB_2.0 were aligned using nucmer21 to
the new UOA_WB_1 assembly to assess the larger structural

differences (50–10,000 bp) using Assemblytics22. The
UOA_WB_1 assembly reported here is partly phased and has a
genome size of 2.66 Gb; whereas, the short-read buffalo assembly
(UMD_CASPUR_WB_2.0) is a mosaic of haplotypes and was
highly fragmented, with the 2.84 Gb of assembled sequence
included in 366,983 scaffolds with a contig N50 of ~22 kb. The
fragmentation and inclusion of a mosaic of haplotypes in the
short-read assembly in part explains the larger size. Therefore,
differences between the two assemblies may arise from hetero-
zygous alleles rather than true difference with UOA_WB_1. To
test this, the haplotigs that represented 58% of the genome, were
aligned to UOA_WB_1. A total of 12.5% of the structural
differences called from the short-read assembly matched with the
haplotigs (Fig. 3a). However, 9170 structural differences that
comprise 3.3 Mb are likely to be assembly errors in UMD_CAS-
PUR_WB_2.0; the majority being missing sequence (Fig. 3b, c). A
total of 19 regions each larger than 8 kb, were missing from the
previous assembly. Although Olimpia has one common grand-
sire, and therefore a substantial amount of inbreeding, the level of
heterozygosity was sufficient to assemble haplotigs which
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Fig. 3 Structural differences between UMD_CASPUR_WB_2.0 and UOA_WB_1. a Venn diagram of structural differences called in UMD_CASPUR_WB_2.0
and haplotigs when UOA_WB_1 was used as the reference. The 8664 unique and 1313 overlapping differences in haplotigs represent heterozygous alleles.
Structural differences present only in UMD_CASPUR_WB_2.0 are likely assembly errors. b Total bases of structural differences in categories deletion,
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in UOA_WB_1 but missing in UMD_CASPUR_WB_2.0. c Count of structural differences in the categories from part b, partitioned by size
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contained 9989 structural variants (SVs) for a total of 10.4 Mb
(Supplementary Figure 4) and carried 2,826,343 SNPs.

The assembled sequence contains 3841 complete single-copy
orthologs and only 40 duplicated orthologs for the 4104
mammalian BUSCO gene groups (Supplementary Figure 5).
Although the presence of 93.6% BUSCO completeness score
indicates that the current assembly is of high quality, we caution
using this metric for assembly evaluation. The previous short-
read-based water buffalo assembly had a BUSCO score of 93.0%
despite having a highly fragmented genome. PacBio-based
assemblies of zebra finch and hummingbird also reported that
BUSCO scores that were little improved when compared with
intermediate and short-read-based assemblies12.

Sequence contiguity assessments. A metric to assess the quality
of a genome assembly is the number of gaps that interrupt
sequence contiguity. Compared with the human reference
(GRCh38) and the goat reference (ARS1) (Fig. 4), UOA_WB_1
has fewer gaps and is more contiguous. Only the X chromosome,
with 65 gaps, compared unfavorably with the human X chro-
mosome (28 gaps). The human genome still has the longest un-
gapped contig of 141.4 Mb (on chromosome 2). The longest un-
gapped contig in the water buffalo genome is 104.7 Mb (on
chromosome 1); whereas, the longest un-gapped goat contig is 87
Mb (on chromosome 11). Chromosome 24 of UOA_WB_1 is the
most complete buffalo chromosome with only a single gap.

Resolution of longer repeats. The assembly strategy used for
UOA_WB_1, based on long PacBio reads, substantially improved
repeat resolution when compared with UMD_CASPUR_WB_2.0.
Over 47.48% of the assembly consists of repeat elements, which is
consistent with other published mammalian assemblies, including
the human GRCh38 and the goat ARS1. The UOA_WB_1 buffalo
assembly has a 1.59% higher repeat content than the UMD_-
CASPUR_WB_2.0 assembly. A quarter of the genome is covered
by two large repeat families, which are long interspersed nuclear
element (LINE) L1 and LINE/RTE-BovB (Supplementary Fig-
ure 6). Scaffolds that could not be placed on chromosomes would
be expected to be rich in repeats, and indeed 23% of the unplaced
scaffolds are comprised of centromeric repeats. The next most
abundant repeat types in unplaced scaffolds are LINE/L1 and
LINE/RTE-BovB elements, which together account for another
16% of bases in unplaced scaffolds. The centromeric, LINE L1
and BovB repeat-rich regions account for most of the breaks in
sequence contiguity. UOA_WB_1 has more repeats >2 kb when
compared with the previous short-read based water buffalo
assembly (Fig. 5a). Additionally, the LINE L1, BovB and cen-
tromeric repeats present in UOA_WB_1 are longer than those in
the goat ARS1. Chromosomes 1–5 of the water buffalo are sub-
metacentric, and centromeric repeats were found at the expected
locations where homologous cattle chromosomes are joined
together18. For example, water buffalo chromosome 1 (202Mb) is
homologous to cattle chromosome 27 (45Mb) joined with cattle
chromosome 1 (158Mb) and centromeric repeats are found at
the junction. A total of 15 out of 25 chromosomes have cen-
tromeric repeats >5 kb illustrating that UOA_WB_1 is a true
chromosome-level assembly. Seven acrocentric autosomes have
centromeric repeats within 100 kb from the chromosome ends,
suggesting the assembly approaches the telomeres. However, the
assembly of telomeres is difficult and searches for the ubiquitous
vertebrate telomeric repeats (TTAGGG)n did not identify any
chromosome with resolved telomeres.

Improved gene annotation. Annotation of UOA_WB_1 was
carried out using ~15 billion RNA-Seq reads from over 50

different tissues, which is ~10 times the quantity of RNA-Seq
reads used to annotate UMD_CASPUR_WB_2.0 and more than
those used to annotate the latest human genome GRCh38. A
comparison of various assembly features between water buffalo,
goat, and human genomes is given in Table 2. UOA_WB_1
contains a total of 20,801 protein-coding genes, 8443 non-coding
genes, and 4465 pseudogenes. The full annotation report for the
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current B. bubalis assembly is available in Annotation Release 101
(AR 101); whereas, the previous assembly is in Annotation
Release 100 (AR 100) (see URLs). Only 3% of gene models are
strictly identical between the current and previous assembly, 47%
have undergone minor changes and 26% of annotated genes are
considered novel, as no good match was found in the previous
assembly. One indicator of the high quality of genome annotation
is the presence of few partial coding sequence (CDS).
UOA_WB_1 has only 157 partial CDS; ~10 times fewer than the
previous assembly (Supplementary Table 4). The latest human
annotation (GRCh38, NCBI Annotation Release 109) and goat

annotation (ARS1, NCBI Annotation Release 102) contain 533
and 457 partial CDS, respectively. Another indication that
UOA_WB_1 is an improvement over UMD_CASPUR_WB_2.0
is the increase in the mean and median CDS length from 1787 bp
and 1332 bp in AR 100 to 2031 bp and 1500 bp in AR 101, which
are values similar to the latest human annotation. The percentage
of CDSs with major correction in water buffalo (UOA_WB_1), in
which a base insertion or deletion relative to the genomic
sequence was introduced in order to maintain the frame of the
protein is 9% and comparable to some recent PacBio-based
reference assemblies also annotated by the NCBI Eukaryotic
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Fig. 5 Resolution of hard to assemble repetitive and polymorphic regions. a Violin plot of repeat lengths >2 kb for LINE/L1, LINE/RTE-BovB and satellite/
centromeric repeats for ARS1, UMD_CASPUR_WB_2.0 and UOA_WB_1 assemblies. b Dot plot of a ~218 kb region of MHC class II in UOA_WB_1
(horizontal) against UMD_CASPUR_WB_2.0 (vertical) showing a substantial level of repetition throughout the region. c Resolved MHC class II genes
present on the single contig in UOA_WB_1 also shown in b. Protein-coding genes in UOA_WB_1 are shown for the same single contig, with assembly gaps
for the same region in UMD_CASPUR_WB_2.0
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Genome Annotation Pipeline: swine (Sscrofa11.1, 11%), cat
(Felis_catus_9.0, 8%), the Egyptian bat (Raegyp2.0, 11%), but
higher than for goat (ARS1, 4%) and horse (EquCab3.0, 3%).

The high sequence contiguity of the current assembly allows
the hard to assemble gene clusters to be resolved and annotated.
As an illustration, the major histocompatibility complex (MHC)
II region is fully assembled. The MHC plays a pivotal role in
initiating immune responses and hence it is important for disease
resistance23. The MHC is in a gene dense region and contains
highly polymorphic loci and long-repetitive sequences. This
structural complexity has made it extremely difficult to assemble
the MHC region24. Without any additional information such as
BAC sequencing, the MHC class II region was assembled as one
contig, spanning ~218 kb whereas the equivalent region in
UMD_CASPUR_WB_2.0 has 26 gaps (Fig. 5b, c).

Discussion
The goal of a genome project is a finished haplotype-resolved
assembly with no gaps. Closing gaps requires significant pains-
taking effort3, and even with the availability of long reads, gaps
are likely to remain open while filled gaps may contain errors25.
No mammalian genome is completely assembled and gap free but
it is now feasible to obtain near-finished haplotype-resolved
assemblies using the methodology described here for the B.
bubalis. Despite a degree of homozygosity in the animal
sequenced, with the 75x PacBio coverage it was possible to assign
58% of the genome to haplotigs and to surpass the sequence
contiguity of both the latest goat and the human reference gen-
omes. This is partly because PacBio reads used in this assembly
were on average 11.5 kb, more than twice the length of those used
for the goat assembly7. Better sequence contiguity and ~58% of
the genome phased led to improved gene annotation12, which
surpasses the goat genome annotation when using a count of
partial CDS as the quality measure.

Nevertheless, even with the long sequence reads, contiguity is
interrupted by repeats such as centromeres and LINEs, which
necessitates the use of scaffolding technologies. The use of Chi-
cago11 and Hi-C9 here achieved longer range scaffolding,
approaching chromosome-level assembly. Other techniques
including optical mapping from BioNano26 may further improve
the assembly quality, even though join accuracy is reported to be
~15% higher in Chicago27. Furthermore, the Chicago-based
methods incorporate more smaller scaffolds (<100 kb) than
optical mapping. After the initial PacBio FALCON-Unzip contig
assembly, the median contigs length was 67,420 bp, which argues
that Chicago is a better choice than an optical map. However,
better results may come with the use of both Chicago and optical

mapping as the two technologies have different advantages and
biases. The goat assembly, which used optical mapping but not
Chicago, contains six autosomes with telomeric sequences
whereas the water buffalo has none. The Chicago method relies
on mapping short Illumina reads, which may miss the telomeric
regions that are highly repetitive with (TTAGGG)n.

Increased accessibility of short-read sequencing has resulted in
a deluge of species with genome assemblies; mostly incomplete
and fragmented. Using long-read PacBio sequencing we covered
many regions missing from Illumina-based sequence from the
same individual, and were able to assemble 19 regions each larger
than 8 kb that were undetected in the short-read data. A major
advantage of long-read sequencing is the inclusion of large repeat
families, such as LINE L1 and BovB that are not properly
assembled by short-read-based methods. In the absence of this
information evolution of these elements which differ among
species and may influence gene expression (e.g. 16% of genome B.
bubalis is made up of LINE L1 and BovB) cannot be studied.

The HiRise and FALCON-Unzip software sometimes gave
conflicting information, mainly in regions where there are hap-
lotype phase switches. Genome sequences generated by early
adopters of the FALCON-Unzip and HiRise (e.g. durian gen-
ome28) may therefore contain false contig breaks. We have cre-
ated custom scripts to rejoin such false breaks but in the future
assemblers such as FALCON-Phase16 that integrates Chicago/Hi-
C data directly may better deal with this problem. Besides hap-
lotype phase switches, the breaks identified by HiRise around
regions with high coverage indicate potential segmental dupli-
cation that might be tandem or interspersed. In the case of tan-
dem duplication, the assembly may have compressed such repeats
leading to a higher than expected coverage and hence, a break to
the contig is appropriate. If the high coverage region results from
interspersed segmental duplication and the contig is indeed cor-
rect, breaking it should not be a problem because the gap filling
step should refill the gap.

The water buffalo assembly reported here demonstrates that
the combination of long-read sequencing with serial Chicago and
then Hi-C scaffolding produces a very high-quality chromosome-
level mammalian genome assembly. Additional information used
included the LD mapping and conservation of synteny with the
cattle and goat genomes, to refine and validate the assembly, but
these did not lead to substantial improvements. Additionally, we
used short paired-end reads to correct indels, but found that only
~0.014% of the genome or 0.37 Mb required correction (Sup-
plementary Table 5). As long-read sequencing chemistry con-
tinues to improve, the use of short reads for assembly polishing
may become unnecessary. Long-read sequencing coupled with

Table 2 Assembly features

Featurea Water buffalo (UOA_WB_1) Water buffalo (UMD_CASPUR_WB_2.0) Goat (ARS1) Human (GRCh38)

Genome size (Gbp) 2.66 2.84 2.92 3.26
Repeat (%)b 47.48 45.89 50.58 49.95
Genes count 29,244 24,014 24,766 38,096
Coding sequences count 58,204 41,486 42,674 113,633
Introns count 238,481 209,659 209,898 351,892
Exons count 269,697 234,918 236,566 408,659
Transcripts count 71,537 47,030 48,672 160,474
Mean number of transcripts per gene 2.54 1.91 2.05 4.18
Mean number of exons per transcript 11.79 10.73 12.07 11.72

Comparisons of various assembly features of the water buffalo, goat, and human genomes as annotated by NCBI (water buffalo UOA_WB_1: NCBI AR 101, water buffalo UMD_CASPUR_WB_2.0: NCBI AR
100, goat ARS1: NCBI AR 102, human GRCh38.p12: AR 109)
aPseudogenes are excluded
bPercentage of sequences masked by RepeatMasker
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chromatin conformation capture technologies is currently one of
the best approaches to generate high quality genome assemblies
without the need for a pre-existing reference.

Methods
Chosen animal. A female Italian Mediterranean buffalo, Olimpia, the offspring of a
half-sib mating previously used for a draft genome assembly based on short reads19

(GenBank assembly accession: GCA_000471725.1) was chosen for sequencing.
Olimpia has a normal river buffalo karyotype (n= 25; 2n= 50) as verified by high
resolution R-banding19. Blood samples were collected for sequencing. All animal
work was done in compliance with Italian laws on animal experimentation and
ethics (DL n. 116, 27/01/1992).

Genome sequencing and assembly of contigs. Seven libraries for SMRT
sequencing were constructed from blood derived genomic DNA, using SMRTbell
Template Prep Kit v1.0 (Pacific Biosciences, Menlo Park, CA; “PacBio”). After
library construction, size selection was performed on a BluePippin instrument
(Sage Science, Beverley, MA) with size cutoff set at 30 kilobases (kb). A total of 8
SMRT cells were run on the RSII instrument (PacBio) using the P6/C4 chemistry,
to test each library prior to production runs totaling 57 SMRT Cell v1M on the
Sequel instrument (PacBio) using Sequel Sequencing Kit v1.2 chemistry. A total of
199.2 Gbp was generated with mean read length of 5.8 kb for RS II data and 11.5 kb
for Sequel data, respectively: 96% of the sequence yield that comprises 191 Gb of
data came from the Sequel platform. Assuming a genome size of 2.65 Gbp, the raw
PacBio data represent ~×75 coverage.

The de novo assembly of contigs was performed with FALCON15 version 0.7.0
and FALCON-Unzip (see URLs). Briefly, reads longer than 5 kb were selected as
“seed” reads for error correction (“preassembly”). Preassembly in FALCON uses
DALigner to do all-by-all alignments of the raw reads. The use of sensitive
DALigner parameters (-k14 -h256 -l1200 versus -k18 -h1250 -l1500) resulted in a
higher pre-assembled yield; measured as the total length of pre-assembled reads
divided by the total length of seed reads. See Supplementary Note 1 for the
configuration file. The FALCON assembly resulted in 1694 primary contigs of total
length 2.66 Gb, contig N50 of 18.7 Mb and an additional 0.22 Gb of “associate
contigs” that represent divergent haplotypes in the genome. The FALCON-Unzip
module was then applied, whereby raw reads are phased according to SNPs
identified in the draft FALCON assembly and then reassembled in separate
haplotype-specific pools. FALCON-Unzip produces contiguous primary contigs
and more fragmented haplotigs, which represent phased, alternate haplotypes. The
genome assembly was polished twice: first as part of the FALCON-Unzip pipeline
using haplotype-phased reads, and then second, using the “resequencing” analysis
application of SMRT-Link v4.0.0 with default parameters and primary contigs and
haplotigs concatenated into the single reference. In resequencing, all reads were
aligned to the genome assembly contigs using BLASR and then consensus
sequences were called using the arrow algorithm. The final FALCON-Unzip
assembly had 953 primary contigs and 7956 haplotigs.

Chicago library preparation and sequencing. Three Chicago libraries were pre-
pared as described previously11. Briefly, for each library, ~500 ng of genomic DNA
(mean fragment length of 75 bp) was reconstituted into chromatin in vitro and
fixed with formaldehyde. Fixed chromatin was digested with DpnII, the 5’ over-
hangs filled in with biotinylated nucleotides, and free blunt ends ligated. After
ligation, crosslinks were reversed and the DNA purified. Purified DNA was treated
to remove biotin that was not internal to ligated fragments. The DNA was then
sheared to ~350 bp mean fragment size and sequencing libraries were generated
using NEBNext Ultra enzymes and Illumina-compatible adapters. Biotin-
containing fragments were isolated using streptavidin beads before PCR enrich-
ment of each library. The libraries were sequenced on an Illumina NextSeq500. The
number and length of read pairs produced for each library was: 87 million, 2 × 151
bp for library 1; 55 million, 2 × 151 bp for library 2; 67 million, 2 × 151 bp for
library 3. Together, these Chicago library reads provided ×95 physical coverage of
the genome (1–100 kb pairs).

Dovetail Hi-C library preparation and sequencing. Three Dovetail Hi-C libraries
were prepared as described previously9. Briefly, for each library, chromatin was
fixed in the intact nucleus with formaldehyde. Fixed chromatin was processed in
the same way as for the Chicago library preparation. The libraries were sequenced
on an Illumina HiSeq X (rapid run mode). The number and length of read pairs
produced for each library was: 169 million, 2 × 151 bp for library 1; 176 million,
2 × 151 bp for library 2; 168 million, 2 × 151 bp for library 3. Together, these
Dovetail Hi-C library reads provided ×5191 physical coverage of the genome
(10–10,000 kb pairs).

Scaffolding with HiRise. The 953 primary contigs from the FALCON-Unzip
assembly and Chicago reads were used as inputs for the Dovetail HiRise Scaffolding
software11. The program is specifically designed to use proximity-ligation data to
scaffold contigs. Briefly, the process starts by aligning Chicago reads to the primary

contigs assembly using a modified SNAP aligner29 (https://github.com/robertDT/
dt-snap) with parameters “-ku -as -C-+-tj GATCGATC -mrl 20”. A likelihood
model is then built based on the mapping distances of read pairs. The scaffolding
process makes decisions on contig breaks and joins iteratively to arrive at an
assembly that best fits the model.

The primary contigs were broken at 108 positions and 293 joins were made. The
large number of breaks introduced to the primary contigs suggested that some of
the breaks were incorrect. Breaks created were therefore tested as follows. For each
break, a 50 kb window with the breakpoint at the center was assessed for the PacBio
sequence coverage and Chicago read pair distance. In some cases incompatibilities
in the use of primary contigs as input assembly for HiRise scaffolding were
identified. These errors occurred mainly where there was a phase switch in the
FALCON-Unzip assembly. Custom scripts were written to identify false breaks,
which were identified as a HiRise breaks where the PacBio sequence coverage was
normal. Contigs were only joined based on high confidence breaks and joins. After
scaffolding and error correction with Chicago reads the resulting scaffolds were
used as input for a second round of HiRise scaffolding using Hi-C reads. The same
methods were used to explore and confirm breaks and joins in scaffolds. The
clustering of scaffolds into a chromosome-scale assembly is given in Supplementary
Figure 7.

Checking scaffold joins. Currently 388 loci are mapped on the cytogenetic map30

and 3093 loci are present on the radiation hybrid (RH) map18 for the water buffalo.
The limited number of loci physically mapped provided insufficient resolution to
confirm the precise order and orientation of scaffolds. Instead we used linkage
disequilibrium (LD) data coupled with conservation of synteny between buffalo
with cattle and goat genomes to validate the assembly, order and orientation of
contigs in scaffolds. A linkage disequilibrium (LD) map for the buffalo was created
using the LDMAP program31 from SNP genotype data. Briefly, the genotype data
came from 529 animals assayed on the 90 K buffalo Axiom chip32. First, the SNP
sequences were mapped to the new reference using blastn. To test for scaffolds that
might belong together, each scaffold was joined to all other scaffolds in all possible
orientations and these synthetic joins were checked for changes in LD that would
be consistent with them being contiguous. Similarly, scaffolds were analyzed for
internal jumps in LD that would be consistent with underlying contigs not being
correctly assembled (Supplementary Figure 8). The low density of the SNP data
meant that only major scaffolds carried sufficient SNPs to be tested in this manner.
For each SNP, LDMAP gives a location in LD units33 (LDUs) and intervals
between apparently adjacent SNPs which span a large LDU distance suggest weak
LD across the interval. These larger LD jumps are indicative of potential mis-
assembly. Altogether, 58,588 LD jumps were identified and the outlier threshold
value based on standard scaffolds was 0.275 (Supplementary Figure 8). Any region
with LD jump higher than the outlier threshold was treated as a potential mis-join.

After scaffolds were built with serial Chicago and Hi-C assembly, the scaffolds
contained 484 gaps. Each gap was the join of two contigs. To check for
conservation of synteny, the left and right 3 kb sequences of each gap were used as
input for blastn searches against the UMD3.1 bovine34 and ARS1 goat7 genomes.
The blastn parameters were set to keep alignments with e-value less than 1e−10 and
percent identity more than 85%. A gap was defined as having conserved synteny if
the left and right sequences had blast hits to the same target chromosome, same
strand, had an alignment length of 1 kb or more and were within 1Mb of each
other.

Gap filling and polishing. After checking scaffolds with LD data and conserved
synteny, the scaffolds that contain 488 gaps were gap filled with PBJelly35 v15.8.24
using all raw PacBio Sequel subreads. PBJelly was run with default parameters
except for the support module, where the options “captureOnly and spanOnly”
were used. This step closed 54 gaps that further add support to the contig joins
surrounding these gaps. A final round of BLASR and arrow (see URLs) was run to
polish the scaffolds to give quality scores to gap filled sequences. Finally, an
additional ~×80 coverage of paired-end Illumina WGS library was generated for
sequence polishing using Pilon v1.2236. The insert size for the Illumina library was
350 bp and sequencing was on a NextSeq500 generating 2 × 150 bp reads using a
300 cycle kit with 1% PhiX spike-in. Illumina reads were aligned to the polished
gap filled assembly using BWA v0.7.1237 and SAMtools v0.1.1838. Pilon was run
with the parameters “–diploid –fix indels –nostrays” to correct the insertion/
deletion errors that are more common in PacBio reads. There were approximately
3.5 times more insertions (145,105 events) than deletions (41,409 events) corrected
with Pilon (Supplementary Table 5).

The final assembly passed the NCBI foreign contamination screens that filter
out common contaminants such as vectors, bacterial insertion sequences, E. coli,
phage genomes, adaptor linkers and primers, mitochondria, chromosome of
unrelated organisms and ribosomal RNA genes.

Assembly evaluation. The completeness of the genome from contig to
chromosome-level assembly was assessed using the benchmarking universal single-
copy orthologs (BUSCO) v2.0.139. The mammalia_odb9 lineage-specific profile
that contains 4104 BUSCO gene groups was tested against assemblies of the water
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buffalo using the option “-m geno”. (Supplementary Figure 6). Further detail on
assembly evaluation is given in Supplementary Note 1.

Genome annotation. The NCBI Eukaryotic Genome Annotation Pipeline was
used to annotate genes, transcripts, proteins and other genomic features40. The
methodology for annotation is as described for the UMD_CASPUR_WB_2.0
assembly19. The evidence used as input for this annotation run included 3462
buffalo transcripts present in Genbank or dbEST, 1013 buffalo Genbank protein
sequences, 50,553 human RefSeq proteins (with NP_ prefix), 13,381 Bos taurus
known RefSeq proteins and 15.6 billion RNA-Seq reads from over 50 different
buffalo tissues.

Repeats analysis. RepeatMasker version open-4.0.6 (see URLs) was used to search
for repeats in the current assembly by identifying matches to RepBase41 and
RepeatMasker database both version 20150807. Results of repeat searches of the
previous short-read water buffalo assembly (GCF_000471725) and goat assembly
(GCF_001704415.1) were downloaded from the NCBI. Only repeats with matches
above 60% identity were used for analysis. Centromeric repeat analysis was carried
out using the cattle and sheep repeats that belong to the family ‘Satellite/centr’
within Repbase. RepeatMasker by default searches for 6-mer TTAGGG, which is
the vertebrate telomeric repeat. Chromosome ends defined as within 100 kb of
sequence ends were searched for telomeric repeats.

Gap comparisons and sequence contiguity. Two of the best mammalian genome
assemblies, the human genome assembly (GRCh38.p12) and goat assembly (ARS1),
were downloaded from the NCBI for the evaluation of gaps and sequence con-
tiguity against the buffalo genome. Only sequences that belong to autosomes and X
chromosome were retained for analysis, whereas unplaced, unlocalised, mito-
chondrial and Y chromosome sequences were filtered out. The tool seqtk v1.2-r94
(see URLs) was used to generate positions of gaps with minimum of three Ns, as
well as un-gapped contigs that result from breaking of scaffolds at each gap
position (Supplementary Note 1). Using this method, the 649 gaps reported in the
goat genome7 were reproduced. The number of gaps and un-gapped contig length
distribution were analysed using custom R scripts.

Statistical analysis. R/Bioconductor was used for all statistical analyses. Wilcoxon
rank-sum test with continuity correction was used to compare un-gapped contigs
of human, goat and water buffalo using the function wilcox.test for a one-sided test
of whether the buffalo has longer sequence contiguity at P < 0.05 after Bonferroni
correction for multiple tests.

Code availability. Custom scripts can be found at GitHub repository at the fol-
lowing URL: (https://github.com/lloydlow/BuffaloAssemblyScripts)

URLs. Arrow, https://github.com/PacificBiosciences/GenomicConsensus; seqtk,
https://github.com/lh3/seqtk; FALCON-Unzip, https://github.com/
PacificBiosciences/FALCON_unzip; RepeatMasker, http://www.repeatmasker.org;
Annotation Release 101, https://www.ncbi.nlm.nih.gov/genome/annotation_euk/
Bubalus_bubalis/101/; Annotation Release 100, https://www.ncbi.nlm.nih.gov/
genome/annotation_euk/Bubalus_bubalis/100/

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The PacBio reads, Chicago reads, Hi-C reads, and Illumina paired-end reads are
available in SRA under BioProject PRJNA437177. The RNA-seq reads can be
obtained from BioProject PRJEB25226 and PRJEB4351. The previous short-reads-
based water buffalo assembly, GCF_000471725.1, was downloaded from the NCBI.
Intermediary assembly FASTA files and other miscellaneous information are
available from the corresponding authors upon request.
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