
1Scientific Reports |          (2020) 10:122  | https://doi.org/10.1038/s41598-019-56958-y

www.nature.com/scientificreports

Comparison of different input 
modalities and network structures 
for deep learning-based seizure 
detection
Kyung-Ok Cho1 & Hyun-Jong Jang   2*

The manual review of an electroencephalogram (EEG) for seizure detection is a laborious and error-
prone process. Thus, automated seizure detection based on machine learning has been studied for 
decades. Recently, deep learning has been adopted in order to avoid manual feature extraction and 
selection. In the present study, we systematically compared the performance of different combinations 
of input modalities and network structures on a fixed window size and dataset to ascertain an optimal 
combination of input modalities and network structures. The raw time-series EEG, periodogram of 
the EEG, 2D images of short-time Fourier transform results, and 2D images of raw EEG waveforms 
were obtained from 5-s segments of intracranial EEGs recorded from a mouse model of epilepsy. A 
fully connected neural network (FCNN), recurrent neural network (RNN), and convolutional neural 
network (CNN) were implemented to classify the various inputs. The classification results for the test 
dataset showed that CNN performed better than FCNN and RNN, with the area under the curve (AUC) 
for the receiver operating characteristics curves ranging from 0.983 to 0.984, from 0.985 to 0.989, 
and from 0.989 to 0.993 for FCNN, RNN, and CNN, respectively. As for input modalities, 2D images of 
raw EEG waveforms yielded the best result with an AUC of 0.993. Thus, CNN can be the most suitable 
network structure for automated seizure detection when applied to the images of raw EEG waveforms, 
since CNN can effectively learn a general spatially-invariant representation of seizure patterns in 2D 
representations of raw EEG.

Epilepsy is defined as having unprovoked recurrent seizures1,2. The primary tool for seizure detection is the elec-
troencephalogram (EEG). EEG continuously measures the electrical activity of the brain via electrodes placed on 
the scalp or the surface of the brain. Manual inspection of long, continuous EEGs for seizure detection is a time 
consuming and laborious process in both clinical and experimental settings. It can take many hours to meticu-
lously examine days of EEG recordings for patients hospitalized to diagnose epilepsy. In an experimental setting, 
long-term EEG recordings (even up to several months) are often to be reviewed. Furthermore, the EEG readings 
made by different inspectors can be inconsistent as the criteria for abnormal EEG findings are experiential3. 
Therefore, the development of an automated method for seizure detection is necessary.

For decades, various machine learning approaches have been applied to detect seizures automatically4,5. The 
difficulty in automatic seizure detection is due to the extreme variability in both inter- and intra-patient EEG6. 
Furthermore, EEG signals are highly non-stationary and nonlinear7,8. Thus, to construct a generalized seizure 
detector, discriminative features between seizure and non-seizure EEGs should be extracted. Many existing 
methods have been based on hand-engineered techniques for extracting features in the time domain, frequency 
domain, time-frequency domain, and using combinations of multiple domains from EEG signals5. Time domain 
features include average wave amplitude and duration, coefficient of variation in the wave amplitude and dura-
tion, and skewness and kurtosis9. Frequency domain features can be obtained by a fast Fourier transform (FFT) 
or periodogram10–12. Time-frequency domain features can be extracted by a short-time Fourier transform (STFT) 
or wavelet transform13–16. Nonlinear analysis, including an entropy-based approach, has also been used to extract 
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features17,18. Many studies adopted combinations of multiple domain features to enhance their classification 
results19,20. These extracted features were then statistically analyzed, ranked, and classified. The best classifier was 
determined by comparing the performance of different classifiers for selected features. The types of classifiers 
have included an artificial neural network21, k-nearest neighbor16, logistic regression20, naïve Bayes13, random 
forest3, and support vector machine10. Thus, machine learning-based seizure autodetection was traditionally com-
posed of two separate procedures. The first part was the feature extraction process and the other was the classifi-
cation process applied to the extracted features. Both the identification of the appropriate features and the choice 
of a proper classifier can play important roles in optimizing algorithm performance. These processes depend 
heavily on domain expertise and consume a great deal of time and effort to select proper features and classifiers.

Thus, automatic feature learning has substantial advantages over traditional machine learning methods based 
on manual feature extraction and selection22. This can be accomplished by the implementation of deep learning, 
which automatically discovers and learns the discriminative features needed for the classification of inputs23. 
Recently, many studies have investigated deep learning for seizure detection. These studies have been based on 
different deep neural network structures, such as a fully connected neural network (FCNN)24, convolutional neu-
ral network (CNN)22,25–27, and recurrent neural network (RNN)28. These different neural networks can automati-
cally learn discriminative features from various types of data input, including raw temporal EEG26, FFT results25, 
2-dimensional (2D) representation of STFT results29, and 2D images of raw EEG27. The adoption of different 
input forms and network structures typically makes it difficult to directly compare performance among different 
deep learning methods. Furthermore, these studies adopted different window sizes for EEG segmentation (e.g., 
1-25, 2-29, 3-22, 5-24,27, 8-26, and 23.6-s28 windows). In addition, the classifiers were trained and tested on different 
datasets including public EEG datasets such as the Bonn22,28, CHB-MIT25,29, and Freiburg25 datasets, or their own 
datasets24,27. Thus, it is almost impossible to directly compare the results of different studies to ascertain an opti-
mal combination of input modalities and network structures.

Therefore, in the present study, we compared the performance of deep learning-based seizure detection algo-
rithms using combinations of different input forms and network structures to systematically investigate how the 
input modalities and network structures can affect the characteristics of automated seizure detectors. Since pre-
vious studies adopted the time, frequency, and time-frequency domain signals and the images of EEG as inputs, 
we decided to include all these input domains to meticulously search for the most suitable input forms. Thus, the 
raw time-series and periodogram of EEGs, 2D images of STFT results, and 2D raw EEG waveform images, which 
were obtained from experimental intracranial EEG (iEEG) traces in a mouse model of epilepsy, were adopted as 
input forms. Every input was made from a 5-s segment EEG trace. Since the FCNN, RNN, and CNN have been 
widely used for EEG classification, we included these network structures to classify our input data. For the raw 
time-series and periodogram of EEGs, all three networks were applied. For the 2D image inputs, only the CNN 
was applied. Thus, nine possible combinations of input modalities and network structures were tested in the 
present study. We considered the nine combinations can provide decent comparison for the classification perfor-
mance of the widely adopted input modalities and network structures. Then, we tested three previously reported 
classifiers on our experimental iEEG to compare with the results of the current study. Finally, our classifiers were 
tested on a human iEEG dataset to validate the results of this study.

Methods
EEG recording.  The iEEGs used in the present study were recorded from mice for epilepsy research. The 
animal experiments were approved by the Ethics Committee of the Catholic University of Korea and were carried 
out in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH 
Publications No. 80-23). Details of establishing the mouse model of pilocarpine-induced epilepsy were the same 
as previously described30,31. Between 4 and 7 weeks after pilocarpine injection, video/EEG monitoring was con-
ducted for 2 weeks as previously described32,33. Each mouse was stereotactically implanted with a single epidural 
recording electrode, placed at AP −0.2 mm and ML +0.22 mm from bregma. Reference electrode was implanted 
at AP +0.1 mm and ML +0.1 mm from bregma. Mice underwent continuous monitoring by a wireless video/EEG 
monitoring system (Data Sciences International). An expert epileptologist evaluated all the EEG traces to detect 
generalized tonic-clonic seizures with the baseline suppression and the restoration of the EEG amplitudes to the 
baseline as the onset and offset of the seizures, respectively. Convulsive seizures were further defined by repetitive 
epileptiform spiking (≥3 Hz) that persisted for more than 3 s and were also confirmed by video recordings.

Datasets.  We obtained the training and test sets from completely separate groups of mice. Single chan-
nel iEEG data recorded from 17 mice (total 4,704 h) were used as the training set, which contained 249 
human-annotated seizure events ranging from 8.34 to 61.25 s in duration24. The test set consisted of 4,272 h of 
EEG recordings from another 15 mice, containing 324 seizure events. To construct a training dataset, we col-
lected seizure EEG segments from annotated seizure events using a 5-s sliding window with a 0.25-s interval. 
Non-seizure segments were collected from 5 min of EEG traces before and after each seizure event using a 5-s 
sliding window with a 2.5-s interval. We used different intervals for the collection of seizure and non-seizure 
segments because seizure EEGs were relatively scarce. The total numbers of training segments were 15,828 and 
46,753 for the seizure and non-seizure, respectively. We chose to analyze the 5-s segment of EEGs based on our 
previous study because it was the most efficient for seizure event detection24. Both seizure and non-seizure seg-
ments showed extremely varied patterns (Fig. 1), suggesting that it is a very challenging task to extract general 
features.

Input forms.  The 5-s segments were transformed into different forms for the input into deep neural net-
works (Fig. 2). The original iEEG was recorded at 1,000 Hz. It was down-sampled to 100 Hz by averaging sam-
pling, thus resulting in 500 raw EEG data points for 5-s segments (Fig. 2a). A periodogram between 0 and 99 Hz 
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(100 data points) was analyzed from the 5-s segments of the original EEGs (Fig. 2b). The 5-s segments were also 
transformed into a gray image by an STFT using the Hamming window (Fig. 2c). Finally, the raw EEG waveform 
was transformed into a black and white image with dimensions of 40 × 250 pixels (Fig. 2d). In order to more 
accurately capture the characteristics of seizure EEGs that markedly differ from pre- and post-convulsive EEG 
patterns4, we additionally constructed the last input form by concatenating three black and white images of 5-s 
EEG segments, which were separated by a 2.5-min interval (Fig. 2e). Thus, the last input form became a set of 
40 × 750 pixel-images of the EEG. Because the longest seizure was approximately 60 s in our experimental data 
set, a 2.5-min interval could clearly separate seizure and non-seizure EEGs. In summary, a total of five different 
input forms, i.e., a down-sampled raw EEG time-series with 500 data points, periodogram results with 100 data 
points, 50 × 20 pixel gray images of STFT, and black and white images of raw EEG with dimensions of either 
40 × 250 pixels or 40 × 750 pixels, were used for the deep learning-based seizure autodetectors.

Network structures.  Three different network structures, including the FCNN, RNN, and 1D CNN were 
used to construct seizure detectors from the raw EEG time-series and periodogram results (Fig. 3). We adopted 
a simple grid search strategy to determine the most suitable network structures during training. We generally 
tested only three to four values for each parameter because there were too many combinations of input modali-
ties and network structures to perform an extensive search. Two to four layers with various node numbers were 
tested for the FCNN. For the RNN, unit size for the memory cell was searched. For the CNN, kernel size and the 
number of convolution layers were grid-searched but the strides were fixed as 1 and 2 for the convolution and 
pooling layers, respectively. We adopted the simplest structures that yielded the best results. Furthermore, three 
minibatch sizes were tested for each structure: 64, 128, and 256 samples per minibatch. The FCNN consisted of 
two hidden layers and an output layer containing two nodes for seizure and non-seizure classification (Fig. 3a). 
Because the current problem is binary classification, only one node can be used for the output layer. However, 
we assigned nodes per class for the future implementation of the multi-class problem (i.e., interictal, preictal, 
and ictal classification). The RNN was implemented with a long short-term memory (LSTM) cell (Fig. 3b). We 
averaged the outputs from the LSTM cell for each input sequence to construct a layer before the output layer, 
similar to the structure used in the work by Hussein et al. Every two consecutive data points in the input data 
were passed to the LSTM cell. Thus, the down-sampled raw EEG and periodogram yielded 250 and 50 sequence 
lengths for the RNN, respectively. The LSTM unit size was determined to be 20. Since the raw time-series EEG 
and periodogram results were basically 1D data forms, we implemented 1D CNNs for these inputs (Fig. 3c). For 
both input forms, two consecutive convolutional-pooling layers were sufficient to yield the best results. The out-
puts of the second pooling layer were flattened and passed to two fully-connected layers. For the gray images of 
the STFT and black and white images of the raw EEG waveform, only 2D CNNs were applied to construct seizure 
detectors (Fig. 4). As in the case of the 1D CNN, two consecutive convolutional-pooling layers were adequate 
and achieved the best results. The details of the network structures are summarized in Supplementary Table 1. 

Figure 1.  Non-seizure and seizure segments obtained from seven different recordings. Both showed extremely 
variable patterns. The non-seizure segment was recorded 5 min before each seizure segment.
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The deep neural networks were implemented with the TensorFlow deep learning library (https://www.tensorflow.
org). A dropout was applied on every fully connected hidden layer in each network structure with a ratio of 0.3. 
The networks were trained on minibatches with sizes ranging from 128 to 256 using the Adam optimizer with 

Figure 2.  The different input forms used in the present study. (a) A down-sampled raw time-series EEG with 
500 data points. (b) Periodogram result with 100 data points. (c) Image of an STFT at 50 × 20 pixels. The gray 
STFT image was pseudo-colored for demonstration purposes. (d) Image of an EEG waveform at 40 × 250 pixels. 
(e) Concatenated image of three temporally separated images of EEG waveforms at 40 × 750 pixels. The images 
are not presented to reflect their actual sizes.

Figure 3.  Network structures used to classify a down-sampled raw time-series EEG and periodogram result. 
(a) A fully connected neural network (FCNN). (b) Recurrent neural network (RNN) implemented with a long 
short-term memory (LSTM) cell. (c) Convolutional neural network (CNN) for 1-dimensional (1D) input.

Figure 4.  The network structure for 2-dimensional (2D) images. A convolutional neural network (CNN) was 
used for 2D input.
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default parameters (learning rate: 0.001, decay rate of the first and the second moments: 0.9 and 0.999). Ten 
percent of training data was randomly selected as a validation set and the validation loss was used as an early 
stopping criterion to avoid overfitting.

Seizure event detection.  In our previous study, we built a seizure event detector based on the classifier for 
the 5-s EEG segments24. In the present study, we adopted the same procedure to detect seizure events. Briefly, the 
5-s EEG segments were continuously classified and nearby seizure segments were joined to form a seizure event 
when separated seizure segments were detected within 10 s in continuous EEGs. Single discrete seizure segment 
was removed. Then, if the seizure event had 1.2 times higher mean absolute amplitude compared to nearby EEG, 
the event was finalized as a seizure event. If there was no amplitude change, the event was not considered as a 
seizure event. This post-processing effectively eliminated much of false positive (FP) segments. The mean absolute 
amplitude was used to meaningfully estimate EEG amplitudes because positive and negative signals in the EEG 
can negate each other if they are not converted to absolute values. When the detected event did not overlap with 
human annotated seizure events, it was considered as a false detection.

Validation of models with human iEEGs.  To validate the performance difference in the present study, 
we tested our models on a human iEEG dataset which was used for ‘UPenn and Mayo Clinic’s Seizure Detection 
Challenge’ held at kaggle.com (https://www.kaggle.com/c/seizure-detection). There were iEEGs recorded from 
8 patients with channel numbers ranging from 16 to 72. Sampling frequency was 5,000 Hz except for 500 Hz in 
patient 1. The dataset offered the EEGs as the independent files of 1-s EEG segments. The 1-s segments were 
divided into ictal, interictal, and test sets. Because we did not have the answer for the test set, we only used the 
ictal and interictal sets in the current study. We set the frequency to 500 Hz and concatenated five of the continu-
ous 1-s segments to build a 5-s segment of EEG. Because the minimum channel was 16, we selected 16 channels 
to train the seizure classifiers for every patient. We built classifiers for the periodogram with 1D CNN, for the 
images of the STFT with 2D CNN, and for the images of raw EEG waveform with 2D CNN. We tested only the 
CNN-based classifiers because the multi-channel data can be easily incorporated with the data channels in CNNs. 
Both intra- and inter-patient classification were tested. Intra-patient classification was performed with 10-fold 
cross-validation scheme for each patient. Because there were only 8 patients, inter-patient classification was 8-fold 
cross-validated, i.e., classifiers trained with 7 patients were tested on the remaining one patient. To draw the ROC 
curves, the results for all folds were concatenated.

Performance metrics and statistics.  The true positive (TP) denotes the seizure segment when it is clas-
sified as a seizure by a deep neural network. The false negative (FN) is the seizure segment falsely classified as a 
non-seizure. The true negative (TN) and FP are non-seizure segments classified as a non-seizure and falsely as a 
seizure, respectively. TP, FN, TN, and FP numbers were presented as mean ± SE. One-way analysis of variance 
(ANOVA) and Tukey’s post hoc test were used to compare the numbers. The accuracy, sensitivity, specificity, and 
F1 score are well-known performance metrics used to evaluate the performance of a binary classifier, and are 
calculated as follows:
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A receiver operating characteristics (ROC) curve was plotted for every classifier and the difference between 
the two ROC curves was evaluated by the permutation test using 1,000 permutations34. To compare the perfor-
mance for event detection, false detection rate (FDR) per hour (number of falsely detected seizure events/hour) 
was also presented. A p-value <0.05 was considered significant.

Results
We trained each combination of input forms and network structures five times and let them classify the 5-s EEG 
segments collected at 2.5-s intervals from 4,272 h of the test data set (n = 5 for every classifier). The total number 
of test segments for the seizures and non-seizures were 928 and 3,804,948, respectively. There were slightly fewer 
segments for concatenated raw EEG images with dimensions of 40 × 750 pixels (seizure: 923 and non-seizure 
3,730,236).

We first applied the FCNN, RNN, and 1D CNN to raw time-series EEGs (Fig. 5a). The FP numbers decreased 
in the order of the FCNN, RNN, and 1D CNN as 55,695.8 ± 2,377.05, 25,349.8 ± 1,464.69, and 13,314.8 ± 610.87 
[F(2, 12) = 175.2, p < 0.001, one-way ANOVA], respectively (Fig. 5b). The FN numbers among the network struc-
tures were not significantly different: 33.6 ± 0.67, 30.8 ± 0.91, and 32.4 ± 0.81 for the FCNN, RNN, and 1D CNN 
[F(2, 12) = 2.741, p = 0.104, one-way ANOVA], respectively (Fig. 5c). The ROC curve yielded an AUC of 0.983 
(Fig. 5d), 0.989 (Fig. 5e), and 0.990 (Fig. 5f) for the FCNN, RNN, and 1D CNN, respectively (p = 0.039 for the 
FCNN vs. RNN, p = 0.012 for the FCNN vs. 1D CNN and p = 0.327 for the RNN vs. 1D CNN by the permuta-
tion test). When the FCNN, RNN, and 1D CNN were applied to periodogram results (Fig. 6a), the pattern was 
more complex. The FP numbers fluctuated with the FCNN, RNN, and 1D CNN yielding 36,345.0 ± 1,706.69, 
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Figure 5.  Classification results for the down-sampled raw time-series EEGs. (a) The inputs were classified with 
a fully connected neural network (FCNN), recurrent neural network (RNN) and convolutional neural network 
(CNN) for 1D input. (b) False positive (FP) numbers for the FCNN, RNN, and CNN. ***p  < 0.001 vs. FCNN, 
###p  < 0.001 vs. RNN. (c) False negative (FN) numbers for the FCNN, RNN, and CNN. (d) The receiver 
operating characteristics (ROC) curve for the classification result of the FCNN. (e) The ROC curve for the 
classification result of the RNN. (f) The ROC curve for the classification result of the 1D CNN. The area under 
the curve (AUC) is presented for each ROC curve.

Figure 6.  Classification results for the periodogram. (a) The inputs were classified using a fully connected 
neural network (FCNN), recurrent neural network (RNN) and convolutional neural network (CNN) for 1D 
input. (b) False positive (FP) numbers for the FCNN, RNN, and CNN. ***p  < 0.001 vs. FCNN, ###p  < 0.001 
vs. RNN. (c) False negative (FN) numbers for the FCNN, RNN, and CNN. *p  < 0.05 vs. FCNN, ##p  < 0.01 vs. 
RNN. (d) The receiver operating characteristics (ROC) curve for the classification result of the FCNN. (e) The 
ROC curve for the classification result of the RNN. (f) The ROC curve for the classification result of the 1D 
CNN. The area under the curve (AUC) is presented for each ROC curve.
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66,044.4 ± 1,594.71, and 14,669.2 ± 757.95 [F(2, 12) = 330.9, p < 0.001, one-way ANOVA], respectively (Fig. 6b). 
The FN number showed a reversed pattern with 34.6 ± 0.81, 30.6 ± 0.67, and 34.8 ± 0.96 for the FCNN, RNN, 
and 1D CNN [F(2, 12) = 8.175, p < 0.01, one-way ANOVA], respectively (Fig. 6c). The AUCs were 0.984 (Fig. 6d), 
0.985 (Fig. 6e), and 0.989 (Fig. 6f) for the FCNN, RNN, and 1D CNN, respectively (p = 0.382 for the FCNN vs. 
RNN, p = 0.052 for the FCNN vs. 1D CNN, and p = 0.117 for the RNN vs. 1D CNN by the permutation test).

For the 2D image inputs including images of the STFT, raw EEG images with dimensions of 40 × 250 pixels and 
concatenated raw EEG images with dimensions of 40 × 750 pixels, only the 2D CNNs were applied (Fig. 7a). Compared 
to classifiers applied to the raw time-series EEG and periodogram results, there were many fewer FPs associated with 
the 2D image inputs. The FP numbers for the STFT image, 40 × 250 image, and 40 × 750 image were 7,404.0 ± 569.35, 
2,576.1 ± 61.64, and 1,814.6 ± 46.23 [F(2, 12) = 83.5, p < 0.001, one-way ANOVA], respectively (Fig. 7b). The FN 
numbers were not different among the input modalities: 30.0 ± 0.94, 31.2 ± 1.11, and 28.2 ± 0.58 for the STFT image, 
40 × 250 image, and 40 × 750 image [F(2, 12) = 2.758, p = 0.103 by one-way ANOVA], respectively (Fig. 7c). The AUC 
values were 0.991 (Fig. 7d), 0.993 (Fig. 7e), and 0.998 (Fig. 7f) (p = 0.314 for STFT vs. 40 × 250, p = 0.003 for the STFT 
vs. 40 × 750, and p = 0.043 for 40 × 250 vs. 40 × 750 by the permutation test). The 40 × 750 images showed significantly 
better permutation test results compared to all of the other combinations of input modalities and network structures 
(data not shown). The accuracy, sensitivity, specificity, and F1 score of each classifier were summarized in Table 1.

Next, we also tested three recently reported seizure classifiers on our iEEG data (bottom three rows of Table 1). 
Briefly, O’shea et al. built a classifier on the 8-s segments of raw temporal EEG with an 11 layer CNN. Another 
classifier from Zhou et al. was based on 1-s segments of FFT results with a 3 layer CNN. Finally, Cao et al. used 
2-s segments of the STFT gray image with a 2 layer CNN. AUCs were 0.990, 0.989, and 0.990 for the structures of 
O’shea et al., Zhou et al., and Cao et al., respectively.

The final purpose of the segment classification is to build a seizure event detector. We generated the seizure 
events based on the detected seizure segments as described in the methods section. Every classifier missed a same 
short seizure event, i.e., sensitivity for event detection was 0.997 for all the classifiers. However, there were various 
numbers of false detections. The FDRs are listed in Table 1. Basically, the FDRs and the numbers of FP segments 
showed correlation because the seizure events were generated from the results of segment classification. However, 
since we eliminated much of the discrete FP segments while constructing the seizure events, FDRs were relatively 
low despite of the many FP segments.

The accuracy, sensitivity, specificity, F1 score, AUC, and FDR for all the classifiers are summarized in 
Table 1 for comparison. F1 scores were generally very low because of the extreme imbalance in the seizure and 
non-seizure data, i.e., the FP numbers were much higher than the TP and FN numbers. However, the F1 scores 
can be greatly improved by the adoption of the 2D raw EEG waveform images.

Figure 7.  Classification results for the STFT images at 50 × 20 pixels, images of the EEG waveform at 40 × 250 
pixels and the concatenated images of three temporally separated images of EEG waveforms at 40 × 750 pixels. 
(a) The inputs were classified with a convolutional neural network (CNN) for 2D input. (b) The false positive 
(FP) numbers for the STFT images, waveform images at 40 × 250 pixels and waveform images at 40 × 750 pixels. 
***p  < 0.001 vs. STFT. (c) False negative (FN) numbers for the STFT images, waveform images at 40 × 250 
pixels and waveform images at 40 × 750 pixels. (d) The receiver operating characteristics (ROC) curve of the 
classification result for the STFT images. (e) The ROC curve of the classification result for the waveform images 
at 40 × 250 pixels. (f) The ROC curve of the classification result for the waveform images at 40 × 750 pixels. The 
area under the curve (AUC) is presented for each ROC curve.

https://doi.org/10.1038/s41598-019-56958-y


8Scientific Reports |          (2020) 10:122  | https://doi.org/10.1038/s41598-019-56958-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

Because we compared the performance of different classifiers with the experimental mice iEEGs, there are a 
few concerns with respect to our classifiers being applied in the clinical situation. First, these may not generalize 
to human seizures since we used EEGs obtained from a mouse model of epilepsy. Second, although multi-channel 
recordings are common in the clinical setting, the mice iEEGs only had a single channel. Thus, we validated our 
models with a multi-channel human iEEG dataset used for Kaggle seizure detection challenge. The EEGs were 
supplied as files of 1-s EEG segments with continuous numbering. When we concatenated the five continuous 
EEG files, they were joined seamlessly (Fig. 8a). Thus, we could build classifiers based on 5-s iEEG segments. The 
channel number was fixed to 16 because patient 2 and 8 had only 16 channels. Channels 1–16 were used for all the 
patients other than patient 7, where channels 16–31 were used. AUCs for intra-patient classification were 0.961, 
0.998, and 1.000 for the CNN-based classifiers for the periodogram, images of STFT, and images of raw EEG 
waveforms, respectively (Fig. 8b–d). In case of inter-patient classification, the AUCs were much lower at 0.665, 
0.769, and 0.824 (Fig. 8e–g), because the training dataset for human iEEG were much smaller than our mice iEEG 
dataset. However, the performance order was the same as the mice iEEG, i.e., the performance got better in the 
order of periodogram, STFT image, and raw EEG waveform image.

Discussion
Recent studies on deep learning-based seizure detection adopted different input forms, window sizes, network 
structures, and datasets (Supplementary Table 2). Because of these multiple different factors, it is not possible to 
directly compare the performance of different approaches for deep learning-based seizure detection. Thus, in the 
present study, we endeavored to systematically compare how different combinations of input forms and network 
structures determine the performance of the classifier by using a fixed window size on the same dataset. We 
included a total of nine different combinations of input modalities and network structures for the comparison.

When the down-sampled raw time-series EEGs were used as the inputs to the FCNN, RNN, and 1D CNN, 
the CNN resulted in the best AUC with significantly fewer FP results (Fig. 5). The RNN showed an intermediate 
performance with respect to both the FP numbers and AUC. However, with a periodogram, the RNN yielded 
overall highest FP results but relatively low FN results compared with the FCNN and CNN (Fig. 6). These results 
suggest that the information in the periodograms was not discriminative enough for our RNN implementation 
and resulted in a greater preference for classifying the given data as seizures than non-seizures. Since the peri-
odogram data had only 100 data points, it may not be able to supply enough information to be encoded in the 
recurrent network, considering the superior performance of an RNN using 500 data points of down-sampled 
raw time-series EEG. In a recent report, an RNN utilizing 4,096 data points showed good classification results28. 
Thus, RNN implementation for EEG analysis might benefit from a longer sequence of data relative to a shorter 
sequence. However, the CNN also showed the best performance with a periodogram. These results indicate that 
a CNN could be the best candidate for the construction of a classifier for 1D input data such as raw time-series 
EEG, periodogram, and FFT. In a recent paper, Zhou et al. compared the performance of a CNN-based classifier, 
assessing both time domain and frequency domain inputs25. In that study, the frequency domain inputs yielded 
better results with a 1-s window. However, our results showed no difference between the time and frequency 
domains when a CNN was used. We speculate that the window size may be a critical factor determining the 
information in the time domain and a 1-s window was too short to contain enough information for the CNN to 
extract sufficient discriminative features.

Traditionally, CNNs have been widely used to classify 2D images because the CNN is motivated by the 
neurons in the visual cortex35,36. Thus, we tested if a 2D image representation of an EEG could be an adequate 
input for seizure detection (Fig. 7). When a 2D CNN was applied to the images of an STFT, the FP number was 
much lower than all of the previous classifiers for the raw EEG time-series and periodogram. Moreover, further 
improvement was achieved with the raw EEG waveform images as input. We speculate that raw EEG images may 
reflect the information contained in EEG most faithfully and that the CNN can optimally extract the features of 
EEG signals from these images. This process clearly resembles the human inspection of EEG from the images 

Input forms Network structures Accuracy Sensitivity Specificity F1 score AUC FDR

Raw time-series EEG

FCNN 0.985 0.963 0.985 0.031 0.983 0.020

RNN 0.993 0.966 0.993 0.066 0.989 0.018

1D CNN 0.996 0.965 0.996 0.118 0.990 0.015

Periodogram

FCNN 0.985 0.963 0.985 0.046 0.984 0.020

RNN 0.982 0.967 0.982 0.026 0.985 0.024

1D CNN 0.996 0.962 0.996 0.108 0.989 0.016

Image of STFT 2D CNN 0.998 0.967 0.998 0.194 0.991 0.011

40 × 250 image of EEG 2D CNN 0.999 0.966 0.999 0.407 0.993 0.009

40 × 750 image of EEG 2D CNN 0.999 0.969 0.999 0.492 0.998 0.008

O’shea et al.26 1D CNN 0.997 0.959 0.997 0.136 0.990 0.012

Zhou et al.25 1D CNN 0.995 0.957 0.995 0.089 0.989 0.017

Cao et al.29 2D CNN 0.997 0.962 0.997 0.136 0.990 0.015

Table 1.  Classification results for all the input modalities and network structures. AUC: area under the curve, 
CNN: convolutional neural network, EEG: electroencephalogram, FCNN: fully connected neural network, 
FDR: false detection rate (n/h), RNN: recurrent neural network, STFT: short-time Fourier transform.

https://doi.org/10.1038/s41598-019-56958-y


9Scientific Reports |          (2020) 10:122  | https://doi.org/10.1038/s41598-019-56958-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

on a computer screen. Our classifier for the raw EEG waveform images also showed better results compared to 
the three recent CNN-based seizure classifiers for the raw temporal EEG26, FFT results25, and STFT images29 
(Table 1). More importantly, classifiers for the multi-channel human iEEG also demonstrated a clear performance 
advantage with the images of the raw EEG waveform (Fig. 8). These results indicated that the current methods 
were not confined to the animal model of epilepsy but also applicable to the human epilepsy. Thus, we suggest 

Figure 8.  Classification results for the human iEEG. (a) Five continuously numbered files were concatenated 
to form 5-s iEEG segments. Left and right half demonstrate 8 channels of 5-s non-seizure and seizure EEG 
segments, respectively, of patient 1. The seamless continuation of the EEGs suggested that the files were 
ordered in a continuous manner. (b) The receiver operating characteristics (ROC) curve of the intra-patient 
classification result for the periodogram results. (c) The ROC curve of the intra-patient classification result 
for the STFT images. (d) The ROC curve of the intra-patient classification result for the waveform images at 
40 × 250 pixels. (e) The ROC curve of the inter-patient classification result for the periodogram results. (f) The 
ROC curve of the inter-patient classification result for the STFT images. (g) The ROC curve of the inter-patient 
classification result for the waveform images at 40 × 250 pixels.
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that the image representation of EEG waveforms is the better option as input for CNN-based seizure classifiers. 
Furthermore, when making a decision on ambiguous EEG seizures, human inspectors may refer to the EEGs 
before and after the specific seizure event because an ictal EEG shows a different pattern compared to preictal and 
postictal EEGs4. We tried to utilize this strategy by projecting three temporally separated EEGs into one input 
image. The result was excellent for both the FP number and the AUC. Thus, the concatenation of temporally sep-
arated EEGs may provide additional information for distinguishing seizure activity, as expected from the human 
diagnostic process.

When we used a CNN, the best result was achieved with just two convolutional-pooling layers. In contrast, 
many researchers implemented more than 6 layers for the CNN26,37–39. However, these studies did not include 
multiple fully connected hidden layers between the convolutional and output layers. In our CNN structures, the 
two hidden layers may contribute to feature extraction processes and thus diminish the necessity of very deep 
CNN layers. Otherwise, this may reflect the different requirements based on the receptive field size between dif-
ferent EEG modalities. The receptive fields hierarchically increase with additional convolutional-pooling layers. 
Because our iEEGs did not require deep CNN architectures, we speculate that the iEEG may contain enough 
discriminative features even in relatively narrow receptive fields. On the other hand, a scalp EEG may require 
wider receptive fields because of the averaging effect of the dura and skull25. Thus, although it seems clear that the 
CNN is the best option for seizure detection from iEEGs, detailed structures should be adjusted to obtain the best 
results depending on the EEG modality.

Conclusion
To the best of our knowledge, this is the first report investigating how different input modalities and network 
structures can affect EEG classification results for seizure detection. Our results demonstrated that a CNN can 
improve the discrimination between seizure and non-seizure EEGs when EEG segments are presented as raw 
waveform images. Since any kind of extracted features inevitably loose some information present in the original 
data, more discriminative information might be learned from raw EEG images, provided that the neural network 
has the potential to extract features contained in the data. Thus, we conclude that the CNN has a remarkably 
strong potential for the classification of complex signals including EEGs, electrocardiograms, and electromyo-
grams. The CNN works particularly well when an image representation of the signals is provided, although the 
detailed structure of the CNN should be adjusted depending on signal modality.

Data availability
The source codes for the classifiers are available as open-source Python code on GitHub: https://github.com/
jajman/CalssifiersforiEEG.
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