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Abstract: To improve simulation accuracy and efficiency of probabilistic fatigue life evaluation
for turbine rotor, a decomposed collaborative modeling approach is presented. In this approach,
the intelligent Kriging modeling (IKM) is firstly proposed by combining the Kriging model (KM)
and an intelligent algorithm (named as dynamic multi-island genetic algorithm), to tackle the
multi-modality issues for obtaining optimal Kriging parameters. Then, the decomposed collaborative
IKM (DCIKM) comes up by fusing the IKM into decomposed collaborative (DC) strategy, to address
the high-nonlinearity problems for accelerating simulation efficiency. Moreover, the DCIKM-based
probabilistic fatigue life evaluation theory is introduced. The probabilistic fatigue life evaluation of
turbine rotor is regarded as case study to verify the presented approach; the evaluation results reveal
that the probabilistic fatigue life of turbine rotor is 3296 cycles. The plastic strain range ∆εp and
fatigue strength coefficient σf

′ are the main affecting factors to fatigue life, whose effect probability are
28% and 22%, respectively. By comparing with direct Monte Carlo method, KM method, IKM method
and DC response surface method, the presented DCIKM is validated to hold high efficiency and
accuracy in probabilistic fatigue life evaluation.

Keywords: probabilistic evaluation; low-cycle fatigue; turbine rotor; Kriging model;
intelligent algorithm

1. Introduction

As a hot-end core component of aeroengine, a turbine rotor operates in severe loading environment
at a high temperature, high pressure and high speed. These loads often present complex alterability
and cyclicity. In this case, the turbine rotor is prone to generate complex plastic deformation, which
inevitably leads to low-cycle fatigue failure. As a result, low-cycle fatigue failure becomes the main
failure mode of turbine rotor and seriously affects the reliability and security of aeroengine [1–3].
To meet the reliability and high-performance requirements, the fatigue life evaluation of turbine
rotor is increasingly important in aeroengine design. Moreover, due to the material deviations, load
fluctuations and model variabilities, the fatigue life of turbine rotor usually exhibits great dispersion
in essence [4–6]. Therefore, effective probabilistic fatigue life evaluation of turbine rotor is urgently
required to describe these uncertainties and evaluate its reliability. Under these circumstances,
probabilistic analysis techniques have emerged to tackle with the multiple points of uncertainty [7,8].
As one important analysis approach, Monte Carlo (MC) simulation holds high computing accuracy
and has been widely applied in reliability evaluation and probabilistic design [9,10]. However,
due to the excess simulation calculations and unaffordable large-scale tasks, MC simulation holds
unacceptably low computing efficiency. To reduce the computing burdens and improve simulation
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accuracy, surrogate model methods are developed by replacing the time-consuming simulation with
surrogate function/model. Classical surrogate models include response surface model (RSM) [11,12],
support vector machine (SVM) [13,14] and artificial neural network (ANN) [15,16], etc. Among
them, as an exact interpolation tool, Kriging model holds good approximation ability and nonlinear
regression ability [17–19], and thereby possesses the potential to perform the structural probabilistic
analysis. Unfortunately, for complex fatigue probabilistic analysis involving high complexity and
strong nonlinearity, the Kriging model is still hard to establish an accurate mathematical model, because
the Kriging optimal algorithm often falls into local optimal Kriging parameters [20,21]. Moreover,
for complex multi-layer and multi-response issues (probabilistic fatigue life evaluation of turbine rotor)
with strong nonlinearity, the Kriging model is insufficient to describe complex structural responses,
resulting in unsatisfactory efficiency and accuracy.

To deal with the multi-modality issues in Kriging parameters searching, we propose an intelligent
algorithm to avoid the local optimum and find the global optimal Kriging parameters. As a valuable
intelligent algorithm, multi-island genetic algorithm (MIGA) with unique migration operation
and parallel computing can address complex optimization problems with prominent searching
performance [22,23]. However, due to the fixed crossover rate and mutation rate that is employed,
the traditional MIGA is not enough to ensure the population diversity in objective searching [24,25],
which would lead to more iterative time and insufficient optimization efficiency. In this paper,
to enhance the algorithm performance of MIGA, we further propose a dynamic multi-island genetic
algorithm (DMIGA) by designing the dynamic crossover rate and dynamic mutation rate. The DMIGA
algorithm is employed to search the optimal Kriging parameters in Kriging modeling process, and then
the intelligent Kriging modeling (IKM) shall be obtained. The DMIGA avoids the local optimum and
immature convergence defects in multi-modality Kriging parameters problems, which guarantees the
modeling efficiency and accuracy of IKM effectively.

To further improve the simulation efficiency in probabilistic fatigue life evaluation, decomposed
collaborative (DC) strategy is employed to address the multi-layer and multi-response problems [12,26–28].
The DC strategy was firstly proposed to deal with multi-objective multi-disciplinary problems [29],
and the effectiveness of DC was verified in radial running clearance control, multi-failure probability
design and turbine blade damage analysis [30–32]. In these investigations, DC strategy was
demonstrated to be a feasible and effective analysis strategy in complex interlayer evaluation problems.
However, for turbine rotor of aeroengine, plastic strain range induced by load fluctuations further
increases the nonlinearity degree of probabilistic fatigue life evaluation. The unacceptable accuracy
and efficiency problems would occur if directly adopting DC strategy with regular surrogate model
(such as decomposed collaborative RSM, DCRSM). In this situation, considering the potentials of
intelligent Kriging model, we further developed a decomposed collaborative intelligent Kriging model
(denoted as DCIKM) to improve the simulation accuracy and efficiency for probabilistic fatigue life
evaluation of a turbine rotor.

The objective of this paper is to ameliorate the computational efficiency and accuracy of turbine
rotor probabilistic fatigue life evaluation by constructing an efficient and accurate surrogate model
(DCIKM). Given the characteristics of fatigue life calculation for turbine rotor, this paper employs
intelligent algorithm to optimize Kriging parameters, and combines DC strategy to further decrease
the nonlinearity of surrogate modeling. The innovation of this paper lies in that: for assessing the
probabilistic fatigue life of turbine rotor considering the plasticity of materials, the corresponding
efficient methods are firstly proposed. The proposed DCIKM is verified by probabilistic fatigue life
evaluation of aeroengine turbine rotor.

The structure of this paper is arranged as follows. Section 2 discusses the decomposed collaborative
modeling approach, including the basic principles and mathematical models of Kriging modeling,
intelligent Kriging modeling (IKM) and DCIKM. Section 3 introduces the DCIKM-based probabilistic
fatigue life evaluation theory. In Section 4, the probabilistic fatigue life evaluation of turbine rotor is
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performed to verify the effectiveness of the proposed DCIKM. Some conclusions and outlooks are
summarized in Section 5.

2. Decomposed Collaborative Modeling Approach

2.1. Intelligent Kriging Modeling

2.1.1. Kriging Model Overview

Assuming that the approximated values contains spatial correlation, the Kriging model can acquire
the interpolation results by weighting the known values [33,34]. For a m-dimensional input, points
X = (X1, X2, . . . , Xm)T and their output responses Y = (y1, y2, . . . , ym)T, the nonlinear relationship
between input points and output responses can be mapped by an interpolation Kriging model, i.e.,

Y =


y1
...

ym

 =


f1(X1) · · · fp(X1)

...
. . .

...
f1(Xm) · · · fp(Xm)



β1
...
βp

+

ε1
...
εm

 = Fβ+ ε (1)

where Fβ represents the regression model, which is employed to approximate the entire design space;
ε the stochastic process, to describe the local deviation of regression model; Therein, ε holds the
following statistical characteristics:

εi ∼ N(0, σ2
ε) (2)

cov(εi, ε j) = σ2
εR(θ,Xi, X j) (3)

where σε2 is the process variance, R(·) the spatial correlation function, θ=(θ1, θ2, . . . , θn) the correlation
parameter vector.

In view of the powerful mapping ability in fitting nonlinear limit state functions [20,35],
the Gaussian function is regarded as the correlation function in Kriging modeling, i.e.,

R(θ,Xi, X j) =
n∏

k=1

exp[−θk(xik − x jk)
2] (4)

Therefore, for a given random point Xd, its response value Ŷ(Xd) can be estimated by product of
weight w and known response Y, that is Ŷ(Xd) = wTY. The prediction error can be obtained as:

ψ(X) = E[(Ŷ(Xd) −Y(Xd))
2
] = σ2

ε

(
1 + wTRw− 2wTr

)
(5)

in which
r(X) =

{
R(θ,X1, X), R(θ,X2, X), . . . , R(θ,Xm, X)

}T (6)

R =


R(θ,X1, X1) . . . R(θ,X1, Xm)

...
. . .

...
R(θ,Xm, X1) · · · R(θ,Xm, Xm)

 (7)

where ψ(X) is the prediction error, r(·) the correlation vector between the given point Xd and sampling
points, R(·) the correlation matrix.

By minimizing the prediction error ψ(X), the estimated regression coefficient β̂ and process
variance σ̂2

ε are expressed as:
β̂ = (FTR−1F)−1FTRY
σ̂2
ε =

1
m (Y − Fβ̂)R−1(Y − Fβ̂)

(8)
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From Equations (7)–(8), the regression coefficient β̂ and process variance σ̂2
ε heavily depend on the

correlation parameter θ, which can be obtained by the maximum likelihood estimation method [36].

min
{
|R|1/mσ̂2

ε

}
(9)

Once the optimal correlation parameters θ* are acquired, the Kriging model and the corresponding
prediction error are acquired:

Ŷ(X) = f T(X)β̂+ rT(X)R−1(Y − Fβ̂) (10)

MSE
{
Ŷ(X)

}
= σ̂2

ε

{
1 + uT(X)[(FTR−1F)

−1
u(X) − rTR−1r(X)]

}
s.t. u(X) = FTR−1r(X) − f (X)

(11)

where MSE{·} means the mean square error function. Obviously, the Kriging interpolation precision
and model performance heavily depend on the correlation parameters θ. Once the optimal correlation
parameters θ* are searched, the accurate Kriging model will be obtained correspondingly. Therefore,
the optimization problems of correlation parameters should be regarded as the main focus of surrogate
modeling problems.

2.1.2. Intelligent Algorithm

In traditional parameters optimization of Kriging modeling, the generalized pattern optimal
algorithm is often used in the sense of maximum likelihood [37]. The Kriging parameters optimization
problem is shown in Equation (12). However, owing to the sensitive dependence on initial
point, this pattern optimal algorithm often falls into local optimum and resulting in unacceptable
prediction error. Moreover, the objective function in Kriging modeling shows complex multi-modality
characteristics (shown in Figure 1) in probabilistic fatigue life evaluation, which increases the difficulty
to find the global optimum. In this case, to avoid the complex gradient calculations and guarantee
the optimization effect, an intelligent algorithm called the dynamic multi-island genetic algorithm
(DMIGA) is proposed. DMIGA generates the potential optimums as individuals in several islands
(or populations), and then chooses the best-performance individuals to evolve into the next iteration.
As the individuals evolving and migrating between multi-islands [23], population diversity is ensured,
and the global optimum is finally acquired. The migration operation of DMIGA is drawn in Figure 2.

find θ = (θ1,θ2, . . . ,θn)

min f (θ) = |R|1/mσ̂2
ε

s.t. θi > 0, i = 1, 2, . . . , n
(12)

where θi is the i-th correlation parameters; n the number of input variables; f (θ) the fitness function.

Figure 1. Multi-modality characteristics in Kriging modeling.
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Figure 2. Migration operation of dynamic multi-island genetic algorithm (DMIGA).

To ensure the species diversity of each island in DMIGA, dynamic crossover rate and dynamic
mutation rate are proposed in this study: when the dispersion degree arcsin(f ave/f max) is greater than
some certain value, the high-quality individuals are difficult to generate due to the lack of the species
diversity, then the dynamic mutation operation would be set with a high mutation rate to enhance the
mutation rate; otherwise the dynamic crossover operation would be set with a high crossover rate to
enhance the crossover rate [38]. The arcsin(f ave/f max) is adopted as the judgment function of species
diversity, since it can change faster with the increase of average fitness f ave. The dynamic crossover
rate pc and dynamic mutation rate pm are designed as

pc =

 k1
arcsin( fave/ fmax)

π/2 arcsin( fave/ fmax) < π/6

k1

[
1− arcsin( fave/ fmax)

π/2

]
arcsin( fave/ fmax) ≥ π/6

(13)

pm =

 k2

[
1− arcsin( fave/ fmax)

π/2

]
arcisn( fave/ fmax) < π/6

k2
arcsin( fave/ fmax)

π/2 arcsin( fave/ fmax) ≥ π/6
(14)

where f ave indicates average fitness; f max the maximum fitness; arcsin(·) the arc sine function. In this
paper, k1 and k2 are chosen as 1 and 0.005, respectively. Moreover, π/6 is adopted as a guideline because
arcsin(f ave/f max) ≥ π/ 6 equals to f ave/f max ≥ 1/2, which reflects the diversity of species. Furthermore,
the reason for dividing by π/2 is to ensure that arcsin(f ave/f max)/(π/2) ≤ 1.

With the DMIGA, the optimal Kriging parameters θ* shall be searched as follows: Firstly, an initial
population is generated and divided into several subpopulations, with each individual in subpopulation
is a potential optimal θ*. Then the fitness values (i.e., Equation (12)) of all individuals are calculated
in each subpopulation and the dynamic crossover operation and dynamic mutation operation are
performed correspondingly. Finally, the global optimum is obtained by running multiprocessors
simultaneously. The θ* searching procedure with DMIGA is shown in Figure 3.

Figure 3. θ* searching procedure with DMIGA.
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2.1.3. Intelligent Algorithm with Kriging Model, IKM

To ameliorate the computational accuracy of probabilistic fatigue life evaluation, an intelligent
Kriging model (IKM) is proposed based on Kriging model with nonlinear mapping ability and DMIGA
with efficient global search ability. The modeling thought of IKM and the corresponding probabilistic
analysis principle is summarized as follows:

Firstly, the finite element (FE) model of turbine rotor is established and the thermal-structure FE
analysis considering material plasticity is performed to gain training and testing data.

Secondly, in view of the sample data, the regression coefficients β̂ and process variance σ̂2
ε are

obtained, the expressions of fitness function (Equation (12)) is constructed.
Then, by employing DMIGA to solve Equation (12), the optimal correlation parameter θ* is

acquired and the IKM is built. The corresponding regression coefficient β∗, process variance σ̂2
∗ and the

prediction result Y*(Xp) are obtained: β∗ = (FTR∗−1F)−1FTR∗Y
σ̂2
∗ =

1
m (Y − Fβ∗

)
R∗−1(Y − Fβ∗)

(15)

Y∗(Xp) = f T(Xp)β
∗ + rT(Xp)R∗−1(Y − Fβ∗) (16)

where β∗, σ̂2
∗ and R* are the regression coefficient, process variance and correlation parameters matrix

corresponding to the optimal correlation parameter θ*, respectively.
Finally, considering the established IKM surrogate model and a large number of sample data,

the probabilistic analysis is completed. The flow chart of probabilistic analysis with IKM is shown in
Figure 4.

2.2. Decomposed Collaborative IKM, DCIKM

2.2.1. Basic thought of DCIKM

Probabilistic fatigue life evaluation of turbine rotor involves multi-layer (FE simulation layer,
model prediction layer, etc.) and multi-response (mean stress, elastic strain range and plastic strain
range, etc.), which brings high complexity and strong nonlinearity to construct surrogate model. DC
strategy is a highly efficient and precise high-precision analysis technique for structural multi-failure
and multi-objective reliability design [39,40]. Along with the heuristic thought, the decomposed
collaborative IKM (DCIKM) is developed for probabilistic fatigue life evaluation in respect of IKM.
The basic idea of DCIKM is summarized as follows:

1. Regarding the evaluation layer and response traits, the complex model with all input variables
and total output response is divided into multiple simple submodels, each of which contains
fewer input variables and one output response. It is assumed that the submodels are independent
of each other.

2. Considering the plasticity of materials, the thermal-structure coupling deterministic analysis is
accomplished through FE simulation.

3. The output responses of sub-models are obtained by importing several input variables into FE
calculation, and the input variables and output responses are treated as training and testing data.

4. With the extracted samples, the decomposed IKM of sub-models are constructed by the proposed
IKM thought.

5. Massive sampling for input variables is performed by Latin hypercube sampling (LHS) technique,
and the statistical characteristics of output responses are obtained by decomposed IKM simulation.

6. Taking the output responses of decomposed IKM models as the input variables, the collaborative
IKM is established. By employing the simple DCIKM approach instead of time-consuming direct
MC simulation, the probabilistic fatigue life evaluation is accomplished.
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Figure 4. Flow chart of probabilistic analysis with intelligent Kriging modeling (IKM).

In light of the above analysis, this analysis process is equivalent to decomposing complex
multi-layer analysis into a series of simple decomposed IKM analyses and collaborative IKM analysis.
Evidently, with the progressing of decomposition course, more input variables in a complex overall
model are decomposed into fewer input variables in simple sub-models, which is conducive to reduce
the nonlinearity of fitted function and the coupling effect between variables. Therefore, by combining
the nonlinear modeling ability of the proposed IKM model and the simplifying computation ability of
DC strategy, the proposed DCIKM possesses the potential to ameliorate efficiency and accuracy for
complex probabilistic fatigue life evaluation.

2.2.2. Mathematical Modeling of DCIKM

Assuming that the probabilistic fatigue life evaluation refers to r layers, then the complex
multi-layer problems are transformed into a series of simple single-layer problems by DC strategy.
When X(p) represents the input variable of the p-th layer, the corresponding output response Y(p) is: Y(p) = f (X(p)), p = 1, 2, · · ·, r

X(p) =
[
X1

(p), X2
(p), · · · , Xn

(p)
]T (17)
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The output response Y(p) of surrogate model at the p-layer can be described as:

Y(p)= f (X(p)) = f T(X(p))β̃∗ + rT(X(p))R̃
−1
(Ỹ − F̃β̃∗) (18)

Equation (18) is a decomposed IKM model, where β̃∗, R̃, Ỹ, F̃ is the calculated regression coefficient,
correlation parameter matrix, sample response value, regression function in p-th layer, respectively.

Regarding the output responses of all layers {Y(1), Y(2), . . . , Y(r)} as input variables X, Y represents
the output response of overall surrogate model, then the collaborative IKM model is constructed as: Y = f (X) = f T(X)β

∗

+ rT(X)R
−1
(Y − Fβ

∗

)

X =
[
X1, X2, . . . , Xr

]T (19)

where β
∗

, R, Y and F are the predicted regression coefficients, correlation parameters matrix, sample
response values, and regression function, respectively.

The above decomposed collaborative modeling process can be vividly drawn in Figure 5. Namely,
the complex IKM model of overall fatigue life prediction is first divided into decomposed IKM
sub-models at different layers (Equation (18)), and then the collaborative IKM (Equation (19)) is
achieved to perform the probabilistic calculations. This method is called as decomposed collaborative
intelligent Kriging model (DCIKM) method, which is suitable for multi-layer and multi-response
probabilistic fatigue life evaluation.

Figure 5. Modeling procedure of the presented decomposed collaborative intelligent Kriging model
(DCIKM).

3. Probabilistic Fatigue Life Evaluation Theory

Probabilistic analysis, mainly consists of reliability analysis and sensitivity analysis, is to assess
system reliability and find the main factors affecting system reliability. As for fatigue life evaluation,
probabilistic analysis is to quantify the reliability of system and explore the influence degree of each
uncertainty parameter. For the complex multi-layer probabilistic analysis [12,21], a DCIKM-based
probabilistic fatigue life evaluation theory is developed to improve the simulation efficiency and
accuracy, which is introduced as follows.

Sensitivity reflects the influence level of input random variables to output response, which helps
to identify the main affecting factors and guides the structural design. When the acceptable output
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response of the p-th layer is [Y(p)], the limit state function G(p)(x) based on decomposed IKM model can
be expressed as:

G(p)(x) =
[
Y(p)

]
−

[
f T(X(p))β̃∗ + rT(X(p))R̃

−1
(Ỹ − F̃β̃∗)

]
, p =1, 2, . . . , r (20)

in which the value of limit state function G(p)(x) can be determined by the indicator function of failure
domain:

I f [G(p)(xl)] =

{
1, G(p)(xl) ≤ 0
0, G(p)(xl) > 0

(21)

where xl indicates the l-th data set; l = 1, 2, . . . , s.
Through a large number of sampling of input variables [41], the sensitivity values of input

variables can be obtained by the decomposed IKM:

S(p)= Mean

 I f [G(p)(xl)](xil−Mean(xi))

Var(xi)

 (22)

where xi means the i-th input vector of all sample variables; Mean(·) the mean function; Var(·) the
variance function.

Assuming that the whole output allowable value is [Y], the limit state function G(x) based on
collaborative IKM can be described as:

G(x) = [Y] −
[

f T
(
X
)
β
∗

+ rT
(
X

)
R
−1(

Y − Fβ
∗
)]

(23)

Through the collaborative IKM model and random sampling method [29], the fatigue reliability is
denoted by:

Ir[G(xl)] =

{
1, G(xl) ≥ 0
0, G(xl) < 0

R = 1
N

N∑
i=1

Ir[G(xl)] =
Nr
N

(24)

where Ir[G(xl)] is the indicator function of secure domain; Nr the sample number in secure domain;
N the total sample number.

Moreover, the global failure probability and the sensitivity of input variables to overall output
response are calculated as [41]:

I f [G(xl)] =

{
1, G(xl) ≤ 0
0, G(xl) > 0

(25)


P = 1

N

N∑
i=1

I f [G(xl)] =
Nb
N

S = Mean
(

I f [G(xl)](xil−Mean(xi))

Var(xi)

) (26)

where, P indicates the total failure probability; S the sensitivity of input variables to overall output
response; If[G(xl)] the indicator function of total failure domain; Nb the sample number of total
failure domain.

4. Case Study

In this section, the probabilistic fatigue life evaluation of turbine rotor considering the material
plasticity is performed. Following the efficiency and accuracy for the proposed DCIKM approach,
the reliability-based fatigue life evaluation is completed and the importance degree of input variables
are quantified.
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4.1. Material Preparations

4.1.1. Finite Element Model

To reduce the computational complexity and task volume, 1/40 of turbine rotor [3] are selected as
study object. The schematic diagram of aeroengine turbine rotor is shown in Figure 6. Based on the
coarse grid division, we improved the grid quality by setting the “minimum size” as 4.5 × 10−3 m and
“minimum edge length” as 1.9995 × 10−3 m, and refined the local mesh of blade root by setting “element
size” as 3.6 × 10−3 m. From the convergence effects and simulation accuracy in reference [3,30], with the
set meshing procedures, the meshing effects is guaranteed effectively. As shown in Figure 6, the FE
model of simplified turbine rotor involves 18,454 quadrilateral elements and 30,911 element nodes.
Moreover, an appropriate symmetric boundary constraint is imposed on the sector disc, and axial
and circumferential constraints are loaded on the inner diameter arc. Furthermore, for facilitating
the fatigue life calculation, we simplify the actual complex load spectrum of turbine rotor into the
trapezoidal load spectrum [32].

Figure 6. Schematic diagram of aeroengine turbine rotor.

4.1.2. Variable Selection

In this study, the nickel-based superalloy GH4133B was selected as turbine rotor material.
Although GH4133B may have creep fatigue failure in high temperature environment, the plastic
strain generated in blade root area leads to turbine rotor being more prone to occur low cycle fatigue
(LCF) failure. Therefore, this paper mainly considers LCF failure of turbine rotor. Moreover, LCF
life of turbine rotor often shows great dispersion affected by multiple uncertainties, hence it is
necessary to perform probabilistic LCF life assessment for turbine rotor. To accurately describe the life
dispersion and quantify the probabilistic fatigue life of turbine rotor, the physical uncertain parameters
of turbine rotor, such as rotor speed ω, gas temperature T, elastic modulus E, material density ρ,
thermal conductivity λ, thermal expansion coefficient α, are considered as the first part of input
random variables, whose distribution characteristics [21,27,32] are shown in Table 1. Furthermore, the
parameters in modified Manson–Coffin [42,43] models, such as fatigue strength exponent b, fatigue
ductility exponent c, fatigue strength coefficient σf

′ and fatigue ductility coefficient εf
′, are considered

as the second part of input random variables and its distribution characteristics are shown in Table 2.

Table 1. Distribution characteristics of physical variables.

Random Variables Mean Standard Deviation Distribution

Rotate speed ω, rad/s 922 18.4 Normal
Gas temperature T, k 773.2 15.5 Normal
Density ρ, 10−9 t/mm3 8.21 0.164 Normal

Modulus of elasticity E, GPa 163 3.26 Normal
Heat conductivity λ, W/(m ◦C) 21.4 0.428 Normal
Thermal expansion coefficient

α, 10−6 ◦C 13.8 0.276 Normal
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Table 2. Distribution characteristics of model variables.

Random Variables Mean Standard Deviation Distribution

Fatigue strength index b −0.1 0.002 Normal
Fatigue ductility index c −0.84 0.0168 Normal

Fatigue strength coefficient σf
′ 1419 28.38 Normal

Fatigue ductility coefficient εf
′ 0.505 0.0101 Lognormal

In view of the values of elastic modulus E, heat conductivity λ, thermal expansion coefficient α
are varying with temperature, we introduce its nonlinear variation characteristics in Table 3. Moreover,
to fully capture the limit state surface information, the variable distribution characteristics in Table 1 are
matched with the aircraft cruise state. Furthermore, the sampling range of input variables is determined
as [µ − f *σ, µ + f *σ] (where µ is the variable mean, σ the standard deviation, f the positive constant).
The parameter f determines the sampling domain range, f is set to 4 in this study, since this sampling
domain contains 99.99% variable fluctuation information [44] and the corresponding failure possibility.

Table 3. Variation characteristics of three nonlinear parameters.

Temperature (◦C) 100 200 300 400 500 600 700 800 900

E, GPa 205 196 182 173 163 163 159 141 134
λ, W/m ◦C 12.1 14.2 16.7 18.8 21.4 23.7 26.2 27.6 28.9
α, 10−6 ◦C 11.6 12.3 12.4 13.3 13.8 14.4 15.1 15.7 16.5

4.2. Deterministic Fatigue Life Evaluation

By importing the mean values of material properties and load parameters into FE model,
thermal-structure coupling analysis is performed, the maximum stress and the temperature distribution
of turbine rotor are acquired in Figure 7a,b, respectively. From the stress and temperature distribution,
we find that the back section in blade root is the critical point and its stress and temperature are
779.4 MPa and 778.35 K, respectively. Since the turbine rotor does not generate compressive stress,
then the negative half axis in hysteresis loop does not occur. Therefore, we regard the residual strain as
plastic strain range, and the difference value between total strain and plastic strain range as elastic
strain range. The elastic strain and plastic strain distribution are shown in Figure 7c,d. To clearly
exhibit the distribution traits of plastic strain range, we further enlarge the plastic strain area. which is
drawn in Figure 7d. Note that the material occurs plastic strain in critical point as shown in Figure 7d,
which needs to be considered in fatigue life evaluation. Considering the maximum stress cycle 0-σmax-0,
the mean stress σm is obtained as 0.5 × (σmin+σmax). With the calculated mean stress σm, elastic strain
range ∆εe, plastic strain range ∆εp and Manson–Coffin model, the low-cycle fatigue life of turbine
rotor is obtained as 3606 cycles. Manson–Coffin model is shown in Equation (27).

∆ε
2

=
∆εe + ∆εp

2
=
σ′f − σm

E
(2Nf)

b + ε′f(2Nf)
c (27)

where ∆ε represents the total strain range; E the modulus of elasticity; σf
′ the fatigue strength coefficient;

εf
′ the fatigue ductility coefficient; b the fatigue strength index; c the fatigue ductility index; and Nf the

failure cycle number.
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Figure 7. Nephogram of the stress-strain and temperature for turbine rotor: (a) stress, (b) temperature,
(c) elastic strain range, (d) plastic strain range.

4.3. Decomposed Stress-Strain Prediction

4.3.1. Decomposed IKM Modeling

According to the distribution characteristics of input variables in Table 1; Table 2, 107 sample
data sets are extracted and be imported into FE simulation, to calculate the actual output responses
(mean stress, elastic strain range, plastic strain range) sample data. The sample data sets are generated
based on Latin Hypercube Sampling [45,46], which is promising to ensure that the generated sample
covers the whole sampling domain. Then the 107 input variables & output responses are divided
into training groups and test groups, where 30 for test groups and the remaining for training groups.
Considering the training samples and decomposed IKM thought, the optimal decomposed IKMs for
mean stress (decomposed IKM-1), elastic strain range (decomposed IKM-2) and plastic strain range
(decomposed IKM-3) are constructed, the modeling process of decomposed IKMs with DMIGA is
shown in Figure 8. From Figure 8, we discover that the stable optimization results can be obtained
only through few iterations, which verifies the modeling efficiency of the proposed DMIGA. Moreover,
by comparing real test outputs with the estimated outputs, the prediction effect of decomposed IKMs
are obtained in Figure 9. Note that the data in Figure 9 comes from the testing dataset.
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Figure 8. DMIGA optimization process of decomposed IKM.

Figure 9. Prediction results of decomposed IKMs: (a) decomposed IKM-1, (b) decomposed IKM-2,
(c) decomposed IKM-3.

4.3.2. Stress–Strain Prediction with Decomposed IKM Model

Based on the variable distribution features in Table 1 and the Latin hypercube sampling technique,
10,000 sets of input variables are extracted and be imported into the established decomposed IKM-1,
decomposed IKM-2 and decomposed IKM-3, instead of the FE simulations. Then, the corresponding
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simulation history and probabilistic distribution of mean stress, elastic strain range and plastic strain
range are obtained in Figures 10–12. Owing to the influence of material plasticity, mean stress and
plastic strain range approximately follow skewed distribution with mean values of 392.29 MPa and
4.13 × 10−4 m/m, standard deviations of 4.46 MPa and 1.64 × 10−4 m/m, respectively. The elastic strain
range nearly obeys standard normal distribution with mean value 4.82 × 10−3 m/m and standard
deviation 1.15 × 10−4 m/m.

Figure 10. Output responses of decomposed IKM-1: (a) simulation history, (b) probabilistic distribution.

Figure 11. Output responses of decomposed IKM-2: (a) simulation history and, (b)
probabilistic distribution.

Figure 12. Output responses of decomposed IKM-3: (a) simulation history, (b) probabilistic distribution.
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4.3.3. Sensitivity Analysis with Decomposed IKM Model

In view of the built decomposed IKMs, the sensitivity analysis is conducted based on Equation (22),
sensitivities and effecting probability of input variables on decomposed output responses are obtained
in Figure 13. Therein, the positive value of sensitivity indicates the positive change between output
response and input variables, and vice versa. From Figure 13, we find that rotor speed ω and
temperature T are the main affecting factors on mean stress σm, elastic strain range ∆εe and plastic
strain range ∆εp. To further reflect the correlation of output response and prominent input invariables,
the scatter sketches are drawn in Figures 14–16, respectively. Note that the scatter points in Figure 16
are close to the X-axis because some extracted plastic strain range responses are close to zero.

Figure 13. Sensitivities and effect probabilities with different decomposed output responses: (a) mean
stress σm, (b) elastic strain range ∆εe, (c) plastic strain range ∆εp.

Figure 14. Scatter sketches of mean stress: (a) rotor speed, (b) temperature.
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Figure 15. Scatter sketches of elastic strain range: (a) rotor speed, (b) temperature.

Figure 16. Scatter sketches of plastic strain range: (a) rotor speed, (b) temperature.

4.4. Collaborative Fatigue Life Evaluation

4.4.1. Collaborative IKM Modeling

The model parameters (fatigue strength exponent b, fatigue ductility exponent c, fatigue strength
coefficient σf

′, fatigue ductility coefficient εf
′) and decomposed output responses (mean stress σm,

elastic strain range ∆εe plastic strain range ∆εp) are taken as input variables of collaborative IKM,
and the fatigue life of turbine rotor is taken as total output response. Similar to the establishment of
decomposed IKM, 107 groups of samples are extracted, where 30 samples for testing samples and the
remaining for training samples. The modeling process of collaborative IKM with DMIGA is shown
in Figure 17. Through the comparison of real test outputs with the estimated outputs, the model
performance of collaborative IKM is validated in Figure 18. Note that the data in Figure 18 comes from
the testing dataset.
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Figure 17. DMIGA optimization process of collaborative IKM.

Figure 18. Prediction results of collaborative IKM.

4.4.2. Fatigue Life Evaluation with Collaborative IKM Model

Regarding the distribution features of four model parameters in Table 2 and the three decomposed
output responses as input variables, the fatigue life Nf are obtained by simulating the collaborative
IKM with 10,000 simulations. The simulation history and distribution feature of fatigue life Nf are
shown in Figure 19. Obviously, the fatigue life Nf nearly obeys log-normal distribution. In view of
the reliability analysis theory in Equation (24), the probabilistic fatigue life under reliability 99.87%
is 3296 cycles. It should be noted that 3296 cycles are the probability fatigue life corresponding to
10,000 simulations, and the operating hours corresponding to 3296 cycles based on the flight load
spectrum [32] are 1207 h.

Figure 19. Fatigue life of turbine rotor: (a) simulation history, (b) probabilistic distribution.
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4.4.3. Sensitivity Analysis with Collaborative IKM Model

Considering the collaborative IKM and the sensitivity analysis formula in Equation (25),
the sensitivity analysis is accomplished, the sensitivities and influence probability of the input
variables on fatigue life are obtained in Figure 20. The results show that plastic strain range ∆εp and
fatigue strength coefficient σf

′ are the main factors affecting the fatigue life, accounting for 28% and
22%, respectively. Therefore, ∆εp and σf

′ should be preferentially regarded in fatigue reliability design
of turbine rotor. Moreover, we also find that the decrease of ∆εp will result in the increase of fatigue
life, while the increase of σf

′ will lead to the increase of fatigue life. The correlation between fatigue life
and main influencing parameters are depicted in Figure 21. Note that the scatter points in Figure 21a
are close to the Y-axis is owing to some plastic strain range responses are near to zero.

Figure 20. Sensitivities and effect probabilities of fatigue life.

Figure 21. Scatter sketches of fatigue life: (a) plastic strain range, (b) fatigue strength coefficient.

4.5. Method Validations

In this subsection, to verify the superiority of DCIKM, MCM, KM, IKM, DCRSM, and DCIKM are
applied to perform the probabilistic fatigue life evaluation of turbine rotor, respectively. During the
evaluation, MCM, KM and IKM calculate the relationship between input variable X′ = [ω, T, ρ, E, λ, α,
σf
′, c, b, εf

′] and output response Nf directly, while DCRSM and DCIKM adopt parallel calculation
by simulating elastic strain range ∆εe, plastic strain range ∆εp, mean stress σm, and fatigue life Nf

in several computer devices. The computing costs and computing precision of different evaluation
methods are compared in Tables 4 and 5, respectively.
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Table 4. Comparison of computing time for reliability analyses of five methods.

n
MCM KM IKM DCRSM DCIKM

Time, s Time, s Time, s Improved
Efficiency, % Time, s Improved

Efficiency, % Time, s Improved
Efficiency, %

102 5754 45.7 40.1 12.25 31.9 30.19 22.7 50.33
103 60,890 47.1 41.2 12.53 32.8 30.36 23.2 50.74
104 798,954 49.8 43.1 13.65 34.6 30.52 24.5 50.80
105 — 58.7 50.4 14.14 39.7 32.37 28.3 51.79

Note that the improved efficiency is calculated by: Improved efficiency = (Tc − TKM)/TKM, where Tc is the calculation
time of the compared method, TKM the calculation time of KM method.

Table 5. Reliability analysis results of five methods for turbine rotor fatigue life (N = 3296 cycles).

n
MCM KM IKM DCRSM DCIKM

Reliability Reliability Precision, % Reliability Precision, % Reliability Precision, % Reliability Precision, %

102 0.92 0.81 88.04 0.90 97.83 0.87 94.57 0.91 98.91
103 0.984 0.915 92.99 0.971 98.68 0.942 95.73 0.975 99.09
104 0.9977 0.9521 95.43 0.9969 99.92 0.9731 97.53 0.9972 99.95
105 — 0.9579 96.01 0.9971 99.94 0.9739 97.61 0.9970 99.93

In terms of computing efficiency, it can be seen from Table 4 that the computational costs of
DCIKM is lower than that of traditional KM, IKM and DCRSM, while the computational costs of
traditional KM, IKM, DCRSM and DCIKM are far lower than MCM. The efficiency superiority of
DCIKM is because: (i) for complex objective function with multi-modality characteristics, the DMIGA
is conductive to find optimal Kriging parameters efficiently; (ii) owing to the decomposed collaborative
strategy employed, the DCIKM only needs to process small quantity of input variables in modeling,
which saves the simulation time significantly. Therefore, the proposed DCIKM is promising to improve
computing efficiency in probabilistic fatigue life evaluation.

In terms of computing accuracy, as shown in Figure 8; Figure 18, the prediction results are basically
close to the real outputs. From Table 5, we find that the proposed DCIKM holds the higher prediction
accuracy than the traditional KM, IKM and DCRSM, and is close to the direct MCM. The main reasons
are: (i) the global optimum θ* is searched and the optimization accuracy is guaranteed by using the
developed DMIGA, which effectively enhances the modeling accuracy of Kriging model; (ii) For the
multi-layer multi-response probabilistic evaluation, the decomposed collaborative strategy reduces
the nonlinear degree of surrogate modeling and thereby improves the model accuracy. Therefore,
the proposed DCIKM holds high computing accuracy in probabilistic fatigue life evaluation.

5. Conclusions and Outlooks

To improve the simulation efficiency and accuracy for probabilistic fatigue life evaluation of
turbine rotor, a decomposed collaborative intelligent Kriging modeling (DCIKM) approach is presented
in this study. To guarantee the model efficacy, the DMIGA intelligent algorithm is introduced to find
the optimal Kriging parameter and build accurate intelligent Kriging model (IKM), the decomposed
collaborative strategy is employed to further reduce the nonlinearity of IKM. The effectiveness of the
proposed DCIKM approach is verified by the probabilistic fatigue life assessment of turbine rotor.
Some conclusions are summarized as follows:

1. The simulation history and distribution characteristics of fatigue life are obtained and the
reliability-based fatigue life Nf = 3296 cycles is recommended for the turbine rotor fatigue life
design, which is conducive to greatly enhance the safety performance of turbine rotor.

2. The sensitivity analysis results show that rotor speed and gas temperature are the main factors on
mean stress, elastic strain range and plastic strain range, while plastic strain range and fatigue
strength coefficient are the major factors on fatigue life, which provides a valuable guidance for
further optimization of turbine rotor.



Materials 2020, 13, 3239 20 of 22

3. Methods comparison (MCM, KM, IKM, and DCRSM, DCIKM) illustrates that the proposed
DCIKM holds superiority in computing efficiency and accuracy. Accordingly, it is proved
that the intelligent algorithm searching for optimal Kriging parameters is promising to build a
higher-precision Kriging model. Moreover, the decomposed collaborative strategy is suitable to
decrease the nonlinearity of probabilistic design of turbine rotor.

Although this study provides a feasible and efficient approach for probabilistic fatigue life
evaluation of turbine rotor, limitations exist. Most deviations from expected responses are attributed
to incomplete factors considered in this study. Moreover, the trained surrogate model in this paper is
only available for the specific turbine rotor structures and cannot be directly applied to other turbine
rotor structures. Furthermore, for other more complex large-scale fatigue life evaluation problems, the
method’s performance should be further investigated in future work.

Author Contributions: Conceptualization, Y.H., G.-C.B. and L.-K.S.; methodology, Y.H. and L.-K.S.; software,
Y.H. and B.-W.W.; validation, Y.H. and L.-K.S.; formal analysis, Y.H.; investigation, L.-K.S.; resource, G.-C.B.;
data curation, L.-K.S. and G.-C.B.; writing—original draft preparation, Y.H. and B.-W.W.; writing—review and
editing, L.-K.S.; visualization, B.-W.W.; supervision, G.-C.B.; project administration, L.-K.S. and G.-C.B.; funding
acquisition, L.-K.S. and G.-C.B. All authors have read and agreed to the published version of the manuscript.

Funding: This paper is co-supported by the National Natural Science Foundations of China (Grant nos. 51975028
and 51575024). The authors would like to thank them.

Conflicts of Interest: The authors declare no conflict of interest to this work.

References

1. Zhu, S.P.; Xu, S.; Hao, M.F.; Liao, D.; Wang, Q. Stress-strain calculation and fatigue life assessment of
V-shaped notches of turbine disk alloys. Eng. Fail. Anal. 2019, 106, 104187. [CrossRef]

2. Zhu, S.P.; Huang, H.Z.; Peng, W.; Mahadevan, S. Probabilistic Physics of Failure-based framework for
fatigue life prediction of aircraft gas turbine discs under uncertainty. Reliab. Eng. Syst. Saf. 2016, 146, 1–12.
[CrossRef]

3. Zhang, C.Y.; Wei, J.S.; Jing, H.Z.; Fei, C.W.; Tang, W.Z. Reliability-Based Low Fatigue Life Analysis of Turbine
Blisk with Generalized Regression Extreme Neural Network Method. Materials 2019, 12, 1545. [CrossRef]
[PubMed]

4. Mao, J.X.; Hu, D.Y.; Li, D.; Wang, R.Q.; Song, J. Novel adaptive surrogate model based on LRPIM for
probabilistic analysis of turbine disc. Aerosp. Sci. Technol. 2017, 70, 76–87. [CrossRef]

5. Zhu, S.P.; Liu, Q.; Zhou, J.; Yu, Z.Y. Fatigue reliability assessment of turbine discs under multi-source
uncertainties. Fatigue Fract. Eng. Mater. Struct. 2018, 41, 1291–1305. [CrossRef]

6. Zhu, S.P.; Liu, Q.; Lei, Q.; Wang, Q.Y. Probabilistic fatigue life prediction and reliability assessment of a high
pressure turbine disc considering load variations. Int. J. Damage Mech. 2018, 27, 1569–1588. [CrossRef]

7. Penmetsa, R.C.; Grandhi, R.V. Adaptation of fast Fourier transformations to estimate structural failure
probability. Finite Elem. Anal. Des. 2003, 39, 473–485. [CrossRef]

8. Song, L.K.; Fei, C.W.; Bai, G.C.; Yu, L.C. Dynamic neural network method-based improved PSO and BR
algorithms for transient probabilistic analysis of flexible mechanism. Adv. Eng. Inf. 2017, 33, 144–153.
[CrossRef]

9. Helton, J.C.; Davis, F.J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex
systems. Reliab. Eng. Syst. Saf. 2003, 81, 23–69. [CrossRef]

10. Zhang, C.Y.; Yuan, Z.S.; Wang, Z.; Fei, C.W.; Lu, C. Probabilistic Fatigue/Creep Optimization of Turbine
Bladed Disk with Fuzzy Multi-Extremum Response Surface Method. Materials 2019, 12, 3367. [CrossRef]

11. Duprat, F.; Sellier, A. Probabilistic approach to corrosion risk due to carbonation via an adaptive response
surface method. Probab. Eng. Mech. 2006, 21, 207–216. [CrossRef]

12. Song, L.K.; Fei, C.W.; Wen, J.; Bai, G.C. Multi-objective reliability-based design optimization approach of
complex structure with multi-failure modes. Aerosp. Sci. Technol. 2017, 64, 52–62. [CrossRef]

13. Maliki, M.; Bruno, S. Surrogate-assisted reliability-based design optimization: A survey and a unified
modular framework. Struct. Multidiscip. Optim. 2019, 60, 2157–2176.

http://dx.doi.org/10.1016/j.engfailanal.2019.104187
http://dx.doi.org/10.1016/j.ress.2015.10.002
http://dx.doi.org/10.3390/ma12091545
http://www.ncbi.nlm.nih.gov/pubmed/31083468
http://dx.doi.org/10.1016/j.ast.2017.07.044
http://dx.doi.org/10.1111/ffe.12772
http://dx.doi.org/10.1177/1056789517737132
http://dx.doi.org/10.1016/S0168-874X(02)00104-X
http://dx.doi.org/10.1016/j.aei.2017.05.005
http://dx.doi.org/10.1016/S0951-8320(03)00058-9
http://dx.doi.org/10.3390/ma12203367
http://dx.doi.org/10.1016/j.probengmech.2005.11.001
http://dx.doi.org/10.1016/j.ast.2017.01.018


Materials 2020, 13, 3239 21 of 22

14. Fei, C.W.; Choy, Y.S.; Hu, D.Y.; Bai, G.C.; Tang, W.Z. Dynamic probabilistic design approach of high pressure
turbine blade-tip radial running clearance. Nonlinear Dyn. 2016, 86, 205–223. [CrossRef]

15. Yeh, W.C.; Su, J.C.P.; Hsieh, T.J.; Chih, M.; Liu, S.L. Approximate reliability function based on wavelet Latin
hypercube sampling and bee recurrent neural network. IEEE Trans. Reliab. 2011, 60, 404–414. [CrossRef]

16. Song, L.K.; Bai, G.C.; Fei, C.W. Probabilistic LCF life assessment for turbine discs with DC strategy-based
wavelet neural network regression. Int. J. Fatigue 2019, 119, 204–219. [CrossRef]

17. Li, T.Z.; Yang, X.L. An efficient uniform design for Kriging-based response surface method and its application.
Comput. Geo. 2019, 109, 12–22. [CrossRef]

18. Gaspar, B.; Teixeira, A.P.; Soares, C.G. Assessment of the efficiency of Kriging surrogate models for structural
reliability analysis. Probab. Eng. Mech. 2014, 37, 24–34. [CrossRef]

19. Wen, Z.X.; Pei, H.Q.; Liu, H.; Yue, Z.F. A sequential Kriging reliability analysis method with characteristics of
adaptive sampling regions and parallelizability. Reliab. Eng. Syst. Saf. 2016, 153, 170–179. [CrossRef]

20. Martin, J.D.; Simpson, T.W. Use of Kriging models to approximate deterministic computer models. AIAA J.
2005, 43, 853–863. [CrossRef]

21. Song, L.K.; Bai, G.C.; Fei, C.W. Dynamic surrogate modeling approach for probabilistic creep-fatigue life
evaluation of turbine disks. Aerosp. Sci. Technol. 2019, 95, 105439. [CrossRef]

22. Li, M.G.; Li, M.; Han, G.P.; Liu, N.; Zhang, Q.M.; Wang, Y. Optimization Analysis of the Energy Management
Strategy of the New Energy Hybrid 100% Low-Floor Tramcar Using a Genetic Algorithm. Appl. Sci. 2018, 8,
1144. [CrossRef]

23. Lu, R.L.; Guan, X.M.; Li, X.Y.; Hwang, I. A large-scale flight multi-objective assignment approach based on
multi-island parallel evolution algorithm with cooperative coevolutionary. Sci. China Inf. Sci. 2016, 59, 1–17.
[CrossRef]

24. Li, C.C.; Lin, C.H.; Liu, J.C. Parallel genetic algorithms on the graphics processing units using island model
and simulated annealing. Adv. Mech. Eng. 2017, 9, 1–14. [CrossRef]

25. Heungseob, K.; Pansoo, K. Reliability–redundancy allocation problem considering optimal redundancy
strategy using parallel genetic algorithm. Reliab. Eng. Syst. Saf. 2017, 159, 153–160.

26. Fei, C.W.; Bai, G.C. Distributed collaborative extremum response surface method for mechanical dynamic
assembly reliability analysis. J. Cent. South Univ. 2013, 20, 2414–2422. [CrossRef]

27. Liu, C.L.; Lu, Z.Z.; Xu, Y.L.; Yue, Z.F. Reliability analysis for low cycle fatigue life of the aeronautical engine
turbine disc structure under random environment. Mater. Sci. Eng. A. 2005, 395, 218–225. [CrossRef]

28. Zhu, S.P.; Foletti, S.; Berrtta, S. Probabilistic framework for multiaxial LCF assessment under material
variability. Int. J. Fatigue 2017, 103, 371–385. [CrossRef]

29. Bai, G.C.; Fei, C.W. Distributed collaborative response surface method for mechanical dynamic assembly
reliability design. Chin. J. Mech. Eng. 2013, 26, 1160–1168. [CrossRef]

30. Song, L.K.; Bai, G.C.; Fei, C.W. Multi-failure probabilistic design for turbine bladed disks using neural
network regression with distributed collaborative strategy. Aerosp. Sci. Technol. 2019, 92, 464–477. [CrossRef]

31. Fei, C.W.; Tang, W.Z.; Bai, G.C. Novel method and model for dynamic reliability optimal design of turbine
blade deformation. Aerosp. Sci. Technol. 2014, 39, 588–595. [CrossRef]

32. Gao, H.F.; Fei, C.W.; Bai, G.C.; Ding, L. Reliability-based low-cycle fatigue damage analysis for turbine blade
with thermo-structural interaction. Aerosp. Sci. Technol. 2016, 49, 289–300. [CrossRef]

33. Kriging, D.G. A statistical approach to some basic mine valuations problems on the Witwatersrand. Journal
of the Chemical. Metall. Min. Eng. Soc. S. Afr. 1951, 52, 119–139.

34. Matheron, G.M. Principles of geostatistics. Econ. Geogr. 1963, 58, 1246–1266. [CrossRef]
35. Kaymaz, I. Application of kriging method to structural reliability problems. Struct. Saf. 2005, 27, 133–151.

[CrossRef]
36. Echard, B.; Gayton, N.; Lemaire, M. AK-MCS: An active learning reliability method combining Kriging and

Monte Carlo simulation. Struct. Saf. 2011, 33, 145–154. [CrossRef]
37. Keys, A.C.; Rees, L.P.; Greenwood, A.G. Performance measures for selection of metamodels to be used in

simulation optimization. Dec. Sci. 2002, 33, 31–57. [CrossRef]
38. Hu, F.G.; Zhan, J.H.; Feng, L.Y. Sparse planar retrodirective antenna array using improved adaptive genetic

algorithm. J. Electr. Sci. Technol. 2011, 9, 265–269.

http://dx.doi.org/10.1007/s11071-016-2883-1
http://dx.doi.org/10.1109/TR.2011.2134190
http://dx.doi.org/10.1016/j.ijfatigue.2018.10.005
http://dx.doi.org/10.1016/j.compgeo.2019.01.009
http://dx.doi.org/10.1016/j.probengmech.2014.03.011
http://dx.doi.org/10.1016/j.ress.2016.05.002
http://dx.doi.org/10.2514/1.8650
http://dx.doi.org/10.1016/j.ast.2019.105439
http://dx.doi.org/10.3390/app8071144
http://dx.doi.org/10.1007/s11432-015-5514-4
http://dx.doi.org/10.1177/1687814017707413
http://dx.doi.org/10.1007/s11771-013-1751-0
http://dx.doi.org/10.1016/j.msea.2004.12.014
http://dx.doi.org/10.1016/j.ijfatigue.2017.06.019
http://dx.doi.org/10.3901/CJME.2013.06.1160
http://dx.doi.org/10.1016/j.ast.2019.06.026
http://dx.doi.org/10.1016/j.ast.2014.07.003
http://dx.doi.org/10.1016/j.ast.2015.12.017
http://dx.doi.org/10.2113/gsecongeo.58.8.1246
http://dx.doi.org/10.1016/j.strusafe.2004.09.001
http://dx.doi.org/10.1016/j.strusafe.2011.01.002
http://dx.doi.org/10.1111/j.1540-5915.2002.tb01635.x


Materials 2020, 13, 3239 22 of 22

39. Gao, H.F.; Bai, G.C.; Gao, Y.; Bao, T.W. Reliability analysis for aeroengine turbine disc fatigue life with
multiple random variables based on distributed collaborative response surface method. J. Cent. South Univ.
2015, 22, 4693–4701. [CrossRef]

40. Song, L.K.; Wen, J.; Fei, C.W.; Bai, G.C. Distributed collaborative probabilistic design of multi-failure structure
with fluid-structure interaction using fuzzy neural network of regression. Mech. Syst. Signal Process. 2018,
104, 72–86. [CrossRef]

41. Song, L.K.; Bai, G.C. Multi-Surrogate Collaboration Approach for Creep-Fatigue Reliability Assessment of
Turbine Rotor. IEEE Access. 2020, 8, 39861–39874. [CrossRef]

42. Coffin, L.F. A study of the effects of cyclic thermal stress on a ductile metal. Trans. Am. Soc. Mech. Eng. 1954,
76, 931–950.

43. Wang, R.Q.; Liu, X.; Hu, D.Y.; Meng, F.C.; Li, D.; Li, B. Zone-based reliability analysis on fatigue life
of GH720Li turbine disk concerning uncertainty quantification. Aerosp. Sci. Technol. 2017, 70, 300–309.
[CrossRef]

44. Gao, H.F.; Wang, A.; Zio, E.; Bai, G.C. An integrated reliability approach with improved importance sampling
for low-cycle fatigue damage prediction of turbine disks. Reliab. Eng. Syst. Saf. 2020, 199, 106819. [CrossRef]

45. Abyani, M.; Bahaari, M.R. A comparative reliability study of corroded pipelines based on Monte Carlo
Simulation and Latin Hypercube Sampling methods. Int. J. Press. Vessel. Pip. 2020, 181, 104079. [CrossRef]

46. Kang, F.; Xu, Q.; Li, J.J. Slope reliability analysis using surrogate models via new support vector machines
with swarm intelligence. Appl. Math. Model. 2016, 40, 6105–6120. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11771-015-3020-x
http://dx.doi.org/10.1016/j.ymssp.2017.09.039
http://dx.doi.org/10.1109/ACCESS.2020.2975316
http://dx.doi.org/10.1016/j.ast.2017.08.011
http://dx.doi.org/10.1016/j.ress.2020.106819
http://dx.doi.org/10.1016/j.ijpvp.2020.104079
http://dx.doi.org/10.1016/j.apm.2016.01.050
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Decomposed Collaborative Modeling Approach 
	Intelligent Kriging Modeling 
	Kriging Model Overview 
	Intelligent Algorithm 
	Intelligent Algorithm with Kriging Model, IKM 

	Decomposed Collaborative IKM, DCIKM 
	Basic thought of DCIKM 
	Mathematical Modeling of DCIKM 


	Probabilistic Fatigue Life Evaluation Theory 
	Case Study 
	Material Preparations 
	Finite Element Model 
	Variable Selection 

	Deterministic Fatigue Life Evaluation 
	Decomposed Stress-Strain Prediction 
	Decomposed IKM Modeling 
	Stress–Strain Prediction with Decomposed IKM Model 
	Sensitivity Analysis with Decomposed IKM Model 

	Collaborative Fatigue Life Evaluation 
	Collaborative IKM Modeling 
	Fatigue Life Evaluation with Collaborative IKM Model 
	Sensitivity Analysis with Collaborative IKM Model 

	Method Validations 

	Conclusions and Outlooks 
	References

