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Abstract
A large fraction of microbial life on earth exists in complex communities where metabolic

exchange is vital. Microbes trade essential resources to promote their own growth in an

analogous way to countries that exchange goods in modern economic markets. Inspired by

these similarities, we developed a framework based on general equilibrium theory (GET)

from economics to predict the population dynamics of trading microbial communities. Our

biotic GET (BGET) model provides an a priori theory of the growth benefits of microbial

trade, yielding several novel insights relevant to understanding microbial ecology and engi-

neering synthetic communities. We find that the economic concept of comparative advan-

tage is a necessary condition for mutualistic trade. Our model suggests that microbial

communities can grow faster when species are unable to produce essential resources that

are obtained through trade, thereby promoting metabolic specialization and increased inter-

cellular exchange. Furthermore, we find that species engaged in trade exhibit a fundamen-

tal tradeoff between growth rate and relative population abundance, and that different

environments that put greater pressure on group selection versus individual selection will

promote varying strategies along this growth-abundance spectrum. We experimentally

tested this tradeoff using a synthetic consortium of Escherichia coli cells and found the

results match the predictions of the model. This framework provides a foundation to study

natural and engineered microbial communities through a new lens based on economic the-

ories developed over the past century.

Introduction
Metabolic exchange is a process by which microbes trade valuable resources with one another
to promote their own growth. These intercellular processes occur prevalently in natural micro-
bial communities and are at the heart of a complex chain of cooperative behaviors that exist
throughout the biosphere [1–5]. Microbes are known to engage in the exchange of a variety of
metabolites including essential amino acids, sugars, fatty acids and cofactors [6–8] that drive
the dynamics, stability and evolution of microbial communities, which are only beginning to
be fully elucidated.
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Past efforts to study microbial metabolic exchange have led to crucial insights regarding the
dynamics [9–13], energetics [14, 15], and evolutionary origin [16–19] of this multifactorial
process [20]. Several experimental models of microbial metabolic interactions have been devel-
oped in proteobacteria, yeast, and archaea [10, 11, 21]. Recent theoretical efforts using con-
straint-based models [22] such as Flux-balance analysis (FBA) and dynamic FBAs have
extended single-cell metabolic models to community-level metabolic reconstructions to inves-
tigate population level properties [23, 24] and dynamic processes [25, 26]. These approaches
have yielded fruitful insights that deepen our understanding of microbial communities and
inform better predictions of their dynamics [27, 28]. More recently, the idea of biological mar-
kets [29–31] has been suggested as a way to study microbial interactions [32].

Conceptually, a microbial population exchanging metabolites is similar to an economic
market (Fig 1). Microbes possess the ability to convert various resources (e.g. sugars, metabo-
lites) into other forms (e.g. amino acids) that are used for growth. Cells have influx and efflux
pumps to transport metabolites between their intracellular compartment and their local extra-
cellular environment. In natural habitats, cells are surrounded by thousands of different metab-
olites generated by their neighbors who may possess different physiologies and complementary
metabolic capabilities. These environments are ripe with opportunities to engage in mutually
beneficial metabolic trades. Thus, microbes can trade resources with one another to promote
their own growth just as countries trade with their neighbors to increase their material
wellbeing.

Economists have been studying trade and markets for more than a century. The research
culminated in the 1950’s with general equilibrium theory (GET), a mathematical framework
that attempts to explain the behavior of markets [33]. GET models a centralized market in
which consumers sell their endowed goods (e.g. labor) in order to purchase desired goods, and
firms transform input goods to output goods in order to obtain profit. An equilibrium exists

Fig 1. Similarities between economicmarkets and biological markets. (a)Market trade between countries where labor is used to produce goods. A unit
of labor can produce 1 wine or 3 cloth in Country 1 and 3 wine or 1 cloth in Country 2. Both countries benefit through trade by havingCountry 1 trade cloth to
Country 2 for wine. Demand drives production and consumers purchase goods to maximize their utility. (b)Metabolic exchange between microbial cells.
Microbes convert an input resource (grey symbol) into metabolites needed for growth (colored squares/triangles). For each unit of input,Cell 1 can produce
either 2 square metabolites or 1 triangle metabolite, whileCell 2 can produce either 1 square metabolite or 2 triangle metabolites. Cell 1 exports its squares
andCell 2 exports its triangles into the environment, where metabolites mix and are imported back into cells. Metabolites are then used for growth as cells
tune their production levels to maximize individual growth rates.

doi:10.1371/journal.pone.0132907.g001
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when, consumption, production, and exchange are individually optimal for each agent, and
there is no oversupply or shortage of goods at the prevailing price. Because of the striking simi-
larities between economic markets and microbial metabolic exchange, GET could be adapted
to understand biological markets, providing a new and powerful framework for microbial
ecology.

Here, we present biotic general equilibrium theory (BGET), a mathematical framework that
explicitly integrates economic concepts to study metabolic exchange in microbial communities.
For each member of a community, BGET takes its metabolic capabilities, resource require-
ments for growth, and rate of resource exchange as input parameters and computes the con-
sumption, production, and exchange of resources. Based on these variables, the model is able
to determine the growth rate of each member of the community. BGET provides a theory of
microbial trade that predicts the mutualistic benefits of resource exchange from first principles.
The model is scalable to an arbitrary number of species and metabolic interactions. We applied
this model to analyze two bacteria engaging in metabolic exchange, which yielded interesting
and important properties of a simple microbial community. Furthermore, we used a synthetic
Escherichia coli co-culture engaged in auxotrophic exchange of essential amino acids to experi-
mentally confirm a key implication of the model. This BGET framework provides a new per-
spective to study key questions in microbial ecology.

Model: Biotic General Equilibrium Theory (BGET)
Consider a community of microbes in a well-mixed environment, which contains nutrients
that each microbe can use to grow and produce various metabolites. Some of these metabolites
are released back into the environment where they are taken up by other microbes for utiliza-
tion. For simplicity, let us consider a community containing two distinct species, each able to
convert one primary resource abundantly available in the medium (e.g. sugars) into two addi-
tional metabolites (e.g. amino acids) that then can be readily exchanged through membrane
transporters. Both species need the two produced metabolites for growth, and both possess the
metabolic pathways necessary to generate them. Biotic general equilibrium theory (BGET)
takes the growth needs, metabolic capabilities, and intercellular transport rates of each species
and determines the production and allocation of metabolites, and instantaneous growth rate of
each species (Fig 1). To determine the population dynamics over time, BGET is then iterated
over a discrete-time framework. We refer to “variables” as outputs of the model and “parame-
ters” as inputs. In the main text of this paper, we describe the basic intuition of the model using
a 2-member community as an example and focus on stable steady-state population dynamics.
A formalized description of the 2-member model is presented in theMaterials and Methods
section. A list of parameters and variables and a diagram that depicts their relations is pre-
sented in Fig 2. The general BGET model that allows for an arbitrary collection of species,
metabolites, and metabolic interactions is also detailed in theMaterials and Methods section.

Production and Consumption
We will use the superscript i to indicate the microbial species and the subscript l to indicate the
metabolite. Each cell possesses metabolic pathways that allow it to convert input metabolites to
output metabolites. Here, we consider that the input resource (e.g. sugar) is not limiting, but
uptake from the environment per unit of time is fixed to be one. There are two possible output
metabolites. The production of metabolite l by a cell of species i is given by the variable yil � 0.
This is the amount of metabolite that the cell produces in a single period of time. For each spe-
cies, the maximum production is constrained by the equation yi1=a

i
1 þ yi2=a

i
2 ¼ 1. The produc-

tivity parameters ai1 > 0 and ai2 > 0 here represent the amount of output possible per unit of
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input (e.g. sugar). The number 1 on the right-hand side of the equation represents the uptake
of input resource. This means that if the cell devotes all of its energy to the production of
metabolite-1, it can produce up to ai1 units and if the cell devotes all of its energy to the produc-
tion ofmetabolite-2, it can produce up to ai2 units.

Each species i requires various amounts of metabolite l to grow, which is captured by the
resource requirement parameter bil � 0. As such, metabolite consumption fuels cellular
growth. The consumption of metabolite l by species i is given by the variable xil � 0. In order to
maximize its growth rate, each cell will adjust its production of metabolites. In GET, people are
assumed to maximize a utility function, which represents a person’s preference ordering of
goods, measured in terms of utils. For example, a bundle of 2 apples, 1 car, and 1 house may
have a value of 10 utils, and a bundle of 3 apples, 2 cars, and 0 houses may have a value of 7
utils. In GET, a person chooses the bundle with the highest value to maximize his or her utility.
Similarly in BGET, the resource requirements for growth imply an ordering of metabolite bun-
dles favoring those that yield more growth, and cells adjust their production to consume the
metabolite bundle that maximizes their growth. Therefore in the biological case, growth is
equivalent to utility. We let ui(xi) represent the utility function of a cell of species i. Since a cell
cannot substitute one type of metabolite for another, a cell maximizes its utility by maximizing
its consumption of its limiting metabolite. In economics, this is analogous to Leontief prefer-
ences [33]. A notable difference between the economic and biological contexts is that in eco-
nomics utility is a purely theoretical and unmeasurable construct. It is a way to represent
preference. If a consumption bundle x is preferred to x', then x is said to generate more utility
than x', but utility itself is never directly observed. Barring, perhaps mind-reading technology,
utility is not directly observed. In the biological context however, utility has a physical manifes-
tation–the cell’s growth rate. In this way, BGET applied to microbes is actually observationally
easier to analyze than GET applied to human markets.

Exchange
Cells may exchange metabolites for mutual benefit. In our model, each species i has a contribu-
tion parameter cil � 0, which is the fraction of the produced metabolite l that is exported into
the shared environment. Without loss of generality, we explore the case when species-1 exports
onlymetabolite-1 and species-2 exports onlymetabolite-2 (see theMaterials and Methods sec-
tion for the general model). Import of metabolite l for species i is given bymi

l � 0. We assume
that the maximum amount of metabolite l that species i can import per period is given by
�mi

l � 0. This import cap accounts for the physical limits of metabolite import, which prevents
the growth rate from reaching non-physiological values. The last component of the model is an
allocation rule that relates how cells import metabolites. In human markets, prices equilibrate
the supply and demand for a given good. In the biotic market, resources are shuttled in and
out of the cell via membrane transporters. The basic idea behind the exchange process repre-
sented in the model is that cells with equal contribution rates of metabolite l will import equal
amounts as long as they need the metabolite. A cell does not import metabolites in excess of its
needs. Since a cell of a species with a strictly positive contribution parameter will re-export
metabolites that were imported, its import rate must be reduced as illustrated by the following
example. Suppose species-1 contributesmetabolite-1 at c11 ¼ 0:7, whereas species-2 does not
contributemetabolite-1 ðc21 ¼ 0Þ. Furthermore, there is a large supply ofmetabolite-1 in the

Fig 2. Biotic Equilibrium in the 2x2 Model. Cell 1 takes glucosem1
3 and uses it to produce the orangemetabolite-1 y1

1 , and the redmetabolite-2 y1
2 , A

fraction c1
1, ofmetabolite-1 production is exported and a fraction of the export is then re-imported. The cell also imports redmetabolite-2 from cell 2. The

imports plus the production for each metabolite equals the consumption of each metabolite x1
1 and x12 , facilitating growth u1.

doi:10.1371/journal.pone.0132907.g002
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environment, and each cell does not import more than 10 units ofmetabolite-1 per period,
�mi

1 ¼ 10. A cell of each species will initially import 10 units ofmetabolite-1. However, since a
cell of species-1 re-exports 7 of these 10 units back into the environment, its net import will be
only 3. Thus a cell of species-1 imports only 3 units for every 10 units that a cell of species-2
imports. Assuming cells from both species require metabolite l for growth and have not
reached their maximum import �mi

1, then the ratio of metabolite import between a cell of each

species is ð1� cilÞ=ð1� cjlÞ. In general, rates of metabolic exchange can change depending on
how the membrane transport machineries are regulated. We first take the contribution rate for
a given species as fixed. Later, we explore the impact of varying the contribution rate on the cell
population.

Equilibrium
The driving mechanism underlying the BGET model is that a cell adjusts its production levels
to maximize its utility function given the available metabolites, thereby maximizing its growth
rate. Given the production capability, contribution rates, and imports, the cell uses its meta-
bolic pathways in a manner that maximizes utility by producing the appropriate metabolites.
Since the cell’s utility function, import-export processes, and constraints can all be written as
linear equations and expressions, the solution to the model–biotic equilibrium–can be solved
using standard linear programming methods [34]. While the solution to the model is difficult
to represent as an explicit equation, linear programming enables us to efficiently compute
numerical solutions.

The intuition for equilibrium can be expressed graphically (Fig 3). Under autarky (defined
as no trade), the set of metabolites that could be produced is the same as the set that can be con-
sumed. The cell adjusts production to obtain the maximum possible utility depicted by the
intersection of the blue arrow and the red line (Fig 3A). If a cell of species-1 needs an equal
amount ofmetabolite-1 andmetabolite-2 for growth, and is more productive at generating
metabolite 1, then the cell will devote relatively more input resources (e.g. glucose) to produc-
ing metabolite 2 (red arrows of Fig 3B). With trade, however, a cell of species-1 can receive
metabolite-2 from species-2. Trade shifts the consumption set upwards by the amount of
import, and it increases the magnitude of the slope of the consumption in proportion to the
amount that the cell exports (Fig 3C). Thus, trade can increase the cell’s total consumption and
hence increase its growth in a mutually beneficial fashion (Fig 3D).

Dynamics
The biotic equilibrium specifies the growth rate of both species at a single point in time. To
capture the population dynamics over time, the population level is updated according to the
equation, Ni(t + 1) = (1 + ui(xi(t)))Ni(t), where xi(t) denotes a cell of species i’s consumption at
time t, and Ni(t) denotes the population level of species i at time t. While the model captures
the population dynamics, however complex, we will focus on analyzing the steady-state out-

comes in this paper. We define ~N ¼ N2=N1 as the population ratio between species. As the
population ratios change, the biotic equilibrium also changes. The population ratio is said to

be in steady state, denoted by ~N �, when the growth rates of both species are equal. The steady

state is stable, denoted by ~N ��, if small perturbations in the population ratio lead the population
to converge back to steady state. The formal definition of a stable steady state (SSS) is provided
in Methods Section. Since many microbial communities exhibit SSS behavior, we focus on
understanding these SSS processes. For a 2-member community, the steady state population

ratio ~N �� is stable when small decreases in the population ratio cause growth rate differences
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u2 > u1 and small increases cause u1 > u2, leading to convergence back to u1 = u2 = u� (Fig
4A). Sometimes, environmental stresses (e.g. exposure to antibiotics) can perturb the growth of
one or more members of the community, leading to population disequilibria out of its steady
state. The BGET model can thus be used to study the population dynamics as the community
relaxes back to its stable steady state (Fig 4B). Various shock analyses can be applied to study
the rate of reversion back to stable steady state after environmental perturbations.

Fig 3. Production and consumption of a species-1 cell in a co-culture. (a) Population equilibrium under autarky (no trade). The blue arrow represents the
direction of increasing utility. Consumption of the metabolites in the ratio b1

2=b
1
1 lead to growth. The indifference curves are contour lines of the utility function:

any two consumption vectors on the same indifference curve lead to the same growth rate. The solid red line represents the possible production vectors of
metabolite-1 andmetabolite-2. The intersection of the blue arrow with the consumption-set line is the equilibrium consumption vector for which utility is
maximized. When there is no trade the consumption and production sets are equivalent. The cell can only consume what it produces. (b) Schematic of cells
under autarky. Arrows represent the flow of resources during production and consumption of red and blue metabolites. The arrow width illustrates the
utilization of each pathway. The gear size indicates pathway productivity. Cells need to allocate more input resources to produce metabolites for which it has
lower productivity, given that utilization requirements are about equal. (c) Population equilibrium under trade where the consumption set is expanded (solid
red line). The consumption set line shifts upward by the amount species-1 imports from species-2,m1

2. The increased magnitude of the slope of the
consumption set line indicates that a fraction ofmetabolite-1 produced is exported to species-2. The slope is given by�ða1

2=ð1� c1
1Þa1

1Þy1
1 . The new

equilibrium consumption vector and utility level is greater under trade than autarky implying higher growth rates. (d) Schematic of trading cells. A cell can
allocate most of its input resources to produce metabolites for which it has high productivity when exchange occurs.

doi:10.1371/journal.pone.0132907.g003
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Results

Comparative Advantage is Necessary for Mutualistic Exchange
In 1817, David Ricardo first observed the law of comparative advantage [35]. If productivity is
defined as the amount of output of a particular good per unit of input, then the law of compar-
ative advantage states that there are mutual gains from trade as long as two trading agents pro-
duce goods at different productivity ratios. This is surprising because mutual gains from trade
exist even when one agent has an absolute advantage in producing all goods. Economists view
comparative advantage as one of the fundamental principles that drive trade in human econo-
mies. The same principle applies in the context of our BGET model. Under autarky (no trade),
each species has to devote a large fraction of its input resources to produce the metabolite for
which it has low productivity (Fig 3B, red arrows for species-1 and blue for species-2). With
trade, each species can obtain those low-productivity metabolites from its trading partner
while diverting more resources to produce high-productivity metabolites (Fig 3D, blue arrows
for species-1 and red for species-2). Thus, trade allows species to specialize in metabolites they
are better at producing, thereby benefiting the entire population. For example, we can say that
species-1 has a comparative advantage inmetabolite-1 and species-2 has a comparative advan-
tage inmetabolite-2 if the productivity parameters a11=a

1
2 > a21=a

2
2. When a11=a

1
2 ¼ a21=a

2
2, there

is no comparative advantage between the two species. Comparative advantage is a necessary
condition for mutualistic exchange. A simple demonstration is presented in the Supporting
Information S1 Appendix–Comparative Advantage is Necessary for Mutualistic Exchange.
Because different species in a microbial consortium often possess different metabolic capabili-
ties, they may often have different productivities for different metabolites that are being
exchanged. Thus, the law of comparative advantage is likely an important driver of microbial
population dynamics.

Fig 4. Population dynamics. (a)Growth rate as a function of the log population ratio. When u1 < u2 the population ratio increases, and when u2 < u1 the
population ratio decreases. When u1 = u2 the population ratio does not change. The steady state ~N�� is stable since small perturbations in the population ratio
lead the population ratio back to ~N��. (b) Log population ratio over time after a perturbation at time step 0. Population converges back to SSS over time.

doi:10.1371/journal.pone.0132907.g004
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Comparative Advantage Is Necessary for Stability
It remains an open question whether comparative advantage is necessary for two populations
to live together in SSS. We consider a community of two trading species where the productivity
ratios of the two species are reciprocals of each other, that is a11=a

1
2 ¼ a21=a

2
2. This means that,

for example, a species-1 cell may produce four molecules ofmetabolite-1 and two ofmetabolite-
2 for every glucose molecule consumed, and a species-2 cell may produce two ofmetabolite-1
and four ofmetabolite-2 for every glucose molecule consumed. By definition, as this productiv-
ity ratio a11=a

1
2 increases so does the comparative advantage. For simplicity, we assume that the

growth requirements for each metabolite for both species is one (i.e. bil ¼ 1). Thus for popula-
tions with different magnitudes of comparative advantage, there exists different sets of SSS
(Fig 5A–5C). An increase in the metabolite contribution rate by a species will move the SSS
along the surface where the contours indicate the population ratio log(N2 / N1). Here, we refer
to the contribution-space that produces SSS as the “stable contribution-space”. When there is
no comparative advantage (i.e. a11=a

1
2 ¼ a21=a

2
2), the stable contribution-space is empty. An

Fig 5. (a)-(c) Stable contribution-space of three populations with decreasing comparative advantage.Horizontal and vertical axes are contribution
rates of species-1 and species-2 respectively. Productivity parameters are ai

i ¼ 100, ai
j 6¼i ¼ 1,mi

l ¼ 100 for (a), ai
i ¼ 10, ai

j 6¼i ¼ 1,mi
l ¼ 10 for (b), and ai

i ¼ 2,
ai
j 6¼i ¼ 1,mi

l ¼ 1:3 for (c). Color contours are the population ratio of species-2 versus species-1 in the form of log(N2 / N1). The stable contribution-space
shrinks as comparative advantage decreases. (d)Dotted line cross-section from plot (b) showing population ratio as a function of species-1 contribution c1

1

for a fixed species-2 contribution of c2
2 ¼ 0:5. (e) Populations growth rate of plot (b) with darker contours representing increased growth rate. (f) Dotted line

cross-section from plot (e) showing growth rate as a function of species-1 contribution c1
1 for a fixed species-2 contribution of c2

2 ¼ 0:5.

doi:10.1371/journal.pone.0132907.g005
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increase in comparative advantage leads to a larger stable contribution-space (Fig 5A–5C). The
analysis indicates that for this setup, comparative advantage is necessary for SSS. Further dis-
cussions on the shape and intuition regarding the stable contribution-space can be found in
the Supporting Information S1 Appendix.

Natural Selection for Auxotrophy
Auxotrophs, or cells unable to produce essential metabolites, are prevalently found in nature
[13, 36]. Based on BGET, an autotroph, a cell able to produce all essential metabolites, will
expend resources on generating metabolites that it does not trade and for which it is compara-
tively less productive than its trading partner. An auxotroph is missing this metabolic pathway
and instead expends its resources on producing its exporting metabolite. Thus auxotrophy pre-
cludes cells from allocating resources in a communally inefficient manner, thereby potentially
generating a higher growth rate for the whole population. The loss of function operates as a
commitment that prevents the species from doing what is individually optimal, but suboptimal
collectively. Thus with strong group-selection pressures, BGET suggests that auxotrophy may
arise as an adaptation.

We illustrate this concept through a simple numerical example. Let the productivity of
autotrophic species-1 be a11 ¼ 100, a12 ¼ 1, and autotrophic species-2 be a21 ¼ 1, a22 ¼ 100

with �mi
1 ¼ 40 for both species. Here, there is a significant comparative advantage between

the autotrophs (a11=a
1
2 > a21=a

2
2), where species-1 can makemetabolite-1 far better than

metabolite-2, and species-2 can makemetabolite-2 far better thanmetabolite-1. There is the
potential for large gains through trade in the autotrophic community. Let us now assume that
species-1 becomes auxotrophic formetabolite-1 and species-2 auxotrophic formetabolite-2 (i.e.
a11 ¼ 100, a12 ¼ 0, a21 ¼ 0, a22 ¼ 100). Interestingly, the BGET model suggests that the maxi-
mum SSS growth rate of this auxotrophic population will be ~30% higher than that of the
autotrophic population. The competitive advantage of auxotrophic cells over autotrophic cells
was recently shown in synthetic E. coli co-culture populations [37], thus highlighting an oppor-
tunity to engineering such phenotypes for industrial applications of multi-species microbial
communities [38].

This is distinct from other theories that explain the existence of auxotrophy. It is believed
that auxotrophs can arise naturally by gene loss during evolution through “genome streamlin-
ing”, and can often outcompete cells that are autotrophic in nutritionally rich environments
[36]. Our mechanism also differs from the “Black Queen Hypothesis” in which auxotrophy is
selectively favored at the individual level to reduce a costly and leaky function (e.g. biosynthesis
of amino acids) [39].

Growth-Relative-Abundance Tradeoff
The BGET model predicts that there is an important tradeoff between the population growth
rate and the relative species abundance. In some environments selective forces may cause spe-
cies to maximize relative abundance. In environments where group selection plays an impor-
tant role, species may be pressured to maximize their group’s growth rate. The model makes
clear that there is a trade-off between these two strategies. As a species increases its contribu-
tion, its relative SSS abundance in the population decreases (Fig 5D). However, the population
growth rate is maximal at an intermediate contribution level (horizontal line, Fig 5D). Beyond
this point, the growth rate will decrease and species that continue to increase in contribution
will further decrease in relative abundance. Thus, under- and over-contribution both lead to
sub-maximal population growth, thereby highlighting a potential evolutionary driver for the
development of optimal rates of metabolic exchange. Since under-contribution leads to higher
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relative abundance in the community, there is a tradeoff between relative population abun-
dance and growth. If a species reduces its contribution then its relative abundance will increase,
but at the expense of a lower overall population growth rate. In other words, because the
growth-maximizing contribution rate and the relative-abundance maximizing rate do not
coincide, there will always be a tradeoff between these two. In nature, however, different envi-
ronments may promote different strategies along this growth-relative-abundance spectrum.
Certain opportunities selectively favor maximal growth rate (e.g. rapid colonization of a new
niche) whereas others may favor population abundance (e.g. quorum sensing in biofilms).
Thus, the variation in species abundances observed in nature may be governed in part by this
growth-relative-abundance tradeoff.

To further explore the growth-relative-abundance tradeoff predicted by BGET, we devel-
oped a simple experimental bacterial consortium using two auxotrophic E. coli strains that
engage in metabolic exchange. Each strain is unable to synthesize an essential amino acid (phe-
nylalanine F or arginine R) and thus cannot grow individually in minimal media (M9-glucose).
However, both auxotrophic strains (designated ΔF or ΔR), when combined, are able to grow by
intercellular metabolic exchange of F and R (Fig 6A). To modulate the degree of metabolic
exchange, we built ΔF and ΔR variants that increase their amino acid contributions by activat-
ing specific amino acid efflux pumps. The ΔF-xR strain possesses increased R export through a
tunable argO gene [40] while the ΔR-xF strain possesses increased F export through the yddG
gene [41]. Co-cultures of these variants showed significant increases in growth rate when com-
pared to their ancestral strains (ΔF and ΔR) (Fig 6A). We then systematically generated ΔF-xR
variants with increased R contribution by tuning argO gene expression (see Methods). While
using a ΔR-xF strain with a constant F contribution, we separately co-cultured this ΔR-xF with
each of the ΔF-xR variants and measured the population growth rate and relative abundance of
each species. We find that increasing R contribution by ΔF-xR variants significantly increased
the overall population growth rate up to a peak before declining, but always reduced the rela-
tive population abundance of the ΔF-xR variant (Fig 6B). We therefore confirmed the same
type of grow-relative-abundance tradeoffs in our experimental system as what was predicted
by the BGET model. At low contribution rates, any increase in contribution leads to an initial
increased population growth, but higher contribution rates always lead to a lower relative
abundance and a lower overall growth rate. Interestingly, we also find an initial tradeoff
between relative and absolute abundance. For example, even though ΔF-xR relative abundance
at contribution level 0.1 is lower than at contribution level ~0 (relative abundance of 59% vs.
73%), its absolute abundance is actually higher (3.8x108 vs. 1.4x108 cells after 24 hours).

Discussion
The BGET framework leverages fundamental insights from economics to help elucidate impor-
tant properties of microbial metabolic exchange and population dynamics. Our model of
microbial trade yields several insights, including the notions that comparative advantage
enhances stable population growth, trading auxotrophs can be evolutionary favored, and
growth-relative-abundance tradeoffs manifest in exchanging populations, which we also exper-
imentally confirmed.

The model provides a framework to think about important evolutionary questions. For
instance, where do productivity differences come from? In economic models, productivity dif-
ferences from countries are often believed to come from differences in resources, differences in
the skills of the populace, and differences in technologies. Why might different species have dif-
ferences in productivity ratios (i.e. comparative advantage)? Natural selection may optimize
species' productions in specific environments. Species from different environment may come
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together as a consortium already endowed with productivity differences. Alternatively, if the
adaptations that make a cell very productive at producing one metabolite also make the cell
less productive at producing another metabolite, then natural selection may cause species with
identical productivities in a consortium to divergently evolve. Such consortia that specialize
and trade will outperform consortia of non-trading generalists. Additionally, the model shows
that trade leads to mutual benefits, but it is clear that a mutant free-rider species with a zero
contribution rate, but otherwise identical to a trading species in the consortium can invade.
How can trading consortia exclude such free-riders? While this question is beyond the scope of
this paper, the BGET model provides a framework to compare the growth of consortia with

Fig 6. Experimental measurement of growth-abundance tradeoffs. All data are averages from experiments in biological replicates (n = 3). (a)
Auxotrophic E. coli strains ΔR and ΔF grow by exchange of metabolites arginine R and phenylalanine F in a co-culture (black growth curve). Bar graph shows
24-hr population density of co-culture variants withR and F amino acid exporters argO and yddG respectively. (b)Growth rate, 24-hr cell density, and
population ratio (top, middle, bottom panels) of co-cultures of ΔR-xF and ΔF-xRwhere argO expression is increased on a relative scale of 0 to 1. Asterisks
highlight statistical significance (p<0.001 by t-test). Error bars indicate standard deviations of data acquired in biological replicates (n = 3).

doi:10.1371/journal.pone.0132907.g006
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and without trade allowing for analysis of multi-level selection. Future extensions of the model
may include mechanisms, such as positive feedback loops (a cell exports only if it receives
imports), that may increase the resistance of consortia to invasion.

BGET bears some similarities and differences with other models of microbial communities.
A recent model by Enyeart et al. provides a formal mathematical treatment of microbial com-
munities, explicitly using the economic concept of comparative advantage [42]. However, their
model is a system of ordinary differential equations in which a species produce an output that
collectively benefits the community as a whole (e.g. proteins that enable antibiotic resistance).
In contrast, BGET models the production and exchange of metabolites between cells as
opposed to the production of public goods that directly benefit the whole community. Concep-
tually, BGET may also appear similar to FBA models since they both employ linear program-
ming methods to find optimal solutions for cellular metabolism. However, BGET differs from
FBA primarily in that it uses a higher level of abstraction by focusing on the inputs and outputs
of metabolism. We see two advantages to this approach. First, it clearly delineates economic
objects allowing for clear application of economic principles. This is analogous to the way
high-level computer programming languages allow for easier manipulation of higher-level
structures than machine language or assembly language, although in principle a given algo-
rithm could be represented isomorphically in either language. Second, FBA often requires
whole-cell metabolic reconstructions, which are often incomplete or unavailable. By focusing
on the inputs, outputs, and requirements for growth, BGET simplifies this problem allowing
for predictions in absentia of complete data. Here, we do not account for stoichiometric param-
eters, which may limit the precision of the model predictions in certain instances. [26]. Further
improvements could enhance BGET by including additional stoichiometric constraints.

Beyond what is described here, other economic concepts may further improve the under-
standing of microbial ecology, such as vertical integration. A species that chooses to produce
all of its own resources instead of outsourcing these activities to other species in the community
is performing the biological equivalent of vertical integration. In economics markets, these ver-
tically integrated firms produce all the units in their supply chain. Understanding the key driv-
ers that lead to the formation of vertically integrated species will likely yield new insights not
only for microbial ecology but also for validating economic principles using well-controlled
synthetic microbial systems as shown here. Furthermore, application of dynamic analysis to
history- or density-dependent non-steady-state growth could capture other interesting proper-
ties of the population dynamics. Spatial heterogeneity, an important feature of microbial bio-
films and structured environments [43], can be integrated to further enhance the BGET
framework. These and other extensions, both theoretical and experimental, could lead to new
insights for the economics of resource exchange in biological communities at many spatiotem-
poral and organismic scales.

Materials and Methods
We introduce the model with the simple 2x2 case in which there are two species and two out-
put metabolites and then present the general model.

Simple 2x2 Model
Let i 2 {1,2} indicate the species, and let l 2 {1,2,3} indicate the metabolite. The production set
Yi is the set of all production vectors that are possible for an organism of species i. The vector yi

2 Yi gives the net outputs of the production process. We will set metabolite l = 3 to represent
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glucose. The production set is

Yi ¼ fyijyi1; yi2 � 0; yi3 � 0; yi1=a
i
1 þ yi2=a

i
2 � �yi3g:

We set bi3 ¼ 0, which means that cells do not use glucose directly to reproduce, the glucose is
used only as an input to producemetabolite-1 andmetabolite-2. Assume that the maximal
import of glucose for both species is one, �mi

3 ¼ 1. This implies that yi3 ¼ �1. The negative
value indicates that the net production of glucose is negative, or in other words that glucose is
an input in production and not an output. This term binds the growth rates of the species. A
cell at maximal output has production given by yi1=a

i
1 þ yi2=a

i
2 ¼ 1 as presented in the main

text. The objective function of a cell of species i is uiðxiÞ ¼ minðfxil=bilgl2f1;2gÞ. To be clear, all
values in this model represent levels and not concentrations.

The biased-access allocation rule determines imports as a function of existing exports. Access
is an upper bound on the amount of a metabolite that a cell can import. A cell will not import
its full access of a metabolite if the metabolite is not the limiting factor. Otherwise the cell
imports its full access. A cell may re-export some of its import and this is a function of its con-
tribution rate cil . When cells are importing their full access a cell of species i can import l relative

to a cell of species j is assumed to be ð1� cilÞ=ð1� cjlÞ. This captures the fact that higher contri-
bution rates make importing harder since it goes against active export. One can think of cil as
the fraction of metabolite l in cell i that is actively transported out of the cell in a unit of time.
Consequently each cell of species i has initial access to each unit of metabolite l equal to
ð1� cilÞ=½ð1� cilÞN1 þ ð1� c2l ÞN2�.

Equilibrium is defined as when every cell maximizes its utility subject to the aforementioned
constraints:maxxiu

iðxiÞ such that, (1) consumption is no more than the sum of production and
imports, xil � mi

l þ ð1� cilÞyil if yil � 0, and xil � mi
l þ yil , if y

i
l < 0, (2) production is feasible yi

2 Yi, (3) imports do not exceed the maximum levelmi
l � �mi

l , and (4) trade satisfies the biased-
access allocation rule (see below for the formal representation). In summary there are the exog-
enous parameters ail , b

i
l , c

i
l , N

i that are taken as inputs into the model. The equilibrium fully
determines the values of the endogenous output variables xi,yi,mi and ui of both species.

General Model

Assume there are I species and Lmetabolites. The production set Yi � R
L is the set of all pro-

duction vectors that are possible for a cell of species i. We assume the production set is non-
empty, closed, and convex. The vector yi 2 Yi gives the net outputs of the production process.
For example, the production vector (0,−2,5,−1) describes the process whereby two units of
metabolite-2 and one unit ofmetabolite-4 are converted into five units ofmetabolite-3. For a
more in depth treatment of production functions see [33]. The production set is kept quite gen-
eral. The model allows for any production set that is nonempty, closed, convex, and we impose
one additional assumption, that it can be specified with a set of linear constraints. For example,
the production set in Simple 2x2 Model represents a system where a single resource is trans-
formed into possibly two metabolites. For another example,
Yi ¼ fyijyi1; yi2 � 0; yi3; y

i
4 � 0; 5yi1 þ 7yi2 � �yi3 � yi4g, the production set states thatmetabo-

lite-3 andmetabolite-4 are used as inputs to producemetabolite-1 andmetabolite-2 as outputs.
A unit ofmetabolite-3 ormetabolite-4 can produce 1/5 units ofmetabolite-1 or 1/7 units of
metabolite-2.

The objective of each cell is to reproduce, which requires essential resources. A cell needs a
subset μi� {1,. . .,L} of Lmetabolites to build a new cell. If l 2 mi

l , then the exogenous value
bil > 0 represents the amount of metabolite l that i needs in order to reproduce. A species may
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still transform a metabolite to another even though such metabolite l=2mi
l may not be required

for reproduction. We assume that one metabolite cannot be substituted by another. Let xil � 0

be i's consumption of metabolite l. The objective function of i is then uiðxiÞ ¼ minðfxil=bilgl2mi
l
Þ.

An exogenous fraction cil 2 ½0; 1� of species i's positive net production of metabolite l is

exported to the shared environment. Let the vector o 2 R
L
þ indicate the exogenous quantity of

each of the Lmetabolites endowed to the medium. The total amount of imports must be less
than the total amount of export plus the endowment for each metabolite l:

kl ¼ ol þ
X

i2fijyi
l
�0g

Nicily
i
l �
XI

i¼1

Nimi
l:

The stock variable kl� 0 is the remaining quantity of metabolite l that is left in the medium. In
the main text we assume the special case where kl = 0 for expositional purposes.

The biased-access allocation rule in the general form has the following properties. A cell of

species i has access to each unit of good l equal to ð1� cilÞ=
XI

j¼1

ð1� cjlÞNj. A cell need not use

their full access. Any unused metabolites are distributed to all other cells in a way that is pro-
portional to their access. For example, suppose there are 3 cells and 25 units of the arginine
metabolite, with cell-1 having access to 4 units, cell-2 having access to 8 units, and cell-3 having
access to 13 units. Suppose cell-3 only imports 7 units, while the other two cells import their
full access. The remaining 6 units of arginine are allocated across the first two cells in propor-
tion to the original access. Since cell-2 has twice the access as cell-1, it gets 4 units of the remain-
ing arginine and cell-1 gets 2 units. Hence, the import vector for the cells would bemarg =
(7,12,6). In this paper, we use the biased-access allocation rule because it captures the basic pro-
cess of diffusion when cells asymmetrically export at different contribution rates. We view this
rule as an approximation that expresses key properties of the system: (1) higher contribution
rates result in linearly greater exports, all else equal, and (2) the additional active transport
inherent in the higher contribution rates results in a reduction in uptake relative to the other
species, all else equal. However the allocation rule is a modular component of the model. Other
allocation rules can be developed both to exhibit more refined aspects of the environment, and
to accommodate features of other environments. For example, environments that limit
resource exchange to cells in close physical proximity would require additional allocation
constraints.

A biotic economy can be summarized by the productive capabilities, resource requirements,
population levels, contribution rates of each species, and a vector of endowed metabolites

forming the quadruple ðfYi; bigI
i¼1; fNigIi¼1; fcigIi¼1;oÞ. A biotic allocation (x,y,m,k) = (x1,. . .,xI,

y1,. . .,y
I,m1,. . .,m

I,k), is defined as a consumption, production, and import vector for each cell,
and a vector of the stock of metabolites that remain in the shared environment. We now intro-
duce the solution concept.

Biotic Equilibrium. Given a biotic economy specified by ðfYi; bigIi¼1; fNigI
i¼1; fcigIi¼1;oÞ,

a biotic allocation (x�,y�,m�,k�) constitutes a biotic equilibrium if the following conditions are
satisfied

ðm�; x�Þ ¼ minm;x

XL
l¼1

XI

i¼1

� xil
bil
þ l
XI

j¼1

mi
l

1� cil
� mj

l

1� cjl

�����
�����

 !
where l 	 0 ð1Þ
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s.t.

Utility Maximization :
xil
bil
¼ xil0

bil0
for all l; l0 and i when l; l0 2 mi

xil ¼ 0 for all l; l0 and i when l; l0=2mi ð2Þ

Budget Constraint : xil � mi
l þ ð1� cilÞyil for all l and i when yil � 0

xil � mi
l þ yil for all l and i when yil < 0 ð3Þ

Production : yi 2 Yi ð4Þ

Bounded Imports : mi
l � �mi

l for all l and i ð5Þ

Trade Balance : kl ¼ ol þ
X

i2fijyi
l
�0g

Nicily
i
l �
XI

i¼1

Nimi
l for all l ð6Þ

These conditions capture two broad principles. The first principle is that cells optimize.
Cells maximize their utility, which implies that consumption of metabolites will be given in the
ratio indicated in (2). Given that the cell is consuming at the optimal ratio, it maximizes its
consumption indicated by the xil=b

i
l term in (1). A cell's consumption is limited by the amount

of metabolite it produces, the amount it imports, less the amount it exports as indicated by (3).
Expression (4) specifies that each cell is bound to produce according to its production set and
(5) restricts the maximum amount of import. Eq (6) states that the remaining stock of a metab-
olite equals the original endowment plus exports minus imports. The second principle is that
all cells have biased access to the exports in the environment. Subject to this constraint, the
absolute value expression in (1) implements the biased-access allocation rule. When the arbi-
trary constant λ	 0, the biased-access allocation rule supersedes the utility maximization.
Thus, for sufficiently large λ, this is equivalent to implementing utility maximization subject to
the biased-access allocation rule as a constraint. In the 2x2 case the biased access allocation rule
reduces to a convenient explicit equation. However, in the general model the biased access allo-
cation rule cannot be easily represented as a set of linear constraints. By placing the term

jmi
l=ð1� cilÞ �mj

l=ð1� cjlÞj in the objective function, minimization causes the ratio of imports

mi
l=m

j
l to approach ð1� cilÞ=ð1� cilÞ, as described in the main text, subject to satisfying (2)-(6).

The constraints that play the most direct role are (2), which constrains imports to be used for
growth, and (5) which says that imports may not exceed the physical maximum.

As long as the production set can be specified as a set of linear constraints, this model can
be fully solved using linear programming techniques. The resulting biotic equilibrium yields
the consumption, production, and imports of each species, as well as the remaining stock of
metabolites in the medium. More importantly, the growth rate can be easily computed since it
is proportional to utility. The model is depicted in Fig 2 for a 2-species 2-metabolite case.

This economy bears similarities and some striking differences to most standard textbook
general equilibrium economies. Essentially, BGET is an archipelago-extension of the Robinson
Crusoe model with redistribution [33]. The model is isomorphic to a collection of Robinson
Crusoe economies, in which a central authority taxes and redistributes across the agents
according to the biased-access allocation rule. Thus, the concept of a market-clearing price
plays a less important role in this economy since each autarkic agent faces its own price vector.
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There does not exist a single market-clearing price. Instead, exchange is driven by the exoge-
nous contributions and biased-access allocation rule.

Biotic equilibrium specifies the growth rate of all species at a single period in time. As the
economy grows over time, the population ratios and stock of goods may change thereby chang-
ing the biotic equilibrium. We focus on steady state population vectors.

Steady State. A population vector N = (1,N2�,. . .,NI�) constitutes a steady state in the biotic

economy specified by ðfYi; bigIi¼1;N
�; fcigIi¼1;oÞ, if the utility vector u� = (u1

�
,. . .,uI

�
) generated

from the biotic equilibrium (x�,y�,m�,k�) is u� = r
(1,. . .,1) where r� 0 is a scalar.
A population vector is said to be in steady state if the resulting biotic equilibrium results in

equal growth rates for all species. This is a steady state of population ratios but not of popula-
tion levels.

An unstable steady state is a steady state for which small perturbations in the population
ratio lead the ratio away from the steady state in the long run. A stable steady state (SSS) is a
steady state for which small perturbations in the population ratio have no effect on the long-
run population ratio. Let v(N) be the indirect utility function that takes the utility values u(x�)
resulting from the biotic equilibrium.

Steady Stable State. Let the vector di 2 R
L take the value δ> 0 for the ith element and 0

for all other elements. A steady-state N�� in the biotic economy ðfYi; bigI
i¼1;N

��; fcigIi¼1;oÞ is
stable if there exists a �di > 0 such that vi(N + δi)< vj(N + δi) for all di � �di for all j and i.

This statement implies that a steady state is stable if a sufficiently small increase to popula-
tion i leads its growth rate to be lower than the growth rate of all other species.

Strains and Growth Media
E. coli strains used were derived from EcNR1 [44], which contains an integrated λ-Red recom-
bineering system. The ΔR and ΔF strains were generated as described previously [13]. Fluores-
cent genes for mCherry and sfGFP were inserted into the neutral galK genomic locus of ΔR
and ΔF respectively by recombineering. Genes yddG and argO for amino acid export and
sfGFP were cloned into separate pZA vectors from Expressys under pL-tetO regulation. Trans-
lation initiation sequences driving a range of exporter expression were selected from [45] and
cloned into each vector.

Co-culture Quantification
Cells grown into late exponential phase in LB-Lennox were first washed in M9 minimal media
(6 g/L Na2HPO4, 3 g/L KH2PO4, 1 g/L NH4Cl, 0.5 g/L NaCl, 1mMMgSO4-7H2O, 0.083 nM
thiamine, 0.25 mg/ml biotin, 0.2% glucose). Co-culture kinetic assays were performed by inoc-
ulating a 1:1 ratio of each strain at 107 cells/ml into 200ul of M9 media containing 1ug/ml aTc
to induce the pL-tetO promoter. Kinetic growth assays were done on a plate reader in 96-well
format at 30°C. Cells were fixed in 1x PBS 1% PFA solution after 24-hours. Cell concentrations
and growth rates were determined based on spectrophotometer OD600 readings. Relative
number of mCherry and sfGFP cells were quantified via flow cytometry and normalized to the
highest mean FITC value to determine the relative abundance of each strain in the population.
All experiments were done in three biological replicates.

Supporting Information
S1 Appendix. Understanding the Stable Contribution-Space. Explains the intuition behind
comparative advantage and the stable steady states.
(PDF)
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S1 Script. Calculates SSS in the 2x2 Model.Mathematica script used in the construction of
Fig 5.
(NB)
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