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Summary

Insight into the maintenance of naive T cells is essential to

understand defective immune responses in the context of aging

and other immune compromised states. In humans, naive CD4+ T

cells, in contrast to CD8+ T cells, are remarkably well retainedwith

aging. Here, we show that low-affinity TCR engagement is the

main driving force behind the emergence and accumulation of

naive-like CD4+ T cells with enhanced sensitivity to IL-2 in aged

humans. In vitro,we show that these CD45RA+CD25dimCD4+ T cells

can develop from conventional naive CD25�CD4+ T cells upon CD3

cross-linking alone, in theabsenceof costimulation, rather thanvia

stimulationby the homeostatic cytokines IL-2, IL-7, or IL-15. In vivo,

TCR engagement likely occurs in secondary lymphoid organs as

these cells were detected in lymph nodes and spleen where they

showed signs of recent activation. CD45RA+CD25dimCD4+ T cells

expressed a broad TCRVb repertoire and could readily differentiate

into functional T helper cells. Strikingly, no expansion of

CD45RA+CD25dimCD8+ T cells was detected with aging, thereby

implying that maintenance of naive CD4+ T cells is uniquely

regulated. Our data provide novel insight into the homeostasis of

naive T cells and may guide the development of therapies to

preserve or restore immunity in the elderly.
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Introduction

A broad naive T cell repertoire is essential for optimal immunity against

novel antigenic challenges (Nikolich-Zugich et al., 2004; Goronzy et al.,

2007; Blackman & Woodland, 2011). Contractions of the T cell

repertoire have been linked to poor immunity in the context of aging,

stem cell transplantation, cancer, and HIV infection (Gorochov et al.,

1998; Maury et al., 2001; Saurwein-Teissl et al., 2002; Baum et al.,

2012; Manuel et al., 2012). To develop strategies for preserving and

restoring the naive T cell repertoire, insight into the basic mechanisms

driving naive T cell homeostasis is critical.

So far, most knowledge on the homeostasis of naive T cells is derived

from mouse studies (Surh & Sprent, 2008). Mechanisms of naive Tcell

maintenance, however, differ substantially in mice and men (den Braber

et al., 2012). Whereas thymic output in mice is sustained on to high age,

thymic involution drastically reduces T cell replenishment in adult humans

(den Braber et al., 2012). Maintenance of the naive T cell pool in humans

therefore relies on low-grade proliferation and long-term survival of already

existing naive T cells in the periphery (Bains et al., 2009; den Braber et al.,

2012). Furthermore, a clear difference has been noted between the

maintenance of naive CD4+ and CD8+ T cells in humans. (Goronzy et al.,

2007).Whereas circulating numbers of naiveCD8+ T cells declinewith age,

naive CD4+ T cells are remarkably well retained (Wertheimer et al., 2014).

So far, little is known about the mechanisms underlying this difference.

Two types of signals are thought to drive the peripheral homeostasis

of naive CD4+ T cells in humans (Kohler & Thiel, 2009). The first are T-

cell receptor (TCR)-derived signals, as evidenced by an increase in naive

CD4+ T cells lacking CD31 in aged humans (Kimmig et al., 2002). CD31

(PECAM-1) is expressed by recent thymic emigrant naive CD4+ T cells

(CD31+ naive CD4+ T cells) but is lost upon TCR-derived signaling only

(Kohler et al., 2005; Azevedo et al., 2009). In addition, homeostatic

cytokines can promote the maintenance of naive CD4+ T cells. IL-7

promotes the expansion and survival of human, naive CD4+ T cells

(Sportes et al., 2008). Other cytokines such as IL-2 and IL-15 have long

been thought less important for the homeostasis of naive CD4+ T cells

(Rochman et al., 2009).

Recently, a novel population of naive CD4+ T cells expressing the IL-

2Ra chain (CD25) was observed in peripheral blood of aged humans

(Pekalski et al., 2013). These naive CD4+ T cells were characterized by an

enhanced response to IL-2 and were thought to develop after IL-7

stimulation (Pekalski et al., 2013). Yet, important questions regarding

the origin and functional relevance of these cells remain to be answered.

Here, we performed an extensive phenotypical and functional analysis of

aging-associated CD25-expressing naive CD4+ T cells. Furthermore, the

effects of TCR stimulation and homeostatic cytokines on the in vitro

development of CD25-expressing naive CD4+ T cells were evaluated. To

elucidate where CD25-expressing naive CD4+ T cells may develop

in vivo, different types of human, lymphoid tissues were analyzed.

Finally, we assessed the functionality of CD25-expressing naive CD4+ T

cells in aged humans.

Results

Maintenance of naive CD4+ T cells but not naive CD8+ T cells

in aged humans

We first assessed the numbers of naive CD4+ and CD8+ T cells in

peripheral blood of healthy adults of different ages. Donors were divided
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according to CMV serostatus, as CMV infection may influence naive

T-cell numbers (Wertheimer et al., 2014). Naive CD4+ and CD8+ T cells

were identified as CD45RO-CCR7+ cells (Fig. 1A), co-expressing

CD45RA and CD27 (data not shown). As recently reported (Wertheimer

et al., 2014), the proportions and absolute numbers of naive CD8+ T

cells correlated inversely with age in both CMV-seropositive and CMV-

seronegative individuals (Figs 1B and S1). In contrast, the proportions

and absolute numbers of naive CD4+ T cells only demonstrated an

aging-associated decrease in CMV-seropositive, but not in CMV-

seronegative, individuals. Thus, aging by itself is associated with a loss

of naive CD8+ T cells, but not naive CD4+ T cells.

CD45RA+CD25dimCD4+ T cells accumulate in the circulation of

aged humans

Next, we sought to confirm that aging is associated with an increase in

CD25-expressing naive CD4+ T cells (Pekalski et al., 2013). Therefore, a

CD45RA/CD25-based gating strategy allowing delineation of functionally

distinct populations of naive andmemoryCD4+ T cellswas applied (Miyara

et al., 2009). Naive CD25-CD4+ T cells and naive CD25int regulatory T

(Treg) cells were readily detected in peripheral blood of adult humans

(Fig. 2A) (Miyara et al., 2009). The proportions of both cell populations,

however, gradually decreased with age (Fig. 2B and C). Interestingly, the

aging-associated increase in CD25-expressing naive CD4+ T cells could be

entirely attributed to the development of CD45RA+CD25dimCD4+ T cells.

Not only the proportions but also the absolute numbers of

CD45RA+CD25dimCD4+ T cells increased with age (Fig. 2D and E).

CD45RA+CD25dimCD4+ T cells accumulated in aged humans irrespective

of gender and CMV serostatus (Fig. S2). Although some dim expression of

CD25 was observed among CD45RA+CD8+ T cells (Fig. 2F),

CD45RA+CD25dimCD8+ T cells did not accumulate in the peripheral

blood of aged humans (Fig. 2G). Thus, the expansion of CD45RA+

CD25dimcells with aging was restricted to the CD4+ T cell compartment.

CD45RA+CD25dimCD4+ T cells display a naive phenotype

Additional phenotypical analysis showed that CD45RA+CD25dimCD4+ T

cells were not late-stage memory T cells that re-express CD45RA and

lack CD27 and CD28 (Fig. S3A). Like naive CD25- cells, CD45RA+

CD25dimCD4+ T cells showed high expression of CCR7 and limited

expression of CXCR3 and CCR6 (Fig. S3B). These findings indicated that

CD45RA+CD25dimCD4+ T cells are indeed naive CD4+ T cells. Further-

more, CD45RA+CD25dimCD4+ T cells could produce some IL-2, but not

IFN-c, IL-4, or IL-17, upon short-term stimulation with PMA and calcium

ionophore (Fig. S3C). This cytokine profile was similar to that of naive

CD25-CD4+ T cells. CD45RA+CD25dimCD4+ T cells also lacked expres-

sion of Treg cell markers FOXP3, Helios, and IL-10, as well as the

activation marker CD69 (Fig. S3D and E). Thus, CD45RA+CD25dimCD4+

T cells represented naive CD4+ T cells rather than Treg cells or recently

activated T cells.

CD45RA+CD25dimCD4+ T cells show signs of prior TCR

engagement

Although peripheral blood CD45RA+CD25dimCD4+ T cells lacked

expression of CD69, we found evidence for prior in vivo activation of

these cells. Already in our first analysis (Fig. 2A), a somewhat lower per-

cell expression level of CD45RA was noted on CD45RA+CD25dimCD4+ T

cells than on naive CD25-CD4+ T cells. CD45RA to CD45RO transgres-

sion typically occurs upon TCR stimulation of naive T cells (Kristensson

et al., 1992; Geginat et al., 2001). Analysis of CD45 isoforms confirmed

the reduced per-cell expression of CD45RA, and slightly enhanced

expression of CD45RO, on CD45RA+CD25dimCD4+ T cells when

compared to naive CD25-CD4+ T cells (Fig. 3A and data not shown).

Although the CD45RO expression on CD45RA+CD25dimCD4+ T cells

was markedly lower than on memory CD4+ T cells, we also observed

that around 20% of CD45RA+CD25dimCD4+ T cells demonstrated a

CD45RAintCD45ROint phenotype vs. only 10% of naive CD25-CD4+ T

cells (Fig. 3B). These data imply prior in vivo TCR engagement of

CD45RA+CD25dimCD4+ T cells.

Next, we sought to obtain in vitro evidence that TCR-derived signals

drive the development of CD45RA+CD25dimCD4+ T cells. Indeed,

CD45RA+CD25dim cells developed from naive CD25-CD4+ T cells upon

stimulation by anti-CD3 antibodies only (Fig. 3C). These in vitro

CD45RA+CD25dimCD4+ T cells also demonstrated slightly modulated

expression of CD45 isoforms (Fig. 3D). In contrast, combined CD3/CD28

(A)

(B)

Fig. 1 Maintenance of naive CD4+ T cells

and loss of naive CD8+ T cells in aged

humans. (A) Representative flow cytometric

staining of naive (CD45RO-CCR7+) CD4+
and CD8+ T cells in a young and aged

individual. The percentage of naive cells

among CD4+ and CD8+ T cells is shown. (B)

Proportions of naive CD4+ and CD8+ T cells

as a function of age in 52 CMV-seropositive

and 39 CMV-seronegative healthy, adult

humans. Donor ages ranged between 20

and 92. Correlations were tested with

Spearman’s rank correlation coefficient. P

values are shown in the graph.
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cross-linking largely resulted in complete differentiation of naive

CD25-CD4+ T cells into CD45RA-CD45RO+ memory cells and high

CD25 expression (Fig. 3C and D). Neither IL-2 (Fig. 3C) nor IL-15 (data

not shown) induced CD25 expression on CD25- naive CD4+ T cells. IL-7

readily induced CD25 expression on naive CD25-CD4+ T cells (Fig. 3C),

as previously reported (Cimbro et al., 2012; Pekalski et al., 2013).

However, the per-cell CD25 expression of IL-7 stimulated cells was

higher than typically observed for ex vivo analyzed CD45RA+

CD25dimCD4+ T cells. Furthermore, IL-7 did not modulate CD45 isoform

expression (Fig. 3D). These combined data indicate that CD45RA+

CD25dimCD4+ T cells develop from naive CD25-CD4+ T cells upon TCR

stimulation only.

CD45RA+CD25dimCD4+ T cells also reside in the CD31+ naive

CD4+ T cell pool

Next, we assessed the relation between CD45RA+CD25dimCD4+ T cells

and the previously reported population of CD31- central naive CD4+ T

cells (Kohler et al., 2005). In accordance with the notion of prior TCR

engagement, CD45RA+CD25dimCD4+ T cells demonstrated less CD31

expression than naive CD25-CD4+ T cells (Fig. S4A and B). Conse-

quently, a substantial proportion of CD45RA+CD25dimCD4+ T cells were

found in the CD31- central naive CD4+ T cell population (Fig. S4C).

However, a significant proportion of CD45RA+CD25dimCD4+ T cells

were also found among the CD31+ recent thymic emigrant naive CD4+

T cell population. The presence of these cells within the CD31+ naive

CD4+ T cell fraction was not surprising, as we found that CD31 is only

gradually lost upon CD3/CD28 cross-linking of CD31+ naive CD4+ T cells

(Fig. S4D). Thus, the expression of CD25 reveals further heterogeneity

among naive human CD4+ T cells.

CD45RA+CD25dimCD4+ T cells develop in secondary lymphoid

tissues

As naive CD4+ T cells continuously circulate through lymphoid organs to

encounter antigens, we hypothesized that CD45RA+CD25dimCD4+ T

cells would develop in these organs. Analysis of mononuclear cells from

human bone marrow, spleen, liver-draining lymph nodes, and inguinal

lymph nodes obtained from young and intermediate age donors (median

age 42, range 14–62) showed that naive CD25-CD4+ T cells,

CD45RA+CD25dimCD4+ T cells, and memory CD4+ T cells were all

present in these tissues (Fig. 4A). No correlation between tissue

CD45RA+CD25dimCD4+ T cells and age was observed, possibly due to

the limited number of samples available. Next, we analyzed the

expression of CD69, an activation marker that is induced on naive

CD4+ T cells after TCR stimulation rather than cytokine stimulation

(Simms & Ellis, 1996; Cimbro et al., 2012). Whereas T cells hardly

expressed CD69 in peripheral blood and bone marrow, we observed

prominent expression of CD69 on T cells in secondary lymphoid organs

(Fig. 4B). The percentage of CD69-expressing cells was highest among

(A)

(B) (C) (D)

(E) (F) (G)

Fig. 2 Accumulation of CD45RA+CD25dimCD4+ T cells in peripheral blood of aged humans. (A) Flow cytometric gating strategy for analysis of CD45RA and CD25 defined

subsets in peripheral blood, as reported by Miyara et al. (Miyara et al., 2009). Representative flow cytometry plots are shown for a young and an aged individual. (B)

Proportions of circulating naive CD25-CD4 T cells, (C) naive CD25int regulatory T (Treg) cells, and (D) CD45RA+CD25dimCD4+ T cells in 63 healthy, adult humans of different

ages. (E) Absolute numbers of CD45RA+CD25dimCD4+ T cells in 58 individuals of different ages. (F) Representative staining for CD45RA and CD25 in naive CD45RO-

CD27+CD8+ T cells of a young and aged individual. (G) Proportions of circulating naive CD45RA+CD25dimCD8+ T cells in 44 healthy, adult humans of different ages.

Correlations were assessed with Spearman’s rank correlation coefficient.
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memory CD4+ T cells in lymph nodes and spleen, whereas only few

naive CD25-CD4+ T cells expressed CD69 in these secondary lymphoid

organs. Interestingly, a substantial part of CD45RA+CD25dimCD4+ T cells

in lymph nodes and spleen showed expression of CD69. This suggests

that TCR-derived signals drive the development of CD45RA+

CD25dimCD4+ T cells in secondary lymphoid organs.

(A) (B)

(C)

(D)

Fig. 3 CD45RA+CD25dimCD4+ T cells

show signs of prior TCR engagement. (A)

Flow cytometric staining for CD45RA in

CD45RA+CD25dim and naive CD25- CD4+
T cells (left panel) and mean fluorescence

intensity (MFI) of CD45RA in naive CD25-

CD4+ T cells, CD45RA+CD25dim CD4+ T

cells, naive CD25int regulatory T cells, and

memory (Mem) CD4+ T cells of 15 aged

individuals. (B) Gating for CD45RAint

CD45ROint CD4+ T cells (left panel) and

proportions of these cells in the 3

CD45RA+CD4+ T-cell subsets of aged

individuals. (C) Development of

CD45RA+CD25dim cells from naive CD25-

CD4+ T cells and (D) expression of CD45

isoforms upon 6 days of culture with plate-

bound anti-CD3 antibodies (plate coated at

1 lg mL�1), plate-bound anti-CD3

antibodies/soluble anti-CD28 antibodies

(0.1 lg mL�1), recombinant human (rh) IL-

2 (100 U mL�1), or rhIL-7 (10 ng mL�1).

Data are representative for experiments

with three different donors. Statistical

significance is indicated as ** P < 0.01, and

*** P < 0.001 by Wilcoxon signed-rank

test.

(A)

(B)

Fig. 4 CD45RA+CD25dimCD4+ T cells develop in secondary lymphoid tissues. (A) Naive CD25-, CD45RA+CD25dim, and memory CD4+ T cells were enumerated by flow

cytometry in mononuclear cell fractions isolated from peripheral blood (PB) and paired bone marrow (BM) samples, and from nonpaired liver-draining lymph node (liLN),

inguinal lymph node (inLN), and spleen (SPL) samples.. (B) Expression of the activation marker CD69 by naive CD25-, CD45RA+CD25dim, and memory CD4+ T cells in

peripheral blood and lymphoid tissues. Statistical significance was tested with Wilcoxon signed-rank test or Mann–Whitney U-test. Statistical significance vs. peripheral blood

is indicated as **P < 0.01, ***P < 0.001. Statistical significance vs. bone marrow is indicated as ++ P < 0.01, +++ P < 0.001.
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Evidence for low-affinity TCR engagement of

CD45RA+CD25dimCD4+ T cells

Current evidence from animal studies implies that low-affinity TCR

engagement by peptide/MHC complexes promotes the homeostatic

maintenance of naive T cells (Surh & Sprent, 2008). Therefore, we next

hypothesized that CD45RA+CD25dimCD4+ T cells have undergone low-

affinity TCR engagement in vivo. An accepted method to study the

strength of TCR and peptide/MHC interactions is measurement of CD3 Ϛ
chain phosphorylation levels (Mandl et al., 2013). As this procedure

requires immediate analysis of T cell samples, it is incompatible with the

currently employed T cell sorting strategy. Therefore, we decided to

analyze expression levels of the inhibitory receptor CD5, which reflects

prior TCR signaling strength (Mandl et al., 2013). In line with the notion

of low-affinity TCR stimulation, CD45RA+CD25dimCD4+ T cells

expressed low levels of CD5 (median MFI 54, range 48-98) which were

substantially lower than in memory CD4+ T cells (median MFI 67, range

55-121) and comparable to that of naive CD25-CD4+ T cells (median

MFI 54, range 12-101), as shown in Fig. S5. The combined data suggest

that CD45RA+CD25dimCD4+ T cells develop upon low-affinity TCR–

peptide/MHC interaction in vivo.

CD45RA+CD25dimCD4+ T cells display increased sensitivity to

IL-2

Common c-chain cytokines such as IL-2, IL-7, and IL-15 may support the

maintenance of T cells by promoting STAT5-dependent proliferation and

survival (Rochman et al., 2009). In addition to the IL-2Ra chain (CD25),

CD45RA+CD25dimCD4+ T cells also expressed slightly more IL-2/IL-15Rb
chain (CD122) than naive CD25-CD4+ T cells (Figs 5A and S6A). In

contrast, expression of the common c-chain (CD132), IL-7Ra chain

(CD127), and IL-15Ra chain was similar in CD45RA+CD25dimCD4+ T

cells and naive CD25-CD4+ T cells. Based on these findings, we

predicted that CD45RA+CD25dimCD4+ T cells would be more responsive

to IL-2 and perhaps IL-15 when compared to naive CD25-CD4+ T cells.

CD45RA+CD25dimCD4+ T cells indeed were more sensitive to IL-2 than

naive CD25-CD4+ T cells, as shown by more IL-2 induced STAT5

phosphorylation. (Figs 5B and S6B). CD45RA+CD25dimCD4+ T cells were

also slightly more sensitive to IL-15 than naive CD25-CD4+ T cells. In

contrast, IL-7 induced similar STAT5 phosphorylation in CD45RA+

CD25dimCD4+ T cells and naive CD25-CD4+ T cells. As additional

sensitivity to IL-2 and IL-15 may provide extra signals to undergo

proliferation (Rochman et al., 2009), we next compared the expression

of the proliferation marker Ki-67 in CD45RA+CD25dimCD4+ T cells and

naive CD25-CD4+ T cells. As expected, the percentage of proliferating

cells was slightly higher among directly analyzed ex vivo CD45RA+

CD25dimCD4+ T cells than naive CD25-CD4+ T cells (Fig. 5B).

CD45RA+CD25dimCD4+ T cells represent a broad and

functional reservoir of naive T cells

As a broad TCR repertoire is essential for optimal immunity, we next

studied the TCR repertoire of CD45RA+CD25dimCD4+ T cells. Although

CD45RA+CD25dimCD4+ T cells showed subtle differences in TCR Vb
usage when compared to naive CD25-CD4+ T cells, CD45RA+

CD25dimCD4+ T cells still demonstrated a broad TCR Vb repertoire

(Fig. 6A).

Subsequently, we tested the ability of CD45RA+CD25dimCD4+ T cells

to differentiate into memory T cells. CD45RA+CD25dimCD4+ T cells

readily differentiated into CD45RO+ memory cells upon in vitro CD3/

CD28 stimulation (Fig. S7). As CD45RA+CD25dimCD4+ T cells were not

blocked in their development, we assessed whether CD45RA+

CD25dimCD4+ T cells were capable of acquiring T helper (Th) cell

effector functions. When cultured under Th1-polarizing conditions,

(A)

(B)

Fig. 5 Increased sensitivity for IL-2 in CD45RA+CD25dim CD4+ T cells. (A) Percentages of cells expressing CD122 (IL-2Rb chain, n = 9), CD127 (n = 7), and the IL-15Ra chain

(n = 9), and the mean fluorescence intensity (MFI) for CD132 (n = 13) in naive CD25-, CD45RA+CD25dim, and memory CD4+ T cells. For CD132, the MFI is shown, as all

CD4+ T cells expressed CD132. (B) MFI for pSTAT5 in naive CD25-, CD45RA+CD25dim, and memory CD4+ T cells in response to increasing concentrations of recombinant

human IL-2 (rhIL-2), IL-7 (rhIL-7), and IL-15 (rhIL-15). Mean values from experiments with cells from three donors are shown. Percentage of Ki-67-expressing cells (right panel)

among naive CD25-, CD45RA+CD25dim and memory CD4+ T cells of 29 healthy aged individuals. Bars and whiskers represent mean with SEM. Statistical significance is

indicated as **P < 0.01, ***P < 0.001, by Wilcoxon signed-rank test. ns = nonsignificant.
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CD45RA+CD25dimCD4+ T cells differentiated into IFN-c+T-bet+ T helper

1 (Th1) cells (Fig. 6B). The Th1-polarizing potential of CD45RA+

CD25dimCD4+ T cells was similar to that of naive CD25-CD4+ T cells.

CD45RA+CD25dimCD4+ T cells and naive CD25-CD4+ T cells also

showed a similar ability to differentiate into GATA3+CRTH2+ T helper 2

(Th2) cells (De Fanis et al., 2007) under Th2-polarizing conditions

(Fig. 6C). In aggregate, our data show that CD45RA+

CD25dimCD4+ T cells constitute a broad and functional reservoir of

naive-like CD4+ T cells in aged humans.

Discussion

Here, we report on a unique mechanism of post-thymic maintenance of

human naive CD4 T cells, which was not observed for naive CD8 T cells.

We found that a robust population of naive CD4 T cells with evidence of

prior in vivo TCR engagement develops as a function of age in healthy

individuals. We show that this subset, defined by increased CD25

expression, likely develops in secondary lymphoid organs as a result of

low-affinity TCR engagement and is further maintained by IL-2. Thus, as

thymic output wanes, IL-2 becomes an important homeostatic cytokine

for the peripheral maintenance of naive CD4+ T cells in aged humans.

We conclude that these CD25 expressing cells represent an important

reservoir of naive-like cells that contributes to immunity in the elderly.

Recently, increased proportions of CD25-expressing naive CD4+ T

cells were observed in aged individuals (Pekalski et al., 2013). We here

extend these findings using a state-of-the-art flowcytometry strategy

(Miyara et al., 2009, 2011) and identified these cells as CD45RA+

CD25dimCD4+ T cells in the peripheral blood of aged humans. A major

advantage of our strategy is the possibility to delineate the aging-

associated CD45RA+CD25dimCD4+ T cells from conventional naive

CD25-CD4+ T cells and naive CD25int Treg cells. We precluded that

CD45RA+CD25dimCD4+ T cells are late-stage memory CD4+ T cells that

re-express CD45RA (Akbar & Henson, 2011; Di Mitri et al., 2011) and

also confirmed their naive phenotype by analyzing differentiation

markers, homing receptors, and intracellular cytokine production.

Although the proportional increase in CD45RA+

CD25dimCD4+ T cells could merely result from the decrease in the other

naive CD4+ T cell fractions, we also found that the absolute number of

CD45RA+CD25dimCD4+ T cells increased with age. Our study is

therefore the first to show that aging is associated with a genuine

increase in CD25-expressing naive CD4+ T cells.

Recently, the accumulation of CD25-expressing naive CD4+ T cells

was explained by IL-7-mediated expansion of these cells (Pekalski et al.,

2013). We now provide evidence that CD45RA+CD25dimCD4+ T cells

primarily develop from naive CD25-CD4+ T cells upon low-affinity TCR

engagement. CD45RA+CD25dimCD4+ T cells showed a slight shift in

CD45 isoform expression (i.e., from CD5RA to CD45RO) and less CD31

expression in comparison with naive CD25-CD4+ T cells. Changes in

expression of CD45 isoforms and CD31 on naive CD4+ T cells occur after

TCR engagement rather than IL-7 stimulation (Kohler et al., 2005;

Cimbro et al., 2012). Furthermore, typical CD45RA+CD25dimCD4+ T

cells developed in vitro from naive CD25-CD4+ T cells after stimulation

with anti-CD3 antibodies only. Although we confirmed that IL-7 can

induce CD25 expression on naive CD25-CD4+ T cells, the per-cell

expression of CD25 was much higher than typically observed on directly

ex vivo analyzed CD45RA+CD25dimCD4+ T cells. Furthermore, IL-7 did

not modulate CD45 isoform expression. An important role for IL-7 in the

development of CD45RA+CD25dimCD4+ T cells in aged humans also

seems unlikely, as IL-7 levels decline with age (Kang et al., 2004;

Banerjee et al., 2011). Taken together, our data imply that TCR-derived

(A)

(B)

(C)

Fig. 6 CD45RA+CD25dim CD4+ T cells

constitute a broad and functional reservoir

of naive T cells. (A) Analysis of TCR Vb
usage in naive CD25- and CD45RA+CD25
dim CD4+ T cells of 9 aged individuals. (B)

Representative T-bet and IFN-c staining in

CD45RA+CD25dim CD4+ T cells (left panel)

and percentages of T-bet+IFN-c+ Th1 cells

among naive CD25- and CD45RA+CD25dim

CD4+ T cells of 3 aged individuals (right

panel) after 6 days of culture with anti-

CD3/CD28-coated beads with/without IL-

12+IL-18 (each 10 ng mL�1) and

neutralizing anti-IL-4 antibodies. Cells were

restimulated with PMA and Ca2+
ionophore in the presence of brefeldin A for

4 h on the final day. (C) Representative

GATA-3 and CRTH2 staining in

CD45RA+CD25dim CD4+ T cells (left panel)

and percentages of GATA-3+CRTH2+ Th2

cells among naive CD25- and

CD45RA+CD25dim CD4+ T cells of 3 aged

individuals (right panel) after 6 day culture

with anti-CD3/CD28-coated beads with/

without IL-4 (25 ng mL�1) and anti-IFN-c
antibodies. Statistical significance is

indicated as * p < 0.05 and ** p < 0.01, by

Wilcoxon signed rank test.
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signals rather than IL-7 drive the development of CD45RA+

CD25dimCD4+ T cells in humans.

CD45RA+CD25dimCD4+ T cells likely receive TCR-derived signals in

secondary lymphoid tissues. CD45RA+CD25dimCD4+ T cells showed

substantial expression of the activation marker CD69 in human lymph

nodes and spleen, but not in the peripheral blood and bone marrow.

Importantly, CD69 is induced on naive T cells after TCR stimulation, but

not cytokine stimulation (Simms & Ellis, 1996; Cimbro et al., 2012).

Recently, regulatory T cells and conventional memory T cells were

reported to express CD69 in secondary lymphoid tissues (Peters et al.,

2013; Sathaliyawala et al., 2013). Although commonly used as an

activation marker, CD69 may actually play a role in retention of activated

T cells in lymphoid tissues via downmodulation of the sphingosine-1-

phosphate receptor-1 (Shiow et al., 2006). This could explain the

absence of CD69-expressing CD45RA+CD25dimCD4+ T cells in the

circulation.

The exact nature of the peptide/MHC complexes involved in the

development of human CD45RA+CD25dimCD4+ T cells remains

unclear. Animal studies indicate that endogenous peptides may be

involved in this process. Depriving mouse naive T cells of self-peptide/

MHC complexes typically leads to naive T cell apoptosis (Sprent &

Surh, 2011). Non-self (i.e., microbial)-peptides are unlikely to play an

important role in the maintenance of the naive CD4+ T cell repertoire,

as such peptides are usually offered to T cells in the presence of

costimulatory signals. TCR triggering in the presence of costimulation

typically leads to full memory T cell differentiation, as also

demonstrated in the current study. Although we confirmed that

CMV may have a profound impact on the maintenance of the naive

CD4+ T cell pool (Wertheimer et al., 2014), we here precluded CMV

as a driving force behind the accumulation of CD45RA+CD25dimCD4+

T cells.

Our study reveals further heterogeneity within the human naive CD4+

T cell pool. Previously, the naive CD4+ T cell compartment was mainly

classified into nonprimed CD31+ thymic naive cells and primed CD31-

central naive cells (Kimmig et al., 2002). Although CD45RA+

CD25dimCD4+ T cells were abundant in the CD31- naive population,

we also observed CD45RA+CD25dimCD4+ T cells in the CD31+ naive

population. The presence of CD45RA+CD25dimCD4+ T cells within the

supposedly non-TCR-engaged CD31+ naive population was not surpris-

ing, as our data demonstrated that CD31 is only gradually lost upon

CD3/CD28 stimulation. The latter finding is in accordance with Demeure

et al., showing that T cells loose CD31 only after multiple rounds of

CD3/IL-2 stimulation (Demeure et al., 1996). Thus, in addition to the

surface marker CD31 (Kohler & Thiel, 2009), the expression of CD25

allows for the identification of naive-like CD4+ T cells with a history of

prior TCR engagement.

Whereas primarily IL-7 is considered important for the homeostasis of

naive T cells (Rochman et al., 2009), CD45RA+CD25dimCD4+ T cells

showed enhanced sensitivity to IL-2, and to some extent IL-15. IL-2 and

IL-15 are also involved in the homeostasis of memory T cells and

regulatory T cells (Rochman et al., 2009). Cytokines such as IL-2 and IL-

15 can induce STAT5-dependent proliferation in T cells (Rochman et al.,

2009). Interestingly, circulating CD45RA+CD25dimCD4+ T cells demon-

strated a slightly higher proliferation rate than naive CD25-CD4+ T cells.

The latter finding may be relevant as naive CD4+ T cells are long-lived

cells that may undergo slow but substantial homeostatic proliferation

over a longer period of time (den Braber et al., 2012). As serum levels of

IL-2 and IL-15 are retained in the elderly (Kang et al., 2004; Gangemi

et al., 2005; Banerjee et al., 2011; Kim et al., 2011), the enhanced

sensitivity for IL-2 (and IL-15) may be an important adaptation of naive

CD4+ T cells to the changing cytokine milieu in aged humans (Fig. S8).

CD45RA+CD25dim cells did not accumulate within the naive CD8+ T-

cell compartment of aged humans. The absence of naive

CD45RA+CD25dimCD8+ T cells could suggest that IL-2 has no role in

the peripheral maintenance of naive CD8+ T cells. However, several

reports have shown that IL-2 imposes strong stimulatory effects on naive

CD8+ T cells (Cho et al., 2007, 2013; Kamimura & Bevan, 2007). IL-2

not only promotes the proliferation of naive CD8+ T cells, but can also

drive the differentiation into memory cells (Cho et al., 2007; Kamimura

& Bevan, 2007). Therefore, the absence of naive CD45RA+CD25dim

CD8+ T cells and the pronounced decline in naive CD8+ T cells in aged

humans could be related to the relatively low threshold of naive CD8+ T

cells to convert into memory cells. Indeed, aging is associated with a

substantial shift from naive CD8+ T cells toward central and effector

memory cells (Wertheimer et al., 2014).

Our data imply that CD45RA+CD25dimCD4+ T cells may contribute to

immunity in aged humans. CD45RA+CD25dimCD4+ T cells represent a

broad and functional reservoir of naive CD4+ T cells in aged humans.

CD45RA+CD25dimCD4+ T cells showed broad TCR Vb usage and a

similar ability to differentiate into Th1 and Th2 cells as naive CD25-CD4+

T cells. Importantly, our in vitro experiments show that CD45RA+

CD25dimCD4+ T cells can be generated from naive CD25-CD4+ T cells.

Furthermore, prior studies with IL-2 therapy have shown that nonreg-

ulatory CD25-expressing naive CD4+ T cells can be expanded by

intermittent IL-2 therapy (Natarajan et al., 2002; Sereti et al., 2002,

2004). Enhancing circulating numbers of CD45RA+CD25dimCD4+ T cells

could therefore be an interesting strategy for preserving or restoring

immunity in aged humans.

In conclusion, our study shows that TCR engagement drives the

emergence and accumulation of CD25-expressing naive CD4+ T cells in

healthy aged humans. These cells, which likely develop in secondary

lymphoid tissues, represent a broad and functional reservoir of naive

CD4+ T cells in aged humans. Our study provides new insight into the

homeostasis of human, naive CD4+ T cells and justifies further studies

into CD4+ T cell expanding treatments to promote immunity in aged and

immune compromised humans.

Experimental procedures

Donor samples and study approval

In a cross-sectional study, blood samples were obtained from 91 healthy

individuals (age 20–92). Health was assessed by a health assessment

questionnaire, a physical examination, and blood tests. Only a slight

elevation in blood pressure and the use of antihypertensive treatment

were accepted. Also, clinical and laboratory data attesting to the donors’

overall health were assessed. In addition, blood/bone marrow samples

were obtained from 8 healthy stem cell donors, before mobilization with

G-CSF, spleen samples from 9 deceased kidney donors, liver-draining

lymphnodes from7 deceased liver donors, and inguinal lymphnodes from

5 kidney transplant recipients at the time of transplantation (not treated

with immunosuppressive drugs prior to lymph node excision). Single cell

suspensions were obtained from tissues as previously described (Peters

et al., 2013). Mononuclear cell fractions were isolated by density gradient

centrifugation with Lymphoprep (Axis-Shield and Nycomed Pharma).

Written informed consentwas obtained from all study participants or their

representatives, and the study was approved by medical ethical commit-

tees at the participating study centers.
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Flow cytometry

Isolated mononuclear cells or whole blood samples were stained with

the following fluorochrome-conjugated monoclonal antibodies: CD4-

PcP, CD8-APC-H7, CD31-PE, CD45RA-FITC, CD25-PE, CD45RO-PE-Cy7,

CD45RO-FITC, CCR7-PcP-Cy5.5, TCRcd-BV421, pSTAT5-PE-Cy7, Ki-67-
PcP-Cy5.5, Tbet-PE, CXCR3-PE-Cy5, CD69-APC-Cy7, CCR4-PE-Cy7,

CD5-APC, CRTH2-PE, GATA3-APC, CD5-APC (all BD), CD4-ECD, CD4-

PC7, CD69-PC5, CD69-ECD, Beta Mark TCR V b kit (all Beckman

Coulter, Woerden, The Netherlands), CD122-PE, CD132-PE, CCR6-PcP-

Cy5.5, IL-2-AF700, IL-4-PE, IFN-c-PcP-Cy5.5, FOXP3-AF647, Helios-

AF488 (all Biolegend, Uithoorn, The Netherlands), CD4-ef450, CD25-

APC, CD25-PE, CD45RA-PE, CD45RA-ef605, HLA-DR-APC-ef780, IL-17-

AF488, CD27-AF700, CD28-PcP-cy5.5 (all eBioscience, Vienna, Austria).

In case of whole blood staining, samples were lysed with BD FACS lysing

solution. Samples were measured on a LSR-II (BD) or FC500 (Beckman

Coulter) and analyzed with Kaluza Analysis Software (Beckman Coulter).

Absolute numbers of CD4+ and CD8+ T cells were determined according

to the BD MultiTest TruCount method, as described by the manufac-

turer. TruCount measurements were taken on a FACS Canto-II (BD) and

analyzed with FACSCanto Clinical Software (BD).

Intracellular cytokine and transcription factor staining

Whole blood samples were diluted 1:1 with RPMI and stimulated with

PMA and Ca2+ ionophore A23187 in the presence of brefeldin A (Sigma-

Aldrich, Zwijndrecht, The Netherlands) for 4 h. After red blood cell lysis

with ammonium chloride, cells were fixed and permeabilized with a

Foxp3 Staining Buffer Set (eBioscience) followed by intracellular staining.

Phosphorylated STAT5 staining

Peripheral blood mononuclear cells (PBMCs) were stimulated with

indicated concentrations of recombinant human (rh) IL-2, rhIL-7, or

rhIL-15 (all Peprotech) during 15 min, directly followed by fixation with

Cytofix Buffer (BD) for 10 min at 37 °C. Subsequently, the cells were

treatedwith Perm Buffer III (BD) for 30 min on ice and stained for pSTAT5.

Cell culture

Naive T cells fractions of interest were sorted on a MoFlo Astrios sorter

(Beckman Coulter). For assessment of CD31 loss, sorted CD31+ naive

CD4+ T cells were stained with 5 lM proliferation dye CFSE. The cells

were cultured for 6 days in 96-well flat-bottomed plates in RPMI1640

with 10% human pooled serum (HPS) and gentamycin. Cells were

stimulated with CD3/CD28-coated beads (Life Technologies, Paisley, UK)

at a cell to bead ratio of 1:1. For induction of CD45RA+CD25dimCD4+ T

cells, sorted naive CD45RO-CCR7+CD25- CD4+ T cells were cultured for

6 days in the presence of plate-bound anti-CD3 antibodies (wells coated

at concentration of 1 lg mL�1) with/without soluble anti-CD28 anti-

bodies (0.1 lg mL�1), or with indicated concentrations of rhIL-2 or rhIL-

7. For polarizing experiments, sorted CD45RA+CD25- and CD45RA+

CD25dim CD4+ T cells were cultured with CD3/CD28-coated beads at a

cell to bead ratio of 1:1 in the presence or absence of rhIL-12

(10 ng mL�1), rhIL-18 (10 ng mL�1), and anti-IL-4 mAb (10 lg mL�1)

for Th1 skewing; or rhIL-4 (25 ng mL�1) and anti-IFN-c mAb

(10 ng mL�1) for Th2 skewing. The recombinant human cytokines were

purchased from Peprotech and blocking antibodies from BD. After

4 days, the medium was refreshed and all cytokines and blocking

antibodies were added again. After 6 days, the cells were restimulated

for 4 h with PMA and calcium ionophore in the presence of brefeldin A.

CMV-specific antibodies

Serum levels of CMV-specific IgG were determined with an in-house

ELISA. 96-well ELISA plates (Greiner) were coated with lysates of CMV-

infected fibroblasts overnight. Lysates of noninfected fibroblasts were

used as negative controls. Following the coating, dilutions of serum

samples were incubated for 1 h. Goat anti-human IgG was added and

incubated for 1 h. Samples were incubated with phosphatase for

15 min, and the reaction was stopped with NaOH. The plates were

scanned on a Versamax reader (Molecular Devices). A pool of sera from

3 CMV-seropositive individuals with known concentrations of CMV-

specific IgG was used to quantify CMV IgG in the tested samples.
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Fig. S1 Maintenance of naive CD4+ T cells and loss of naive CD8+ T cells in

aged humans.
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Fig. S2 Accumulation of CD45RA+CD25dimCD4+ T cells in peripheral blood

of aged humans is not driven by sex or CMV serostatus.

Fig. S3 Circulating CD45RA+CD25dimCD4+ T cells demonstrate a naive-like

phenotype.

Fig. S4 CD45RA+CD25dimCD4+ T cells show signs of prior TCR engagement.

Fig. S5 Per-cell expression of CD5 by CD45RA+CD25dimCD4+ T cells.

Fig. S6 Increased sensitivity for IL-2 in CD45RA+ CD25dimCD4+ T cells.

Fig. S7 Acquisition of CD45RO by anti-CD3/CD28 stimulated CD45RA+
CD25dimCD4+ T cells.

Fig. S8 Schematic overview of naive CD4+ T cell maintenance in young and

aged humans.
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