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Abstract: Oral squamous cell carcinoma (OSCC) prog-
nosis remains poor. Here we aimed to identify an effective
prognostic signature for predicting the survival of patients
with OSCC. Gene-expression and clinical data were obtained
from the Cancer Genome Atlas database. Immune microen-
vironment-associated genes were identified using bioinfor-
matics. Subtype and risk-score analyses were performed for
these genes. Kaplan–Meier analysis and immune cell infil-
tration level were explored in different subtypes and risk-
score groups. The prognostic ability, independent prognosis,
and clinical features of the risk score were assessed.
Furthermore, immunotherapy response based on the risk
score was explored. Finally, a conjoint analysis of the sub-
type and risk-score groups was performed to determine the
best prognostic combination. We found 11 potential prog-
nostic genes and constructed a risk-score model. The sub-
type cluster 2 and a high-risk group showed the worst
overall survival; differences in survival status might be
due to the different immune cell infiltration levels. The
risk score showed good performance, independent prog-
nostic value, and valuable clinical application. Higher risk
scores showed higher Tumor Immune Dysfunction and
Exclusion scores, indicating that patients with a high-
risk score were less likely to benefit from immunotherapy.
Finally, conjoint analysis for the subgroups and risk groups
showed the best predictive ability.

Keywords: oral cancer, subtype, risk score, prognosis,
survival

1 Introduction

Head and neck squamous cell carcinoma (HNSCC) is a
heterogeneous malignant tumor that arises from the squa-
mous epithelium of the oral cavity, oropharynx, larynx,
and hypopharynx [1]. Oral squamous cell carcinoma (OSCC)
is the main subtype of HNSCC, accounting for approximately
30–40% of the cases [2]. Traditional risk factors for OSCC
include consumption of tobacco and alcohol as well as
human papillomavirus infection [3]. The prognosis of patients
with OSCC is relatively poor, with only an approximately 50%
5year survival rate [4]. About 10–30% of the patients with
advanced-stage OSCC present locoregional recurrences, and
15–25% manifest distant metastases [5]. Thus, the identifica-
tion of relevant prognostic biomarkers is necessary for deci-
sion-making to improve patient outcomes. Many prognosis-
related gene biomarkers have been identified; however, they
are still under molecular exploration, and relevant clinical
verification is lacking.

Currently, the treatment for OSCC focuses on surgery
accompanied by chemotherapy or radiotherapy. Recently,
immunotherapy has achieved more favorable outcomes,
as some patients with HNSCC demonstrate improved clin-
ical survival following the blockade of PD-1 and PD-L1 [6].
Numerous studies have found that OSCC is correlated with
the immune microenvironment; however, the specific
mechanism remains obscure. To date, several studies
have found the important regulatory roles of immune
cells and stromal cells in the development of tumors.
Improved overall survival (OS) of patients with OSCC
is associated with high levels of CD8+ T-cell infiltration
[7,8]. Additionally, regulatory T-cells participate in the
creation of an immunosuppressive environment in HNSCC
[9] and OSCC [10]. Cillo et al. also emphasized the impor-
tant roles of CD8+ T-cells and regulatory T-cells in HNSCC
[11]. Therefore, the immune microenvironment plays a sig-
nificant role in tumor development.

Although immunotherapy has achieved considerable
results, some patients and tumor types cannot benefit from
immunotherapy [11]. In addition, OSCC, like many other
types of cancer, is associated with genomic alterations [5].
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Therefore, it is necessary to identify distinctive OSCC sub-
groups for the development of more individualized treat-
ments. Bioinformatics has been used in the identification
of several molecular markers and the construction of pro-
mising prognostic models [12–14]. The widespread use
of bioinformatics tools facilitates the understanding of
numerous diseases. Therefore, we aimed to use bioinfor-
matics to identify a useful prognostic signature related to
the tumor immune microenvironment in OSCC.

2 Methods

2.1 Data resource

Gene expression data and corresponding clinical data for
HNSC in The Cancer Genome Atlas (TCGA) portal were
downloaded from the UCSC Xena database (https://xena.
ucsc.edu/). The expression data were normalized with log2
(fragments per kilobase of exon per million mapped frag-
ments [FPKM] + 1). Data from clinical samples of the oral
cavity (lip, tongue, alveoli, floor of mouth, ridge, buccal
mucosa, hard palate, and oral cavity)were used for further
analysis, while samples from other anatomic sites (hypo-
pharynx, larynx, oropharynx, and tonsil) were excluded.
After removing samples with incomplete OS data, 329
OSCC tumor samples with a detailed follow-up period
were included for subsequent analysis. Clinical data from
the GSE41613 [15] dataset were downloaded from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/). Detailed information on the TCGA-OSCC
and GEO datasets is shown in Tables 1 and 2. A total of 97
patients with OSCC with a detailed follow-up time were
included in this study. The study design is illustrated in
Figure 1.

2.2 Calculation of immune and stromal
scores

The estimate package [16] in R3.6.1 was used to calculate
the immune and stromal scores based on the OSCC
data from TCGA. Wilcoxon tests were conducted to
compare the differential infiltration of immune and
stromal cells between OSCC tumors and normal adja-
cent tissue samples.

2.3 Selection and analysis of hub module
genes

Differentially expressed genes (DEGs) between tumor and
normal samples from TCGA-OSCC were identified using
the Limma package [17] in R3.6.1. The selection threshold
was defined as false discovery rate (FDR) < 0.05, and
|log2 fold change (FC)| > 1. Hierarchical clustering of
DEG expression was performed, and the results were
visualized in heat maps using pheatmap (version 1.0.8)
in R3.6.1 [18]. The DEGs were subjected to weighted gene
co-expression network analysis (WGCNA) [19] to select
the differential immune microenvironment-related gene
set as the module genes. Gene Ontology–Biological Pro-
cess (GO-BP) and Kyoto Encyclopedia of Genes and Gen-
omes (KEGG) analyses were conducted based on the
module genes to obtain significantly related biological
processes and KEGG pathways (with p < 0.05) in DAVID
6.8 [20] (https://david.ncifcrf.gov/).

2.4 Selection of prognosis-related genes

Univariate Cox analysis of the survival package [21] in
R3.1.6 was conducted to select prognostic genes that
were significantly associated with survival (p < 0.05).

2.5 Analysis of OSCC subtype

Based on the prognostic genes, tumor samples from
TCGA-OSCC were grouped into different subtypes using
ConsensusClusterPlus [22] (version 1.54.0) in R3.6.1. Sub-
sequently, Kaplan–Meier curve analysis in the survival
package [21] was performed to evaluate the survival status
of the different subtypes. Finally, the proportion of 22
immune cells was calculated using CIBERSORT based on
TCGA samples, and the differential infiltration of immune
cells was analyzed between the different OSCC subtypes.

2.6 Construction and evaluation of the
prognostic risk model

To identify the optimal prognostic genes, the prognostic
genes were analyzed using the least absolute shrinkage

1136  Yingjie Hua et al.

https://xena.ucsc.edu/
https://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://david.ncifcrf.gov/


and selection operator (LASSO) Cox regression in the
lars package [23] in R3.6.1. Subsequently, the prognostic
model was constructed as follows: Risk score =∑βgenes ×
Expgenes, where βgenes refers to the LASSO coefficient of
genes and Expgenes refers to the expression level of
genes in TCGA. The samples in TCGA and GSE41613
were grouped into high- and low-risk groups, with their
median risk score as the threshold. The Kaplan–Meier
curve [21] was used to explore the differential survival

between the two risk groups. Receiver operating char-
acteristic (ROC) curves and area under the curve (AUC)
values were used to assess the predictive ability of the
risk model. To determine the independent prognostic
value of the risk score, clinical factors such as age,
sex, stage, and risk score were combined into univariate
and multivariate Cox regression analyses. Independent
prognostic elements were selected under p < 0.05, and
forest plots were visualized.

Table 1: Information of TCGA-OSCC datasets

Characteristics Alive (N = 188) Dead (N = 154) Total (N = 342)

OS time (years)
Mean value ± SD 2.89 ± 2.21 1.89 ± 2.40 2.44 ± 2.35
Median [min–max] 2.33 [0.03–15.01] 1.11 [0.03–14.12] 1.76 [0.03–15.01]

Age
Mean value ± SD 59.93 ± 12.36 63.42 ± 13.11 61.50 ± 12.80
Median [min–max] 60.00 [19.00–85.00] 63.00 [24.00–90.00] 61.00 [19.00–90.00]

Clinical_M
M0 171 (50.44%) 152 (44.84%) 323 (95.28%)
M1 1 (0.29%) 1 (0.29%) 2 (0.59%)
MX 13 (3.83%) 1 (0.29%) 14 (4.13%)

Clinical_N
N0 96 (28.32%) 75 (22.12%) 171 (50.44%)
N1 30 (8.85%) 30 (8.85%) 60 (17.70%)
N2 6 (1.77%) 5 (1.47%) 11 (3.24%)
N2a 5 (1.47%) 4 (1.18%) 9 (2.65%)
N2b 24 (7.08%) 22 (6.49%) 46 (13.57%)
N2c 12 (3.54%) 14 (4.13%) 26 (7.67%)
N3 3 (0.88%) 2 (0.59%) 5 (1.47%)
NX 9 (2.65%) 2 (0.59%) 11 (3.24%)

Clinical_T
T1 14 (4.13%) 7 (2.06%) 21 (6.19%)
T2 62 (18.29%) 45 (13.27%) 107 (31.56%)
T3 43 (12.68%) 42 (12.39%) 85 (25.07%)
T4 7 (2.06%) 11 (3.24%) 18 (5.31%)
T4a 50 (14.75%) 47 (13.86%) 97 (28.61%)
T4b 1 (0.29%) 2 (0.59%) 3 (0.88%)
TX 8 (2.36%) 0 (0.0e + 0%) 8 (2.36%)

Clinical_stage
I 7 (2.11%) 5 (1.51%) 12 (3.61%)
II 44 (13.25%) 36 (10.84%) 80 (24.10%)
III 40 (12.05%) 30 (9.04%) 70 (21.08%)
IVA 82 (24.70%) 78 (23.49%) 160 (48.19%)
IVB 4 (1.20%) 3 (0.90%) 7 (2.11%)
IVC 1 (0.30%) 2 (0.60%) 3 (0.90%)

Gender
Female 53 (15.50%) 53 (15.50%) 106 (30.99%)
Male 135 (39.47%) 101 (29.53%) 236 (69.01%)

Histologic_grade
G1 31 (9.14%) 22 (6.49%) 53 (15.63%)
G2 114 (33.63%) 91 (26.84%) 205 (60.47%)
G3 33 (9.73%) 38 (11.21%) 71 (20.94%)
G4 4 (1.18%) 0 (0%) 4 (1.18%)
GX 3 (0.88%) 3 (0.88%) 6 (1.77%)
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2.7 Immune microenvironment and
immunotherapy response analysis

The proportion of 22 immune cells was calculated using
CIBERSORT based on TCGA samples, and differential

infiltration of immune cells was analyzed between dif-
ferent risk groups. Furthermore, the correlation between
the immune cells with significantly different infiltration
and the optimal prognostic genes was analyzed. Next,
patient response to immune checkpoint inhibitor (ICI)

Table 2: Information of GSE41613

Characteristics Alive (N = 46) Dead (N = 51) Total (N = 97)

OS time (months)
Mean value ± SD 66.57 ± 8.92 23.89 ± 19.92 44.13 ± 26.52
Median [min–max] 65.34 [52.60–85.03] 18.40 [0.46–78.29] 54.41 [0.46–85.03]

Age
Mean value ± SD 53.98 ± 8.92 54.43 ± 6.39 54.22 ± 7.66
Median [min–max] 60.00 [19.00–60.00] 55.00 [39.00–60.00] 55.00 [19.00–60.00]

Gender
Female 15 (15.46%) 16 (16.49%) 31 (31.96%)
Male 31 (31.96%) 35 (36.08%) 66 (68.04%)

Stage
I/II 30 (30.93%) 11 (11.34%) 41 (42.27%)
III/IV 16 (16.49%) 40 (41.24%) 56 (57.73%)

Figure 1: Study design. OSCC, oral squamous cell carcinoma; DEGs, differentially expressed genes; WGCNA, weighted gene co-expression
network analysis; GO-BP, gene ontology–biological process; KEGG, Kyoto encyclopedia of genes and genomes; LASSO, least absolute
shrinkage and selection operator; ROC, receiver operator characteristic.
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therapy was predicted in the Tumor Immune Dysfunction
and Exclusion (TIDE) database (http://tide.dfci.harvard.
edu/). Individual responses to immunotherapy were mea-
sured using the TIDE score. TIDE is a computational
method that models two primary mechanisms of tumor
immune escape, T-cell dysfunction, and T-cell exclusion,
which could be used to predict the ICI response in patients
with cancer [24]. A high TIDE score indicates a higher
potential for tumor immune evasion and reduced chances
of benefiting from ICI therapies.

2.8 Clinical prognostic value of the risk
model

To investigate the predictive value of the risk score in
clinical applications, we further analyzed the perfor-
mance of different risk groups in patients divided by
gender, tumor-node-metastasis (TNM) stage, and grade.
Finally, to explore a more effective prediction method for
patients with OSCC, a conjoint analysis combining the
two subtypes and the two risk groups was conducted.
The integrated and risk-score groups were combined
into three new groups: low-C1 (low-risk group and cluster 1),
low-C2/high C1 ([low-risk group and cluster 2] or [high-
risk group and cluster 1]), and high-C2 (high-risk group
and cluster 2). The Kaplan–Meier curve [21] was used to
evaluate the survival of the new groups. Subsequently, the
C-index of the clinical factors (including age, gender, TNM
stage, and grade), subtype groups, risk-score groups, and
combined groups were calculated.

All the abbreviations are listed in Table 3.

3 Results

3.1 Differential stromal and immune scores
between tumor and normal tissue

An estimate algorithm was used to calculate the immune
and stromal scores based on the TCGA database. The
differences in the immune and stromal scores between
OSCC and normal tissues were compared (Figure 2a).
The boxplots showed that both the stromal and immune
scores in tumor tissues were remarkably higher than
those in normal tissue.

3.2 Selection of hub model genes

The Limma package was used to explore the differential
expression levels of genes between OSCC tumor and normal
groups, and the threshold was defined as FDR < 0.05 and
|log2FC| > 1. A total of 3,783 eligible DEGs were identified.
Volcano and heat plots are shown in Figure 2b and c,
respectively. The 3,783 DEGs were included in the WGCNA
analysis and divided into 12 modules (Figures 3a and b).
The correlation between each module and clinical features
was calculated (Figure 3c), and the most relevant modules
with clinical relevance (tan and pink) were selected as the
key modules. Sixty and 161 genes were identified in the tan
and pink modules, respectively. Further analysis suggested
that the tanmodulewas related to the pinkmodule (Figure 3d).
Thus, we generated them into a single large model containing
221 genes in total.

3.3 Function analysis of hub model genes

Biological function annotation and the KEGG signaling
pathway of the 221 hub genes were analyzed in DAVID.
In total, 71 significantly relevant GO-BP and 13 KEGG
pathways were identified at p < 0.05. The top six GO-BP
and KEGG pathways are shown in Figure 3e and f, respec-
tively. Significantly, these biological functions were closely
correlated with immune response, inflammatory response,
and chemokine-related pathways.

3.4 Analysis of OSCC subtype

Based on the 221 hub genes mentioned above, a uni-
variate Cox analysis was conducted to identify the

Table 3: Abbreviations and their full name

Abbreviation Full name

HNSCC Head and neck squamous cell carcinoma
OSCC Oral squamous cell carcinoma
HPV Human papillomavirus
TCGA The Cancer Genome Atlas
GEO Gene Expression Omnibus
DEGs Differentially expressed genes
WGCNA Weighted gene co-expression network analysis
GO-BP Gene Ontology–Biological Process
KEGG Kyoto Encyclopedia of Genes and Genomes
LASSO Least absolute shrinkage and selection operator
ROC Receiver operating characteristic
TIDE Tumor Immune Dysfunction and Exclusion
ICI Immune checkpoint inhibitors
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prognostic genes. A total of 34 genes were significantly
associated with prognosis. Subsequently, based on the 34
prognostic genes, all TCGA-OSCC samples were grouped
into two subtypes (Figure 4a): cluster 1 (188 samples)
and cluster 2 (154 samples). Kaplan–Meier analysis was
conducted to evaluate the prognosis of the different
subtypes. The curve showed that cluster 2 had a less
favorable survival outcome than cluster 1 (Figure 4b).
To explore the differential immune features between the
two clusters, the CIBERSORT algorithm was used to eval-
uate the infiltration level of immune cells, and the differ-
ences between the two clusters were analyzed (Figure 4c).
Finally, 15 differentially expressed immune cell lines were
selected. Cluster 2 showed lower levels of immune cell
infiltration, including CD8+ T-cells, activated CD4 +
memory T-cells, and regulatory T-cells.

3.5 Construction and evaluation of the
prognostic risk model

The same 34 prognostic genes, after univariate Cox analysis,
were also included in the LASSO algorithm to filter the optimal
prognostic genes (Tables S1 and S2; Figure 5a and b). In total,
11 optimal prognostic genes were identified for subsequent
analysis (Table 4). According to the LASSO coefficient and
the gene expression level in TCGA, the risk-score model
was constructed as follows: Risk score = (−0.0215) × Exp
CTLA4 + (−0.0677) × Exp TNFRSF4 + (−0.0487) × Exp
KLHL6 + (−0.0878) × Exp HAO2 + (−0.1814) × Exp OSR2 +
(0.0432) × Exp ZFP42 + (0.0803) × Exp RTN4R + (−0.0189) ×
Exp FCGBP + (0.0513) × Exp IGF2BP2 + (−0.0023) × Exp
KCNA2 + (0.0370) × Exp FST. Subsequently, the risk scores
of the samples in the TCGA and GSE41613 datasets were

Figure 2: Selection of DEGs. (a) The differences in immune/stromal score between tumor and normal tissue. (b) Volcano plot identifying
DEGs. Red and blue points refer to significantly up and downregulated genes, respectively; the horizontal dotted line represents p = 0.05;
two vertical dotted lines represent |log2FC| = 0.5. (c) Heat plot of the top 50 upregulated and downregulated DEGs.
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calculated. All the samples were grouped into high-
and low-risk groups, using the median risk-score as
the threshold. Kaplan–Meier analysis was performed

in TCGA to evaluate the OS of the two risk groups.
The curves showed higher survival rates in the low-
risk group than in the high-risk group (Figure 5c).

Figure 3: Selection of hub model genes. (a) Selection of the soft-thresholding powers in WGCNA analysis. The left panel shows the scale-
free fit index vs the soft-thresholding power. The right panel displays the mean connectivity vs the soft-thresholding power. Power 4 was
chosen because the fit index curve flattened out upon reaching a high value (>0.85). (b) Dendrogram of all DEGs clustered based on the
measurement of dissimilarity. Different colors refer to different modules. (c) Heat plot of the correlation between different modules and
clinical features. (d) Dendrogram of the relationship of the modules. (e) Analysis of GO-BP. The size of the dot represents the number of
genes. The horizontal axis represents the gene proportion, and the vertical axis represents the item name. (f) Signaling pathways in KEGG.
The horizontal axis represents the number of genes, and the vertical axis represents the item name.
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ROC analysis demonstrated that the established risk-score
model in this study possessed a promising predictive ability
for patients with OSCC at years 1, 3, and 5, with AUCs of 0.686,
0.676, and 0.794, respectively (Figure 5d). Kaplan–Meier and
ROC analyses conducted for GSE41613 also strengthened the
results (Figure 5e and f). Furthermore, univariate and multi-
variate Cox analyses were conducted to validate independent
prognostic factors. Combining the clinical information and risk
score, the risk score was confirmed to be an independent
predicting element (Figure 5g and h).

3.6 Correlation of risk core and potential
prognostic genes with immune cells

Differential immune cell infiltration between the two risk
groups was also analyzed, and the results showed that
the infiltration of 14 immune cells significantly differed
between the two groups (Figure 6a). Compared with the
high-risk group, the low-risk group showed higher T- and
B-cell infiltration. Furthermore, we investigated the cor-
relation of the 11 potential prognostic genes with the 14

Figure 4: Analysis of subtypes. (a) All samples are grouped into two subtypes: cluster 1 (C1, 188 samples) and cluster 2 (C2, 154 samples).
(b) Kaplan–Meier curve of the two clusters. (c) The immune cell infiltration analysis between the two clusters. C1, cluster 1; C2, cluster 2.

Figure 5: Construction and evaluation of the risk-score model. (a) LASSO coefficient distribution of 34 genes. (b) Likelihood of bias in LASSO
coefficient distribution. Left and right vertical dashed lines representing lambda.min and lambda.1se, respectively. A total of 11 prognostic
genes were identified. (c and d) Kaplan–Meier curve in the TCGA (c) and GSE41613 datasets (d). (e and f) ROC curve in the TCGA (e) and
GSE41613 datasets (f). (g) Univariate and multivariate Cox analysis conducted in the TCGA. (h) Univariate and multivariate Cox analysis
conducted in the GSE41613.
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immune cells (Figure 6b). The results showed that these
genes were highly correlated with these immune cell
infiltration levels.

The TIDE score was higher in the high-risk group
than in the low-risk group (Figure 6c), indicating that
patients in the high-risk group were more likely to experi-
ence tumor immune evasion and less likely to benefit from
ICI therapies. Furthermore, the 11 potential prognostic
genes were highly related to the TIDE score, demonstrating
their potential predicting value in OSCC.

3.7 Prognostic value of the risk score in
clinical applications

Clinical analysis showed that the high- and low-risk
groups exhibited significant differences in clinical T cate-
gory and stage (Figure 7a), demonstrating that the risk

model may be able to predict the clinical features of the
patients.

The two subtype groups and the two risk groups were
highly correlated with the survival of patients with OCSS.
Thus, we further divided all samples into three groups
(low-C1, low-C2/high-C1, and high-C2), and analyzed their
survival status using the Kaplan–Meier curve method
(Figure 7b). The results showed that the high-C2 and
low-C1 groups had the least and most favorable survival
outcomes, respectively. The C-index of clinical factors
(such as age, sex, TNM stage, and grade) and subtype,
risk, and generated groups were input into the analysis
(Figure 7c). The C-index of the generated groups was the
highest (>0.7), indicating the most effective predictive
ability.

4 Discussion

The immune and stromal scores in tumors were higher
than those in normal tissue, indicating that OSCC is
highly related to the immune microenvironment, which
is consistent with the results of previous studies [25,26].
Bioinformatics has emerged as an effective approach for
identifying molecules that are crucial in diseases. CIBE-
RSORT has been successfully used to estimate immune
cell infiltration in diverse diseases [27–29]. WGCNA is the
most valuable tool for identifying and screening crucial
gene modules and genes for cancer by constructing co-
expression gene networks [12,30,31]. In this study, we
conducted WGCNA analysis to identify immune-related
genes in OSCC, and CIBERSORT to identify the infiltration
level of immune cells. The Limma package was used to
identify DEGs between tumor and normal tissues. In

Table 4: Univariate Cox regression and LASSO analysis of 11 genes

Gene Univariate COX regression LASSO
coefficient

HR (95% CI) p value

CTLA4 0.8473 (0.7671–0.9357) 0.0011 −0.0215
TNFRSF4 0.8158 (0.7136–0.9327) 0.0029 −0.0677
KLHL6 0.8316 (0.7335–0.9427) 0.0039 −0.0487
HAO2 0.7287 (0.5824–0.9117) 0.0056 −0.0878
OSR2 0.8146 (0.7044–0.9420) 0.0057 −0.1814
ZFP42 1.0873 (1.0226–1.1560) 0.0075 0.0432
RTN4R 1.2464 (1.0604–1.4650) 0.0076 0.0803
FCGBP 0.9041 (0.8371–0.9766) 0.0104 −0.0189
IGF2BP2 1.1934 (1.0350–1.3760) 0.0149 0.0513
KCNA2 0.8383 (0.7214–0.9741) 0.0213 −0.0023
FST 1.1147 (1.0079–1.2328) 0.0346 0.0370

Figure 6: The immune cell infiltration analysis for the risk score. (a) The immune cell infiltration analysis between the two risk groups: high-
risk group and low-risk group. (b) The correlation of 14 significantly different immune cells and 11 potential prognostic genes in the risk
model. (c) TIDE score analysis with the risk score.
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total, 3,783 DEGs were identified. Among the 3,783 DEGs,
221 were identified after WGCNA analysis as significantly
related to immune characteristics (via immune and stromal
scores). The function of these genes has been suggested to
be associated with the immune response in this study.

In total, 34 prognostic genes were identified as prog-
nosis-related genes in OSCC. The 34 genes were grouped
into two subtypes, and the Kaplan–Meier curve sug-
gested that patients in cluster 2 had a less favorable sur-
vival outcome than those in cluster 1. Further analysis
showed lower infiltration levels of immune cells, such
as CD8+ T-cells, regulatory T-cells, and M2 macrophages,
in cluster 2, which might explain the less favorable sur-
vival outcome. Improved OS of patients with OSCC is
associated with high CD8+ T-cell infiltration levels [7].
Zhou et al. also suggested the prognostic value of CD8+
T-cells [8]. Moreover, regulatory T-cells are also involved
in the creation of an immunosuppressive environment in
HNSCC [9] and OSCC [10]. These results provide an
understanding of the prognostic abilities of the divided
clusters.

In addition, 11 potential prognostic geneswere included in
the risk-score model after LASSO analysis. The risk score had
independent predictive ability. Furthermore, Kaplan–Meier
analysis showed that a high-risk score suggests a worse
outcome for patients with OSCC. Differences in the
immune cell infiltration landscape between the two risk
groups may explain the differences in survival. CD8+
T-cell, regulatory T-cell, and M1 macrophage levels were
significantly higher in the low-risk group than in the
high-risk group. These differential immune cell infiltra-
tion landscapes may play a pivotal role in explaining the
differential survival status between the two risk groups
[7,8,10]. Macrophages are crucial for the prognosis of var-
ious types of cancer. M1 macrophages are generally con-
sidered to have pro-inflammatory and anti-tumor roles
[25], and lower M1 macrophage levels may be detrimental
to patients with OSCC. These results are consistent with
those of previous studies showing that the level of cancer-
related immune cells is a prognostic factor for OSCC
[25,32]. Furthermore, the suitable AUC value of this model
suggested its good performance in predicting 1, 3, and
5 year survival in OSCC. These results were verified using
another GEO dataset. Together, these findings demon-
strated the promising stable prognostic ability of the risk
score.

Eleven potential prognostic genes were identified for
the risk score. Previous studies have shown that, among
these genes, CTLA4, IGF2BP2, and TNFRSF4 are involved
in cancer procession and affect the prognosis of patients
with OSCC. CTLA4 is extremely important for immune

tolerance [33]. CTLA4 is associated with recurrence- and
metastasis-free survival in patients with OSCC [34]. A clin-
ical analysis conducted for oral cancer showed that CTLA4
can enhance the therapeutic efficacy of anti-PD-1 immu-
notherapy [35]. Furthermore, monoclonal anti-CTLA4 anti-
bodies such as ipilimumab have been used for the treatment
of advanced forms of various cancers like melanoma [36].
IGF2BP2, which is the receptor of N6-methyladenosine, is
known as the insulin-like growth factor 2 mRNA-binding
protein 2 [37]. Emerging evidence shows that IGF2BP2 par-
ticipates in the development and progression of cancers by
communicating with different RNAs such as microRNAs,
messenger RNAs, and long non-coding RNAs. Additionally,
IGF2BP2 is an independent prognostic factor for multiple
cancer types [38]. In HNSCC tissues, IGF2BP2 is highly
expressed, and its high expression is associated with poor
prognosis [37,39]. A recent study showed that IGF2BP2 pro-
motes HNSCC cell migration and invasion via the epithelial-
mesenchymal transition process in vitro, and knockdown of
IGF2BP2 significantly inhibited lymphatic metastasis and
lymphangiogenesis in vivo [40]. High TNFRSF4 expression
is associated with greater survival, suggesting a key role in
HNSCC outcomes [41]. KLHL6, HAO2, and OSR2 have been
shown to be involved in the prognosis of other cancers.
KLHL6 expression levels in tumor tissue have prognostic
value in gastric cancer [42]. The findings suggested that,
in gastric cancer, KLHL6 expression is lower in tumor tis-
sues, and mice experiments revealed that the downregula-
tion of KLHL6 expression also suppresses tumor growth.
HAO2 expression has a carcinostatic effect in hepatocellular
carcinoma and prognostic ability [43]. OSR2 has been iden-
tified as a potential biomarker for survival prognosis in
muscle invasive bladder cancer [44], and its hypermethyla-
tion is a diagnostic marker in gastric cancer [45]. Although
the roles of other genes involved in the prognostic model
have been relatively less explored, some bioinformatics
analyses have identified the prognostic role of some of these
genes, such as RTN4R [46], FCGBP [47], and FST [48], in
OSCC or other types of cancers. In general, the 11 genes
tended to be important in the prognosis of OSCC. Here these
genes were found to be related to immune cells and TIDE
score. The TIDE score is considered the best predictor for ICI
therapies [49]. A high TIDE score indicates a high potential
for tumor immune evasion and low likelihood of benefiting
from anti-PD-1/CTLA4 therapy. In this study, higher risk
scores showed higher TIDE scores, further explaining the
poor prognosis of patients with high-risk scores. More
importantly, we investigated the clinical value of the risk
score. The results showed that different risk groups were
significantly different in clinical T category and stage, sug-
gesting an application of the risk score in the clinic. Finally,
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to explore a more effective prediction method for patients
with OSCC, a conjoint analysis combining the two subtypes
and the two risk groups was conducted. The high-C2 group
had the least favorable survival outcome, and the low-C1
group had the most favorable survival outcome, implying
that the combined application of cluster subtypes and risk
groups can predict the survival status of patients with OSCC.
The C-index of the generated groups was the highest (>0.7),
indicating that it had the most effective predictive ability.

In the present study, a prognostic subtype was iden-
tified, a predictive risk model for OSCC was established,
and these were found to be effective in predicting the
survival status of patients. As expected, the use of the
conjoint analysis of the subtypes and risk scores showed

the highest prognostic ability. We also analyzed the dif-
ferential immune cell infiltration levels in various subtypes
and risk groups, providing an understanding of the differ-
ential survival status to some extent. Finally, our findings
suggest that the risk score is useful in predicting the immu-
notherapy response of patients with OSCC. However, this
study has several limitations. First, the whole analysis con-
ducted in TCGA possessed a small sample size of normal
tissues. Although we conducted external validation of the
GEO dataset, further verification of various datasets and
clinical applications is still needed. Second, the roles of
some of the potential prognostic genes involved in the
risk score are still unknown. Thus, experimental IHC ana-
lysis and clinical validation are still needed.

Figure 7: Clinical value of subtype and risk-score groups. (a) The clinical predictive ability of the risk score in gender, grade, tumor stage,
and TNM. (b) Kaplan–Meier curve among the three new groups: low-C1 (low-risk group and cluster 1), low-C2/high C1 ([low-risk group and
cluster 2] or [high-risk group and cluster 1]), high-C2 (high-risk group and cluster 2). (c) C-index error in all prognostic clinical features,
subtype, risk score, and the new conjoint feature.

Identification of prognostic subtype in oral cancer  1145



Funding information: Authors state no funding involved.

Author contributions: Y.H. conceived and designed the
project. X.S. and K.L. collected the data. Y.H. and C.W.
performed the interpretation of data. Y.H. and C.W. per-
formed the statistical analysis. Y.H. wrote the manu-
script. C.W. revised the paper. All authors read and
approved the final manuscript.

Conflict of interest: Authors state no conflict of interest.

Data availability statement: The datasets generated during
the current study are available in the UCSC Xena database
(https://xena.ucsc.edu/) and GEO database (dataset
GSE41613, https://www.ncbi.nlm.nih.gov/).

References

[1] Solomon B, Young RJ, Rischin D. Head and neck squamous cell
carcinoma: Genomics and emerging biomarkers for immuno-
modulatory cancer treatments. Semin Cancer Biol. 2018;52(Pt
2):228–40.

[2] Braakhuis BJ, Leemans CR, Visser O. Incidence and survival
trends of head and neck squamous cell carcinoma in the
Netherlands between 1989 and 2011. Oral Oncol.
2014;50(7):670–5.

[3] Mes SW, Te Beest D, Poli T, Rossi S, Scheckenbach K, van
Wieringen WN, et al. Prognostic modeling of oral cancer by
gene profiles and clinicopathological co-variables.
Oncotarget. 2017;8(35):59312–23.

[4] Fuller CD, Wang SJ, Thomas CR Jr, Hoffman HT, Weber RS,
Rosenthal DI. Conditional survival in head and neck squamous
cell carcinoma: Results from the SEER dataset 1973–1998.
Cancer. 2007;109(7):1331–43.

[5] Ribeiro IP, Esteves L, Santos A, Barroso L, Marques F,
Caramelo F, et al. A seven-gene signature to predict the
prognosis of oral squamous cell carcinoma. Oncogene.
2021;40(22):3859–69.

[6] Ferris RL, Blumenschein G, Jr, Fayette J, Guigay J, Colevas AD,
Licitra L, et al. Nivolumab for recurrent squamous-cell carci-
noma of the head and neck. N Engl J Med.
2016;375(19):1856–67.

[7] Shimizu S, Hiratsuka H, Koike K, Tsuchihashi K, Sonoda T,
Ogi K, et al. Tumor-infiltrating CD8(+) T-cell density is an
independent prognostic marker for oral squamous cell carci-
noma. Cancer Med. 2019;8(1):80–93.

[8] Zhou C, Wu Y, Jiang L, Li Z, Diao P, Wang D, et al. Density and
location of CD3( +) and CD8( +) tumor-infiltrating lymphocytes
correlate with prognosis of oral squamous cell carcinoma.
J Oral Pathol Med. 2018;47(4):359–67.

[9] Suzuki S, Ogawa T, Sano R, Takahara T, Inukai D, Akira S, et al.
Immune-checkpoint molecules on regulatory T-cells as a
potential therapeutic target in head and neck squamous cell
cancers. Cancer Sci. 2020;111(6):1943–57.

[10] Liu S, Liu D, Li J, Zhang D, Chen Q. Regulatory T cells in oral
squamous cell carcinoma. J Oral Pathol Med.
2016;45(9):635–9.

[11] Cillo AR, Kürten CHL, Tabib T, Qi Z, Onkar S, Wang T, et al.
Immune Landscape of Viral- and Carcinogen-Driven Head and
Neck Cancer. Immunity. 2020;52(1):183–99.e9.

[12] Cui Z, Bhandari R, Lei Q, Lu M, Zhang L, Zhang M, et al.
Identification and exploration of novel macrophage M2-related
biomarkers and potential therapeutic agents in endometriosis.
Front Mol Biosci. 2021;8:656145.

[13] Yan T, Zhu S, Zhu M, Wang C, Guo C. Integrative identification
of hub genes associated with immune cells in atrial fibrillation
using weighted gene correlation network analysis. Front
Cardiovasc Med. 2020;7:631775.

[14] Peng Y, Peng C, Fang Z, Chen G. Bioinformatics analysis
identifies molecular markers regulating development and
progression of endometriosis and potential therapeutic drugs.
Front Genet. 2021;12:622683.

[15] Lohavanichbutr P, Méndez E, Holsinger FC, Rue TC, Zhang Y,
Houck J, et al. A 13-gene signature prognostic of HPV-negative
OSCC: Discovery and external validation. Clin Cancer Res.
2013;19(5):1197–203.

[16] Hu D, Zhou M, Zhu X. Deciphering immune-associated genes
to predict survival in clear cell renal cell cancer. Biomed Res
Int. 2019;2019:2506843.

[17] Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma
powers differential expression analyses for RNA-sequencing
and microarray studies. Nucleic Acids Res. 2015;43(7):e47.

[18] Wang L, Cao C, Ma Q, Zeng Q, Wang H, Cheng Z, et al. RNA-seq
analyses of multiple meristems of soybean: Novel and alter-
native transcripts, evolutionary and functional implications.
BMC Plant Biol. 2014;14:169.

[19] Langfelder P, Horvath S. WGCNA: An R package for weighted
correlation network analysis. BMC Bioinforma. 2008;9(1):1–3.

[20] Huang da W, Sherman BT, Lempicki RA. Systematic and inte-
grative analysis of large gene lists using DAVID bioinformatics
resources. Nat Protoc. 2009;4(1):44–57.

[21] Rizvi AA, Karaesmen E, Morgan M, Preus L, Wang J, Sovic M,
et al. gwasurvivr: An R package for genome-wide survival
analysis. Bioinformatics. 2019;35(11):1968–70.

[22] Zhang X, Ren L, Yan X, Shan Y, Liu L, Zhou J, et al. Identification
of immune-related lncRNAs in periodontitis reveals regulation
network of gene-lncRNA-pathway-immunocyte. Int
Immunopharmacol. 2020;84:106600.

[23] Tibshirani R. The LASSO method for variable selection in the
Cox model. Stat Med. 1997;16(4):385–95.

[24] Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of
T cell dysfunction and exclusion predict cancer immu-
notherapy response. Nat Med. 2018;24(10):1550–8.

[25] Alves AM, Diel LF, Lamers ML. Macrophages and prognosis of
oral squamous cell carcinoma: A systematic review. J Oral
Pathol Med. 2018;47(5):460–7.

[26] Fraga M, Yáñez M, Sherman M, Llerena F, Hernandez M,
Nourdin G, et al. Immunomodulation of T Helper cells by tumor
microenvironment in oral cancer is associated with CCR8
expression and rapid membrane vitamin D signaling pathway.
Front Immunol. 2021;12:643298.

[27] Zhao Y, Zhang M, Pu H, Guo S, Zhang S, Wang Y. Prognostic
implications of pan-cancer CMTM6 Expression and its

1146  Yingjie Hua et al.

https://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/


relationship with the immune microenvironment. Front Oncol.
2020;10:585961.

[28] Kawada JI, Takeuchi S, Imai H, Okumura T, Horiba K, Suzuki T,
et al. Immune cell infiltration landscapes in pediatric acute
myocarditis analyzed by CIBERSORT. J Cardiol.
2021;77(2):174–8.

[29] Kim Y, Kang JW, Kang J, Kwon EJ, Ha M, Kim YK, et al. Novel
deep learning-based survival prediction for oral cancer by
analyzing tumor-infiltrating lymphocyte profiles through CIB-
ERSORT. Oncoimmunology. 2021;10(1):1904573.

[30] Zhao X, Zhang L, Wang J, Zhang M, Song Z, Ni B, et al.
Identification of key biomarkers and immune infiltration in
systemic lupus erythematosus by integrated bioinformatics
analysis. J Transl Med. 2021;19(1):35.

[31] Xu M, Meng Y, Li Q, Charwudzi A, Qin H, Xiong S. Identification
of biomarkers for early diagnosis of multiple myeloma by
weighted gene co-expression network analysis and their
clinical relevance. Hematology. 2022;27(1):322–31.

[32] Kikuchi M, Yamashita D, Hara S, Takebayashi S, Hamaguchi K,
Mizuno K, et al. Clinical significance of tumor-associated
immune cells in patients with oral squamous cell carcinoma.
Head Neck. 2021;43(2):534–43.

[33] Wong YK, Chang KW, Cheng CY, Liu CJ. Association of CTLA-4
gene polymorphism with oral squamous cell carcinoma. J Oral
Pathol Med. 2006;35(1):51–4.

[34] Koike K, Dehari H, Ogi K, Shimizu S, Nishiyama K, Sonoda T,
et al. Prognostic value of FoxP3 and CTLA-4 expression in
patients with oral squamous cell carcinoma. PLoS One.
2020;15(8):e0237465.

[35] Dorta-Estremera S, Hegde VL, Slay RB, Sun R, Yanamandra AV,
Nicholas C, et al. Targeting interferon signaling and CTLA-4
enhance the therapeutic efficacy of anti-PD-1 immunotherapy
in preclinical model of HPV(+) oral cancer. J Immunother
Cancer. 2019;7(1):252.

[36] Karimi A, Alilou S, Mirzaei HR. Adverse events following
administration of anti-CTLA4 antibody ipilimumab. Front
Oncol. 2021;11:624780.

[37] Chou CH, Chang CY, Lu HJ, Hsin MC, Chen MK, Huang HC, et al.
IGF2BP2 polymorphisms are associated with clinical charac-
teristics and development of oral cancer. Int J Mol Sci.
2020;21(16):5662.

[38] Wang J, Chen L, Qiang P. The role of IGF2BP2, an m6A reader
gene, in human metabolic diseases and cancers. Cancer Cell
Int. 2021;21(1):99.

[39] Deng X, Jiang Q, Liu Z, Chen W. Clinical significance of an m6A
reader gene, IGF2BP2, in head and neck squamous cell carci-
noma. Front Mol Biosci. 2020;7:68.

[40] Yu D, Pan M, Li Y, Lu T, Wang Z, Liu C, et al. RNA N6-methy-
ladenosine reader IGF2BP2 promotes lymphatic metastasis
and epithelial-mesenchymal transition of head and neck
squamous carcinoma cells via stabilizing slug mRNA
in an m6A-dependent manner. J Exp Clin Canc Res.
2022;41(1):6.

[41] Qi Z, Liu Y, Mints M, Mullins R, Sample R, Law T, et al. Single-
cell deconvolution of head and neck squamous cell carcinoma.
Cancers. 2021;13(6):1230.

[42] Deng J, Guo J, Ma G, Zhang H, Sun D, Hou Y, et al. Prognostic
value of the cancer oncogene Kelch-like 6 in gastric cancer.
Brit J Surg. 2017;104(13):1847–56.

[43] Mattu S, Fornari F, Quagliata L, Perra A, Angioni MM, Petrelli A,
et al. The metabolic gene HAO2 is downregulated in hepato-
cellular carcinoma and predicts metastasis and poor survival.
J Hepatol. 2016;64(4):891–8.

[44] Uysal D, Kowalewski KF, Kriegmair MC, Wirtz R, Popovic ZV,
Erben P. A comprehensive molecular characterization of the
8q22.2 region reveals the prognostic relevance of OSR2 mRNA
in muscle invasive bladder cancer. PLoS One.
2021;16(3):e0248342.

[45] Li WH, Zhou ZJ, Huang TH, Guo K, Chen W, Wang Y, et al.
Detection of OSR2, VAV3, and PPFIA3 methylation in the
serum of patients with gastric cancer. Dis Markers.
2016;2016:5780538.

[46] Chen W, Liao L, Lai H, Yi X, Wang D. Identification of core
biomarkers associated with pathogenesis and prognostic
outcomes of laryngeal squamous-cell cancer using bioinfor-
matics analysis. Eur Arch Otorhinolaryngol.
2020;277(5):1397–408.

[47] Chi LH, Wu ATH, Hsiao M, Li YJ. A transcriptomic analysis of
head and neck squamous cell carcinomas for prognostic
indications. J Pers Med. 2021;11(8):782.

[48] Yang W, Zhou W, Zhao X, Wang X, Duan L, Li Y, et al. Prognostic
biomarkers and therapeutic targets in oral squamous cell
carcinoma: A study based on cross-database analysis.
Hereditas. 2021;158(1):15.

[49] Fan T, Liu Y, Liu H, Wang L, Tian H, Zheng Y, et al.
Comprehensive analysis of a chemokine- and chemokine
receptor family-based signature for patients with lung ade-
nocarcinoma. Cancer Immunol Immun. 2021;70(12):3651–67.

Identification of prognostic subtype in oral cancer  1147


	1 Introduction
	2 Methods
	2.1 Data resource
	2.2 Calculation of immune and stromal scores
	2.3 Selection and analysis of hub module genes
	2.4 Selection of prognosis-related genes
	2.5 Analysis of OSCC subtype
	2.6 Construction and evaluation of the prognostic risk model
	2.7 Immune microenvironment and immunotherapy response analysis
	2.8 Clinical prognostic value of the risk model

	3 Results
	3.1 Differential stromal and immune scores between tumor and normal tissue
	3.2 Selection of hub model genes
	3.3 Function analysis of hub model genes
	3.4 Analysis of OSCC subtype
	3.5 Construction and evaluation of the prognostic risk model
	3.6 Correlation of risk core and potential prognostic genes with immune cells
	3.7 Prognostic value of the risk score in clinical applications

	4 Discussion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


