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Abstract
Naturalistic driving studies often make use of cameras to monitor driver behavior. To analyze the resulting video images, human
annotation is often adopted. These annotations then serve as the ‘gold standard’ to train and evaluate automated computer vision
algorithms, even though it is uncertain how accurate human annotation is. In this study, we provide a first evaluation of glance
direction annotation by comparing instructed, actual glance direction of truck drivers with annotated direction. Findings indicate
that while for some locations high annotation accuracy is achieved, for most locations accuracy is well below 50%. Higher
accuracy can be obtained by clustering these locations, but this also leads to reduced detail of the annotation, suggesting that
decisions to use clustering should take into account the purpose of the annotation. The data also show that high agreement
between annotators does not guarantee high accuracy. We argue that the accuracy of annotation needs to be verified experimen-
tally more often.
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Introduction

Glance behavior by drivers plays an important role in safe driv-
ing, ranging from trajectory control (e.g., lane keeping, moni-
toring the distance to a lead vehicle) to higher-order skills (e.g.,
hazard perception, situation awareness), as well as involvement
in secondary tasks (i.e., distraction). To improve traffic safety, it
is therefore important to study how glance behavior is influ-
enced by factors such as infrastructure, traffic conditions, non-
driving tasks, and interactions with other road users.

‘Naturalistic Driving’ is a commonly used method to study
glance behavior during everyday driving . Such studies often
use human annotators to analyze video images from several
inward and outward facing cameras in instrumented vehicles.
In this study, we demonstrate how current practice of

naturalistic driving glance annotation and analysis brings for-
ward a methodological issue that has received relatively little
attention, namely whether or not high agreement between an-
notators automatically means accurate annotation. We will
illustrate this issue with a focus on analyzing the glance be-
havior of drivers.

Annotation of glance behavior

While manual annotation is often used to code human glance
behavior, it is not the only means of recording people’s glance
direction. Eye trackers are an obvious alternative and often
used in, for example, driving simulator studies, because they
provide a real-time measure of glance direction, and because
of their relatively high degree of reliability (if properly cali-
brated). However, eye trackers tend to performworse in a real-
life driving environment, where they can be affected by fac-
tors such as rapid changes in ambient illumination and vehicle
vibration. Furthermore, high-end, accurate and precise eye
trackers are expensive, limiting their large-scale use in instru-
mented vehicles (van Nes et al., 2019). Moreover, eye
trackers, particularly those in the form of glasses (e.g., Tobii
glasses, SMI glasses, Pupil labs eye tracker), may interfere
with glance behavior while driving. Such interference can be
due to the rim or frame of the glasses, that drivers may not yet
be used to wearing, and the connecting cable that may
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influence the reliance on head rotation (possibly increasing the
use of eye movements to shift gaze direction). As a conse-
quence, the naturalistic aspect of drivers’ driving behavior
may be reduced. Some eye tracking systems, such as the sys-
tem offered by Smart Eye, use cameras (in combination with
infrared-light emitters) that can be mounted inside a vehicle,
but as indicated, the cost of such systems prevents large scale
use in naturalistic driving studies, limiting either the sample
size, testing time, or both.

Studies of naturalistic driving have therefore strongly relied
onmanual annotation of images from cameras mounted inside
vehicles, which are relatively low-cost compared to high-end
eye trackers, such as the system from Smart Eye. The cameras
minimally interfere with vision or glance behavior when
mounted unobtrusively. To reduce the cost of manual annota-
tion the focus of annotation is often on automatically detected
events (e.g., harsh braking identified through an accelerome-
ter), as opposed to processing all video data. Examples of uses
of annotated glance behavior include studies of the impact of
inattention on lane keeping performance (Peng et al., 2013),
the impact of distraction from roadside objects (Belyusar
et al., 2016), how the driving context and secondary task in-
volvement influence glance behavior (Tivesten & Dozza,
2014), the effects of sensory cues on glance behavior prior
to impending critical events in an ACC equipped car
(Morando et al., 2016), crash causation factors (Dingus
et al., 2006; Dingus et al., 2016), and differentiations between
critical situations (Seppelt et al., 2017).

Annotators typically have several camera views at their
disposal. For example, the UDRIVE project featured trucks
equipped with three inward facing cameras (monitoring the
driver’s face, the cabin, and the driver’s feet), and five out-
ward facing cameras (monitoring the left blind spot, the front
left, the front center, the front right, and the right blind spot).
Information provided by one or more of these camera views
may be used, e.g., to assess whether the driver is drowsy, to
identify non-driving task involvement, and to identify in
which direction a driver is looking. Manual annotation of
glance direction is typically performed using a predefined
set of glance locations, which appear to differ across studies.
For example, Belyusar et al. (2016) studied the effect of digital
billboards on naturalistic glance behavior in passenger cars by
analyzing left forward and right forward glances. The number
of these glances, as well as their durations, were found to
increase in the presence of digital billboards, especially at
the time the billboards transitioned between advertisements.
Different regions were used by Seppelt et al. (2017), who
clustered several glance locations into on-road glances (for-
ward, left forward, right forward) and off-road glances (center
stack, instrument cluster, interior object, cell phone, left mir-
ror, left window, rearview mirror, right mirror, right window,
passenger, eyes closed) to study which glance metrics could
differentiate between crashes and near-crashes. It was found

that a differentiation between crashes and near crashes could
be made using the duration of on-road glances and the fre-
quency of switches between on- and off-road locations. These
examples show that annotated glance locations may be
adapted to the research question of interest.

An important challenge in naturalistic driving studies is the
large volume of data. For example, the SHRP2 database holds
over 4300 years of naturalistic driving data collected with about
3400 car drivers (Hankey et al., 2016). Similarly, the UDRIVE
database contains over 41,000 h of passenger car data and over
45,000 h of truck data (Van Nes et al., 2019). Frame-by-frame
analysis of video data by human annotators is time-consuming,
and costly to perform even when analysis focuses specifically
on automatically detected events such as right-turns or abrupt
braking, which are still sufficiently frequent in typical natural-
istic driving studies to require extensive annotation work.
Therefore, there has been a drive towards the development of
computer algorithms to automatically annotate video images,
for example, to predict where drivers are looking. For example,
Fridman et al. (2016) developed a machine learning algorithm
that classifies glance direction into six glance locations based
on head pose (i.e., road, center stack, instrument cluster,
rearview mirror, left, right). Importantly, the algorithm was
trained and validated by means of video data from a field
study, collected with a camera positioned on the dashboard
and annotated by human coders. Likewise, Vora et al. (2017)
trained their convolutional neural network using annotated nat-
uralistic driving video data collected with a camera mounted
near the rear-view mirror. Because of the use of human anno-
tation as labels, the algorithms will work towards achieving the
quality of this annotation, and therefore will be as good as the
human annotation at best. Consequently, accurate human anno-
tation is essential for the development of such algorithms.

Reliability versus accuracy

Naturalistic driving studies often use multiple annotators, who
each code individual sections of the data to cope with the vast
amount of data, and to increase reliability of the coding. The
use of multiple annotators requires a method to evaluate and
ensure that annotators use the same mental scheme for
encoding. Two main approaches are used to establish the
agreement between annotators and to deal with any disagree-
ment between annotators. In one approach, all data or a selec-
tion is coded by at least two annotators. The joint annotations
are then analyzed to get a sense of discrepancies. The extent of
these discrepancies is often expressed in terms of one or more
reliability measures, such as the percentage agreement or
Krippendorff’s alpha (e.g., Hayes & Krippendorff, 2007).
Another approach circumvents the necessity of such measure-
ments. If two annotators disagree in their coding, a third, me-
diating annotator is introduced to resolve the disagreement
(e.g., Belyusar et al., 2016; Fridman et al., 2016), assuming
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that the third annotator agrees with one of the two original
annotators. In the latter case, the resulting percentage agree-
ment is perfect by definition and inter-rater reliability is no
longer a relevant concept.

In the above approaches it appears to be implicitly assumed
that if two coders agree, their annotationwill be correct. In line
with this assumption, some studies explicitly refer to the an-
notated glance datasets as the ‘ground truth’ and subsequently
use the annotated data to train and validate algorithms for
automatic annotation (Tawari and Trivedi, 2014; Vora et al.,
2017). Other studies seem to implicitly assume the annotation
to be the ground truth, and then use the data for algorithm
development (Belyusar et al., 2016; Fridman et al., 2016;
Seppelt et al., 2017). It is important to realize that by using
annotations as the ground truth, it is assumed that if two an-
notators agree, their annotation is correct. Whether this is ac-
tually the case has, however, rarely been studied, although
some have raised the issue. For example, Naqvi et al. (2018)
refrained from using a selection of existing glance datasets,
because, amongst other reasons, “the information of ground-
truth gaze position is not provided.” (p. 15). Consequently,
they argue, it is not possible to evaluate the accuracy of their
glance detection algorithm.

The ability to determine another person’s gaze direction
has been a general area of interest. Studies into this topic
suggest that the accuracy of such perception depends on
where the observed person looks. For example, Bock et al.
(2008) asked pairs of participants positioned at a 1m distance
from each other to estimate where the other looked. One par-
ticipant functioned as the ‘sender’ by looking at numbered tick
marks located at a circle on a glass plate and the other partic-
ipant functioned as the ‘receiver’. On average, the responses
were nomore than 4° visual angle off from the target looked at
by the sender. Note that in this situation the receiver looks
directly at the sender and therefore these findings suggest that
if drivers were to directly face the camera of an instrumented
vehicle, subsequent annotation of glance direction will be
highly accurate.

In naturalistic driving annotation, however, the face camera
will often be mounted in the A-pillar or below the rearview
mirror (otherwise their view would be blocked), resulting in
an off-axis view of the driver. It is therefore important to
establish how accurately humans can estimate glance direc-
tion under these conditions. Such off-axis glance perception
was examined by Moors et al. (2015), who performed two
experiments in which head and body orientation of the sender
were manipulated. The first experiment focused on the frontal
plane of a human character. When head and body were
aligned, a 20° head rotation led to an underestimation of the
gazed-at location. Additionally, an ‘overshoot effect’ was
found: glance direction was systematically biased away from
body orientation. In a naturalistic driving setting, these find-
ings correspond to a perceived glance direction closer to the

camera than in reality when the driver is looking straight
ahead (i.e., head and body aligned). Assuming the overshoot
effect, perceived glance will be overestimated if the driver
looks marginally sideways (i.e., head and body misaligned).

The second experiment of Moors et al. (2015) focused on a
sagittal view of a human character, in which the head orienta-
tion was manipulated in the downward and upward directions.
A similar overshoot effect was found as in the first experi-
ment. Objective looking angles were consistently
overestimated, and the overestimation was larger for larger
head orientations. In addition, an offset to the overshoot effect
was found in that even a 0° looking angle (i.e., straight ahead)
was judged as slightly downward. Projected again on a natu-
ralistic driving setting, these findings suggest that a vertical
overshoot in perceived glance direction may occur when
drivers are looking up or down (e.g., a glance towards the
speedometer may be misinterpreted as a glance towards the
steering wheel). Vertical overshoot effects may depend on the
driver’s height: a tall driver may not need a large head tilt to
look into the rearview mirror, whereas a short driver likely
does. Moors et al.’s (2015) findings therefore suggest that
manual annotation may show systematic biases, which de-
pend on the head and eye gaze direction of drivers, and their
height.

Another indication of possible issues with human annota-
tion of glance behavior is found in the study by Ahlstrom et al.
(2015), who used video recordings of real road driving, to
investigate the association between self-reported subjective
sleepiness (SRS) and post hoc observer-rated sleepiness
(ORS). In a first experiment, novice observers were instructed
to rate the level of sleepiness based onmeasures such as eyelid
closure duration and blink frequency. A poor match between
SRS and ORS was found, as well as a low inter-rater agree-
ment. In a second experiment, pairs of video segments were
presented: one featuring an alert driver and the other featuring
a sleepy driver. Experienced observers were instructed to se-
lect the video segment with the sleepy driver. Despite moder-
ate inter-rater agreement (which, as indicated, seems to be
normally assumed to indicate good accuracy), the average
percentage of correctly assessed video segments was only
35%. Moreover, in two out of four video pairs all raters (i.e.,
perfect agreement) identified the wrong video. Such findings
are not only indicative of a low validity of observer-rated
sleepiness, but also give rise to the question whether good
agreement also means good accuracy, and how accurate hu-
man annotation is in general.

Research aim and paradigm

The aim of the present study is threefold: 1) assess the ability
of annotators to accurately and reliably judge the direction that
drivers are looking, 2) determine whether high agreement be-
tween annotators is always associated with high accuracy, and
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3) explore whether clustering of glance locations into larger
glance regions improves annotation accuracy. Such clustering
may be based on what distinction is needed for a certain study
(i.e., a top-down, or theory-driven approach), or be derived
from the data (i.e., optimize accuracy for a given number of
clusters; i.e., a bottom-up, or data-driven approach).

The first aim focuses on the annotation of glance and gaze
behavior, but the results are likely to apply to glance behavior
for activities other than naturalistic driving, including gaze
behavior in infants (e.g., Farroni et al., 2004; Hood et al.,
1998), where the use of eye trackers may interfere with natu-
ralistic gaze behavior. The second and third aim relate to var-
ious types of human annotation, including the annotation of
gaze direction in data from mobile eye trackers (e.g.,
Ioannidou et al., 2017), or the annotation of where participants
take hold of objects in grasping movements (e.g., Hermens
et al., 2014), where there may be a tendency to assume that
agreement between annotators implies accurate annotation,
and where detailed regions may be used that annotators cannot
actually distinguish between. By using stimuli for which it is
known where the actor is looking (by instruction), the accura-
cy and reliability of the human annotation can be directly
tested. A similar paradigmmay then be used in other contexts.

In service of these research aims, a set of stimuli with
known glance directions (i.e., a true ‘ground-truth’) was con-
structed based on Naqvi et al. (2018), who instructed drivers
to glance at a series of predefined locations inside a stationary
truck cabin. To verify the predictions based on Moors et al.
(2015) and to mimic the natural variability of driver height in
naturalistic driving studies, glance behavior was collected for
three drivers with different heights. Whereas most naturalistic
driving studies involve one or two annotators per stimulus, we
asked a larger group (N = 10) to obtain better estimates of the
accuracy per location and the amount of agreement between
annotators. To relate the data of ten annotators to the more
common situation where only two annotators are used, a
Monte Carlo approach was adopted, randomly selecting two
annotators on each run of the simulation to examine the situ-
ation where only two annotators would have been involved.

Recent work has suggested that glances are guided by a need
for information intake above visual saliency (Henderson and
Hayes, 2017), and consequently, it can be assumed that infor-
mation retrieval will be guided by the driving context and future
actions.When annotating glances in naturalistic driving data the
annotator maymake use of this relationship. Imagine a scenario
in which a cyclist is about to undertake a truck in an adjacent
cycle lane, prior to making a right turn at an intersection. The
right blind spot camera shows the presence of the cyclist, while
at the same time, the face camera shows that the driver is
looking to the right. An annotator may infer that the driver is
looking at the right blind spot mirror to decide whether he or
she should brake. In reality, however, the driver may have been
looking through the right side of the front window, scanning for

traffic ahead. Thus, an incorrect interpretation of the driver’s
glance direction may result from assumptions by the annotator
on the driving context. In the present study, we aim to avoid
such possible confounds of the driving context, by presenting
annotators with just the view of the driver, to isolate glance
estimation accuracy from interpretation of the driving context.
A consequence of this approach, however, will be that scores
on accuracy and inter-rater reliability for each glance location
should be viewed as a preliminary estimation for annotation in
actual naturalistic driving studies, and that future studies will
need to address the role of context.

An important practical question is how often truck drivers
check the blind spot mirrors, because this is a common cause
of accidents between a large vehicle (a truck) and an often less
protected cyclist, often leading to serious injuries or fatalities
(Prati et al., 2018). Because of this practical importance, the
present study focuses on truck drivers. Some indication of
what to expect in terms of results can be derived from
Fridman et al. (2016), who investigated glance behavior in
passenger cars, showing annotators images of actors. This
work shows that glances at the left/right window and at the
left/right blind spot area are often too similar for accurate
annotation, and consequently, the authors subsequently relied
on generalized left and right glance regions for their analysis.
Although for trucks a more fine-grained annotation than sim-
ply coding for leftward and rightward glances is often needed,
because the different mirrors in trucks focus on different di-
rections, the present study determines whether larger clusters
can be used for annotation in trucks, where regions span larger
visual areas both in terms of glance direction and visual angle.
For example, when a driver looks left, it can be concluded that
they did not check the blind spot mirror on the right.
Therefore, the frequency of leftward glances will provide a
lower estimate of how often the driver did not check the right
blind spot mirror. The frequency of rightward glances similar-
ly provides an upper estimate. Likewise, if one were to be
interested in eyes-on-road and eyes-off-road, a binary distinc-
tion between those regions may also suffice.

Method

Participants

Ten participants (four males, six females, aged between 22
and 36) took part in the study, recruited by word of mouth
and opportunity sampling. All participants were paid em-
ployees at the institute where the research was conducted
(SWOV) and included one staff member, five interns, and four
annotators serving on unrelated projects. None of them had
extensive prior experience with annotation of glance behavior
by truck drivers (the annotators just had started their role). All
participants reported (corrected to) normal eyesight.
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Stimuli

Videos were recorded inside a parked Volvo FH truck using a
Sony RX100 for a view of the driver’s face (sensor size: 25.41
mm, focal length: 18 mm, diagonal view: 52°) and a GoPro
Hero3 for the cabin view (sensor size: 11.05 mm, focal length:
3.5 mm, diagonal view: 100°). Their position and field of view
were chosen such that they mimicked the camera views pro-
vided by the face camera and cabin view camera in the
UDRIVE truck database. For the same reasons, the resulting
videos were converted to grayscale.

Twenty glance locations were defined, see Fig. 1: speed-
ometer (location C1), center console (C2), driver seat (C3),
passenger seat (C4), cabin roof (C5), cabin top left (C6), cabin
top center (C7), cabin top right (C8), front window straight
(F1), front window center (F2), front window right (F3), front
blind spot mirror (F4), left window (L1), left side mirror (L2),
left blind spot mirror (L3), right window (R1), right side mir-
ror (R2), right blind spot mirror (R3), right pedestrian mirror
(R4), and right door lower window (R5).1

Most glance locations correspond to those previously used
in studies with passenger cars (e.g., Seppelt et al., 2017).
Exceptions are the mandatory blind spot mirrors in trucks,
the driver seat, and the passenger seat (C4). The latter two
were included, because previous naturalistic driving studies
on task distraction have shown drivers placing food, drinks,
mobile phones, as well as travel documents in these locations
(Carsten et al., 2017). Furthermore, glance location R5 corre-
sponds with a hypothetical window in the lower part of the
passenger door. Although this window is not present in the
Volvo FH truck used for the videos, the Volvo FL trucks that
were used in the UDRIVE study do include such a window.
Finally, glance locations in the upper part of the cabin (C5 to
C8) were selected because some trucks include equipment at
these locations that draws visual attention (e.g., a display pro-
viding a view on the blind spot).

Three drivers were recruited to create the videos that served
as the stimuli: a tall driver (standing height: 187 cm, sitting
height: 96 cm), a medium tall driver (standing height: 176 cm,
sitting height: 84 cm), and a short driver (standing height: 165
cm, sitting height 80 cm). Numbered sticky note were placed
at the center of each glance location. The drivers were verbally
instructed to briefly glance at a specified position before
returning their gaze to the straight forward direction (i.e.,
glance location F1 in Fig. 1) and one of the other nineteen
glance locations. The drivers were told to fixate their gaze at
the Post-it for 2 s before returning to location F1. When all

locations were looked at once, the sequence was repeated in a
different order. The resulting videos were synchronized,
placed side by side, and cut into shorter sections each showing
one glance shift to a target location and back to the baseline
position (see Fig. 2). In total, 114 such smaller videos were
created showing two repeated glance shifts towards one of 19
locations for three drivers.

Apparatus

Two 23-inch flat screens were used to present the videos and
the images showing the regions. The OpenSesame software
(Mathôt et al., 2012) was used to present the videos in a ran-
domized order and allow participants to indicate when they
were ready to give their response. To indicate the possible
responses to the participant the image in Fig. 1 was used,
showing each of the glance locations on the second screen.
One image showed the same truck with lines indicating the
location. The other image was a graphic illustration of the
outside of the truck with the different labels.

Procedure

Participants were tested individually. They were seated in
front of the screens and were asked to look at short video clips
of a driver inside a truck looking at various areas in and out-
side the truck (Fig. 2), and simultaneously, images of the
coding of the locations (Fig. 1). Video clips were repeated
until the participant pressed a key on the keyboard to indicate
to be ready to provide their response. Participants gave their
response by speaking out the letter-digit combination of the
area. These responses were immediately entered into a spread-
sheet by the experimenter who sat next to the participant. The
experiment took around 30 min to complete. Participants re-
ceived no specific training to perform this task. This was done
purposely to more closely mimic the annotation process in
naturalistic driving research, where training with stimuli with
known glance directions is not commonly used.

Data analysis

Responses and the actual glance locations were entered into a
spreadsheet and loaded into R for further processing using the
dplyr (Wickham et al., 2019) and tidyr (Wickham & Henry,
2019) packages for data wrangling and ggplot2 (Wickham,
2016) for data visualization. Standard errors used for error
bars in data plots were computed using the boot package
(Canty et al., 2012; Davison & Hinkley, 1997). To compute
Krippendorf’s alpha (De Swert, 2012; Krippendorff, 2011),
measuring agreement between participants, we used R’s irr
package (Gamer et al., 2019).

A mixed effects logistic regression model was used to
examine the effect of driver height on accuracy, using the

1 One of the reviewers correctly suggested that measurements of the truck, in
terms of the rotation angle required to look at these regions, would have been
useful to report. At the time of the revision, however, it was not possible to
obtain such measurements at a truck dealer (and no access to the original
vehicle), due to the COVID-19 pandemic. Such measurement will therefore
be absent.
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lme4 package (Bates et al., 2015). The choice for a mixed
effects model, rather than a standard logistic regression,
was made because there were two responses per glance
location for each participant. A standard logistic regression
would have assumed these two responses to be indepen-
dent. The statistic for this test is a Chi-square value (results
from a likelihood ratio test comparing a model with and
without the effect of interest).

To examine possible clusters in participants’ responses, the
number of participants that gave a certain response for a cer-
tain target location was converted to a distance measure for
that [correct response – given response] combination by
subtracting the observed frequency from the maximum ob-
served frequency (i.e., a large agreement means a smaller
distance, see also Coxon & Jones, 1972). The resulting dis-
tance matrix was then made symmetric by averaging the dis-
tances at opposite locations from the diagonal. This distance
matrix was then submitted to a hierarchical clustering analysis
using the hclust method from base-R, using average linkage
(Ward and complete linkage gave similar results, whereas
single linkage led to the typical chains structure; Aldenderfer
& Blashfield, 1984) and multi-dimensional scaling using the
cmdscale method from base-R.

Distances were also analyzed using the R network package
(Butts, 2008; Butts, 2015), which creates a visualization of the

network structure between responses by plotting edges and
nodes in such a way that clusters can be easily visually detected.

Results

Overall agreement and accuracy

As a first indication of the consistency of the responses of the
participants, we computed Krippendorff’s alpha, which pro-
vides a measure of congruency across more than two annota-
tors. Across all drivers and glance locations a Krippendorff’s
α value of 0.39 was found, whereas per driver, values of 0.37
(short driver), 0.40 (medium height driver) and 0.40 (tall driv-
er) were found, all well below the 0.67 threshold at which
results are still considered acceptable (Krippendorff, 2004).

Another method to examine the extent to which partici-
pants’ responses agree, is by examining the largest percentage
of the same response per response category (not necessarily
the correct response), shown in Figure 3a. This shows that for
some locations the overlap of the most common response can
be as high as 80% (annotators and repeated responses, e.g.,
driver seat, dashboard speedometer, left blind spot mirror),
whereas for other locations the highest overlap drops to close
to 25% (e.g., front window right, front window center). In

Fig. 2 Video still of the medium-tall driver looking at the right pedestrian mirror (glance location R4) after an instruction from the experimenter. Image
published with permission of the participating driver

Fig. 1 Twenty glance locations from a cabin perspective (left panel) and an outside perspective (right panel). Prefixes: L = Left, R = Right, F = Front, C
= Cabin
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part, this overlap is linked to accuracy: If many participants
are able to provide the correct response, the overlap can be
expected to be high. Participants, however, may also system-
atically provide an alternative response, meaning a high over-
lap and low accuracy.

To examine the extent of agreement between overlap and
accuracy, Fig. 3b–d plots the accuracy per participant, accuracy

per location, and the accuracy per location against the overlap
per location. Generally, participants were not very accurate
(Fig. 3b; best participant with an accuracy slightly above
50%), but there were no participants that clearly stood out.
This agrees with feedback from participants, who indicated
not to be very confident about their responses. Locations also
differed in how accurately they could be reported (Fig. 3c), with
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accuracy ranging from almost zero (front blind spot mirror) to
close to 90% (driver seat, dashboard speedometer). Several
cabin locations could be well identified, but this was not the
case for all cabin locations, as some were among the poorest
scoring locations (e.g., cabin top right, cabin top center, passen-
ger seat).

Accuracy versus agreement

Figure 3d indicates that many glance locations showed a clear
correspondence between overlap and accuracy (e.g., locations
C5, C6, L3, C1, and C3), where participants agreed simply
because they each chose the same correct response. For some
locations, however, overlap was larger than accuracy, mean-
ing that participants tended to consistently choose a different
location than the correct one (glance locations C4, C7, C8, R2,
R3, R4, and F4 above the diagonal in Fig. 3d). As annotation
studies typically take agreement between annotators as an
indication of a reliable annotation, this observation is particu-
larly important: High agreement does not necessarily mean
accurate annotation, and it is difficult to predict when high
agreement means accurate annotation and when it does not.

The analysis so far has considered all ten participants. In
naturalistic driving studies, however, it is common to only
have two annotators code each stimulus, as opposed to ten.
To relate the findings of Fig. 3d to common practice, we
performed a simulation in which repeated random draws of
two annotators were made, for which we calculated agreement

and accuracy. This Monte Carlo simulation used 100 repeti-
tions per stimulus (more draws were significantly slower to
perform while not substantially changing the results), corre-
sponding with 200 draws per glance location (because there
were two videos for each location). The simulation showed
that, the chance of perfect agreement is 42.8%. For all draws
where both participants agreed, the chance of a correct re-
sponse is 63.4%, meaning that agreement meant an incorrect
response in the remaining 36.6% of the cases.

Figure 4 shows that for only a small subset of locations
(C1, C3, C5, C6, and L3) the chance of agreement (i.e., ‘both
correct’ plus ‘both incorrect’) is larger than 50%, whereas the
chance of disagreement is larger than 50% for the remaining
14 glance locations. Practically, this means that in many cases,
a third annotator would be needed to resolve the disagreement
(or more, if this third annotator disagrees with the first two
annotators). Moreover, in case of agreement, incorrect judg-
ments are more likely than correct judgments for a large num-
ber of glance locations (C4, C7, C8, R2, R3, R4, F2, F3, and
F4). Note that these findings are generally in line with the
results presented in Fig. 3d (i.e., glance locations above the
diagonal).

Effect of driver height on accuracy

Videos of three different drivers were used, with different
heights. Figure 3e shows that there was some variation in
how accurately participants could report the glance direction

Fig. 4 The average chance that two randomly selected annotators agree and whether they were correct, as a function of glance location
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of these drivers for each location. A mixed effects logistic
regression found a significant effect of driver on accuracy
(after Bonferroni correction for multiple comparisons) for
the right pedestrian mirror (χ2(2) = 15.86, p < 0.001) and
the center console (χ2(2) = 24.48, p < 0.001). Test results
for the remaining comparisons are shown in Table 1 in the
appendix, suggesting that the effect of driver height is driven
by the difference between the accuracy for the short and tall
drivers. For the right pedestrian mirror, taller drivers led to a
lower accuracy, whereas for the console, the direction of the
effect is reversed. Note that the effect of driver is sometimes
different for adjacent regions (e.g., R4 and F4). Given the
relatively small numbers of observations (60 overall, when
comparing the three drivers), very strong conclusions of the
effects of driver height should not be drawn on the basis of
these data (it was not the focus of this study, but given the
results, further investigation is warranted).

Effect of region clustering on accuracy

The results show that generally participants were not very
accurate, with some glance locations having very low annota-
tion accuracy. A possible reason may be the large number of
response categories: People may not be able to distinguish
glance direction with this level of detail, and when uncertain,
the chance of guessing correctly is lower with a higher number
of categories. It may therefore be beneficial to cluster glance
locations into larger glance regions that annotators can distin-
guish better, like past studies of glance direction in naturalistic
driving have done. Two approaches may be used in this con-
text: (1) Clustering on the basis of a priori categories, and (2) a
posteriori clustering, for which we use clusters observed on
the basis of confusion counts between categories.

A-priori clustering

A first approach is to use the five main regions: Front (‘F’
prefix), the upper part of the Cabin (‘C-upper’ prefix), the
lower part of the cabin (‘C-lower’), Right (‘R’ prefix), and
Left (‘L’ prefix). An overall accuracy of 75% is found for
these five regions (see Fig. 3f for the per-region accuracies),
which is better than chance (20%), but likely to be insufficient
for application in naturalistic driving studies or to train auto-
matic detection algorithms.

A posteriori clustering

Even with the five large clusters, reliable accuracy was not
achieved for all regions. The a priori grouping may therefore
not be optimal: probably participants confused glance direc-
tions at the edges of these large regions. To determine whether
it is possible to obtain better clusters (higher overall accuracy)
on the basis of the data, we made use of unsupervised learning

techniques to a posteriori cluster the various glance locations
into larger clusters. The exact procedure when applying these
techniques is described in the appendix. Input for these tech-
niques are the confusion counts, which indicate how often one
region was ‘confused’ with another region.

These counts are shown in Fig. 5, which plots the frequen-
cy of responses for each combination of a correct and a given
response (with brighter colors indicating more frequent com-
binations). The bright areas on the diagonal indicate correct
responses, but there are also various brighter off-diagonal
areas, which indicate areas that are often confused. The most
frequent confusions are R4 responses for C8 glances (60%),
R2 responses for R1 glances (55%), C4 responses for R5
glances (52%) and R4 responses for R1 glances (also 52%).
These frequencies also imply that some responses occurred
often (e.g., R1: 166 times, L3: 90 times), and some responses
were avoided (e.g., C7: 21 times, and F2: 26 times).
Confusions were also not always symmetric. For example,
glance location C8 is often responded to with R4, but R4
was not often responded to with C8. Likewise, glance location
F2 is sometimes responded to with the right-side mirrors R1,
R2, and R3. The opposite effect, where the right-side mirrors
are responded to with glance location F2, was not found. We
inspected the videos to examine whether there were differ-
ences in glances to F2 and those to R1, R2, and R3 with
respect to the involvement of head movements that could ex-
plain the asymmetric nature of the errors for these regions.
Glance shifts to these four regions all involved a combination
of a gaze-shift and a head turn, but the head turn was larger for
the R-regions than for the F2 region. The asymmetric confu-
sions between F2 and the R-regions therefore seem to be in-
dicative of an overshoot effect, rather than being due to a
difference between eye-gaze and head-turn glances.

Three different a posteriori clustering solutions were found,
depending on the method used and how the results are
interpreted (see appendix for details). A clustering of the

Fig. 5 Confusion counts between the various glance locations
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various glance locations into 11 small clusters ({L3}, {L1, L2},
{C1, C3}, {C4}, {R4}, {R1, R2}, {R3, R5}, {F3, F4}, {C2,
F2}, {C8}, {C5, C6}) gives an overall accuracy of 60% (cf.,
with the original labels: 44%). When a broader five cluster
solution is used ({C1, C3}, {C2, F2, F3, F4}, {C5, C6, C7,
C8}, {L1, L2, L3}, {R1, R2, R3, R4, R5, C4}) an accuracy of
80% is found, which is higher than the 75% found for the a
priori clustering. In terms of spatial proximity (Fig. 1) the five
clusters in this solution also make sense. A third a posteriori
clustering (see ‘MDS’ in the appendix) has three clusters (L-
regions, R-regions, other regions). For this clustering an overall
accuracy of 82% is obtained, only marginally better than with
the larger clusters of the hierarchical clustering analysis (five
rather than three clusters) – but set against a substantially higher
chance level when annotators guess (1 in 3, rather than 1 in 5).

Discussion

Naturalistic driving studies often make use of manual annota-
tion to determine the momentary glance direction of drivers
from video images. When using such annotation, it is often
assumed that when annotators agree, the annotation will be
correct. In this study, we tested this assumption by showing
videos of truck drivers looking at predefined regions inside
and outside the truck and asking participants to name these
regions. Our five main findings are: 1) there are large differ-
ences both in terms of accuracy and percentage agreement
across glance locations, 2) some glance locations show a sig-
nificant effect of driver height on accuracy, 3) average accu-
racy was consistently low across the annotators, 4) some
glance locations showed a very low accuracy, despite a mod-
erate degree of agreement, and 5) clustering glance locations
into larger glance regions improves accuracy. Next, we dis-
cuss the implications of our findings, followed by limitations
of the study and recommendations for future research.

Implications

Implications for automated glance extraction

A major implication concerns the automated extraction of
glance directions. To develop a system to automatically anno-
tate glance direction from video material, a training set is
needed with video images coded for the actual glance direc-
tion (for supervised learning). Several studies either explicitly
or implicitly use manual annotation as the ‘ground truth’ for
the development of image processing algorithms (e.g.,
Fridman et al., 2016; Tawari and Trivedi, 2014; Vora et al.,
2017). The general assumption for such manual annotation
appears to be that if two or more annotators are in agreement,
the classification must be correct. Our findings demonstrate
that such an assumption cannot be automatically made. On

average, 37% of judgments with perfect agreement between
two annotators were incorrect. Sometimes a third annotator is
used to resolve the disagreement, but it is not unlikely that this
third annotator would disagree with the first two annotators,
and even if the third annotator would agree with one of the
first two annotators, the ‘majority vote’ is not automatically
the correct judgment. Therefore, studies on image processing
algorithms that fail to collect a true ground-truth may show a
high internal validity (with regard to perceived glance behav-
ior), but not necessarily a good external validity (with regard
to actual glance behavior).

Implications for studies on traffic safety

While our study was conducted on glance behavior collected
in the absence of a driving context (i.e., lacking views of the
exterior of the vehicle, and recordings made inside a static
truck), the present results can be interpreted as a first indica-
tion that human annotation of glance behavior may not be as
accurate as often implicitly assumed, and that inter-coder
agreement does not automatically mean accurate coding.
The impact of our findings will also depend on the aim of
the study (i.e., which glance location or region needs to be
coded with high accuracy). For example, in studies on speed-
ing it may be relevant to confirm whether the driver has visu-
ally inspected the speedometer. With an average accuracy of
88% across ten annotators, it is likely that a true glance to-
wards the speedometer (C1) is perceived as such, even in the
absence of visual cues such as optic flow visible on the
forward-facing cameras indicating the speed of the vehicle.

In contrast, studies on driver distraction often require being
able to distinguish between off-road and on-road glances (e.g.,
Lin et al., 2019). For off-road glances, high accuracy was
found for the driver seat (C3) and speedometer (C1), but not
for the passenger seat (C4, related to driver distraction), which
was often confused with the passenger door window (R5).
This confusion between glances at the passenger seat and
passenger door could be explained by the fact that drivers
looking at the passenger door window may need to look just
across the passenger seat. Note that this confusion becomes
irrelevant if the truck at hand does not feature a passenger door
window. Furthermore, a high annotation accuracy was found
for the center console (C2), but only with the tall driver. This
effect can be explained by the fact that a taller driver requires a
larger downward facing head orientation, which is more easily
detected than a smaller amplitude downward glance towards
the same location by a short driver.

If larger clusters can be used, higher accuracy can be
achieved. For example, when all cabin glance locations are
clustered into two categories (upper and lower), and the re-
mainder of the regions are kept, an overall accuracy of 75% is
obtained. This accuracy may still be below what is required
for a naturalistic driving study or the use of the annotated data
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for the development of automatic detection algorithms. A pos-
sible reason may be the confusions with glance locations that
are not part of the cabin area, such as between the cabin top
center (C7) and the cabin top right (C8) on the one hand, and
the front blind spot mirror (F4) and the right pedestrian mirror
(R4) on the other hand. Taken together, one must conclude
that the accuracy of off-road glance annotation will depend on
(1) the glance locations that are selected as part of the study,
(2) whether glance locations are clustered, and (3) possibly the
driver’s height. For on-road glances, the accuracy for loca-
tions F2 (front window center) and F3 (front window right)
was below 25%, as these locations were often confused with
the right-side mirrors. Even when glance locations F2 and F3
are clustered, the resulting accuracy will still be below 50%.
The confusion of these locations was unidirectional: the right-
side mirrors were never confused with F2, and only occasion-
ally with F3. This is indicative of an overshoot effect as de-
scribed by Moors et al. (2015). The data, however, also show
that left and right glance directions can be distinguished with
high accuracy (confusions between left and right only account
for 1.12% of all left and right region responses). So, for studies
that only distinguish between left and right glance directions
(e.g., infant studies of gaze following), the present findings
should not be a cause of concern.

The findings also have important implications for studies
on blind spot accidents. The results show that it appears to be
impossible to accurately distinguish between separate mirrors
on the passenger’s side. Although the accuracy for the right
pedestrian mirror (R4) was significantly larger with the short
driver, likely due to a larger vertical head orientation, the
accuracy did not surpass 40%. In fact, across all drivers, the
accuracy was lower than 50% for all glance locations on the
passenger side. Annotation with a broader category, however,
yielded better results. Both an a priori categorization and a
categorization based on multidimensional scaling showed an
accuracy of over 80% when all glance locations on the pas-
senger side are grouped, possibly removing the effects of con-
fusions between glances to the different mirrors and glances
through the right window (R1). Studies on blind spot acci-
dents should therefore focus on the presence or absence of
sideways glances on the passenger side. When a driver looks
sideways, they potentially checked one of the mirrors, but one
should refrain from conclusions about which mirror was
checked, and also take into account that the number of side-
ways looks reflects the maximum number of times the driver
checked the blind spot mirrors on this side. If the driver does
not look sideways, then one can conclude the blind spot mir-
rors on this side have not been checked. Note that the front
blind spot mirror (F4) showed the lowest accuracy of all
glance locations. Therefore, aforementioned remedymay help
for studying behavior related to accidents where other road
users are hit at the side of the truck, but not those where the
impact occurs at the front of the truck.

Limitations

Controlled setting

Videos that served as stimuli were recorded inside a parked
truck. Such a setting, however, may have led to different glance
behavior compared to naturalistic driving. A possible alternative
would have been to use a think-aloud protocol in a naturalistic
driving situation, where the driver at each instant indicateswhere
(s)he is looking. Think-aloud protocols have been used in real
traffic research, for example to understand trust ratings in auto-
mated vehicle technology (Ekman et al., 2019), and to measure
situation awareness (Key et al., 2016). In both cases, verbal
utterances were based on (prospective) interactions with other
road users, such as passing a pedestrian crossing or taking a
roundabout. There are several reasons why we did not opt for
such a strategy. First, the use of a think-aloud protocol for glance
direction may lead to non-natural glance behavior. People tend
to move their eyes about three times per second (Rayner, 1998).
To avoid having to name each of these glances, drivers may try
and reduce their glance shifting frequency. There are some
indications adjustments in glance behavior may take place. In
Kircher and Ahlstrom (2018) drivers used more time on mirror
glances when driving with a concurrent think-aloud protocol,
compared to a baseline driving condition where no protocol
was used. The authors argue that mirror glances, which are
typically short, increase in duration by mentioning them and/or
by becoming aware of automated glance behavior. Second, and
related, self-reported glances collected through a think-aloud
protocol are likely incomplete.With a frequency of around three
glances per second, it is almost impossible to keep up verbally.
Third, asking drivers to drive normally and memorize their
glance directions is also unlikely to work, as this would require
a large number of directions to be stored, beyond the capacity of
normal human working memory (Ericsson & Simon, 1980).
Some of the locations will not be glanced at often, and therefore
quite a large interval of driving and glance behavior may need to
be collected before all regions are covered. In contrast, asking
drivers to look at a series of Post-its unequivocally yields the
desired collection of glance directions. Finally, related to previ-
ous points, think-aloud protocols may also impact driving be-
havior and possibly performance (and therefore affect safety).
Given the rate with which drivers typically change their glance
direction, a think-aloud protocol would invite drivers to talk
continuously. In the meta-analysis of Caird et al. (2018) talking
with a passenger was shown to result in slower reaction times,
decreased hazard perception, and more collisions, compared to
baseline conditions without talking. These negative effects on
driving performance may be mitigated partially by telling
drivers to pause verbalization during challenging traffic situa-
tions. This, however, will restrict collected glance behavior to
less than challenging driving conditions. Consequently, the col-
lected glance behavior may not be representative of the often-
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inspected safety critical events in typical naturalistic driving
studies.

A second limitation is that we only provided participants
with video images of the driver, stripping the analysis of fur-
ther context. In naturalistic driving studies, annotators usually
have several outwards facing cameras at their disposal, which
can be used to infer what drivers may be looking at, and
consequently, to select a glance location. It is unclear to what
extent annotators actually use these images, which could be
addressed in further research using eye tracking to determine
which images and where in the images annotators look when
coding for glance behavior in drivers. Such a study would
possibly inform any differences between coding by different
annotators, and what cues annotators use to complete their
task, which may also benefit training purposes.

A further limitation may be that, in contrast to naturalistic
driving, the fixation interval of 2 s in our study may have been
rather long (with the knowledge that human shift gaze about
three times per second). For annotation, a relatively long fix-
ation duration can be expected to improve annotation accura-
cy. Given that annotation accuracy was rather low, we there-
fore expect that for actual naturalistic driving data, annotation
accuracy may be even lower.

Another difference compared to naturalistic driving is that
drivers may not always glance back to the front direction (i.e.,
glance location F1), as was the case in the videos used. As for
the longer duration, changing this feature to more realistic
gaze behavior can be expected to reduce annotation accuracy
due to stronger confusion between glanced at regions.

Furthermore, the truck was situated in a well-lit garage,
which does not represent situations of high contrast due to
sunlight or extreme darkness when driving at night.
Therefore, it is plausible that the accuracy of annotation in real
driving conditions will be lower than then values reported here.

A related limitation is that the present study focuses on the
direction of gaze (foveal vision), whereas it is known that in
naturalistic driving extrafoveal vision plays an important role
(e.g., Wolfe et al., 2017). Note that this limitation is not unique
to studying glance behavior using human annotation. The limi-
tation also plays a role when glance directions would have been
measured using eye trackers, which do not measure extrafoveal,
covert attention either. Extrafoveal vision differs from foveal
vision in various aspects (for an overview, see Rosenholtz,
2016), including lower visual acuity (Rayner, 1978), the phe-
nomenon of crowding (difficulties differentiating features of
objects with neighboring objects present; Whitney & Levi,
2011), and altered color perception (Sivak et al., 2000).
Moreover, it can be demonstrated that extrafoveal processing
is used in day-to-day tasks such as reading. For example, a
moving window that is dynamically adjusted depending on
where the reader fixates, can reduce reading speed, depending
on the size of the window and the features of the text outside the

moving window (e.g., whether the text still contains spaces, or
consists of letters that are similar; Rayner & Pollatsek, 1994).
There are also indications that foveal vision is specifically used
in situations where shape information is difficult to extract from
extrafoveal vision. For example, when asked to report the direc-
tion of a pair of eyes (embedded inside a face, likely to cause
visual crowding) or a pointing hand presented away from fixa-
tion, participants more often make an eye movement to the pair
of eyes than the handwhen allowed to, and performmore poorly
in a direction discrimination task of the pair of eyes than the
pointing hand when not to allowed to look at the stimuli
(Hermens, Bindemann & Burton, 2017). Peripheral vision,
however, needs to serve a purpose. In the indoors setup used
here, peripheral visionmay be of less importance, because of the
absence of a surround of interest to visually inspect. This may
have affected glance behavior in the drivers.

In the present work, we focused on trucks, because of the
importance of glance behavior in blind spot accidents. The results
cannot fully be extended towards driving in passenger cars. Cars
have fewer areas of interest (e.g., no blind spot mirrors) in the
same glance direction and therefore, annotatorsmight have fewer
difficulties distinguishing what car drivers look at. However,
even for passenger cars, annotation often involves a task that is
more complex than determining whether a driver looks right or
left. For example, it can be of interest to knowwhether the driver
looks through the window, at passengers or at the right mirror.

The overshoot effect observed in the present study raises
the question to what extent forward right glances have been
misinterpreted as right window glances in studies with pas-
senger cars. For example, the study of Belyusar et al. (2016)
on the effect of digital billboards on glance behavior may have
missed forward right glances (i.e., underestimating the actual
number of glances in this direction). In the study by Seppelt
et al. (2017) on using glance metrics to distinguish between
crashes and near-crashes, on-road glances (i.e., including for-
ward right glances) may have been mislabeled as off-road
glances due to the overshoot effect.

Baseline glance direction

Actors were asked to always look back to the center (F1) posi-
tion after glancing at each of the instructed positions. The reason
for using F1 as the reference position, was that drivers tend to
glance at this center position for a substantial amount of time
during naturalistic driving (Fridman et al., 2016). In our study,
we decided to show the full video clip, showing the glance shift
from F1 to the target position, and the glance shift back to F1. It
is yet unclear whether this sequence best resembles actual anno-
tation of naturalistic driving data, where annotators may slow
down, reverse, or pause the play-back.

The latter situation, where the video is paused, resulting in
the annotator watching a static image, may be more in line
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with studies examining social attention. In these studies, par-
ticipants typically watch either a static image of a person
looking ahead, followed by a blank, followed by a static image
of a person looking left or right (static stimulus condition; e.g.,
Bayliss, Pellegrino & Tipper, 2005; Hermens & Walker,
2010) or a video of a person first looking ahead, and then
shifting their glance leftwards or rightwards (dynamic
stimulus condition; e.g., Hermens & Walker, 2012;
Rutherford & Krysko, 2008; Swettenham et al., 2003). It has
been suggested that attention shifts following dynamic stimuli
may be stronger, because the same neurons in the human brain
may respond to both social (Perrett et al., 1985; Perrett et al.,
1992) and biological motion cues (Oram & Perrett, 1994). A
direct comparison between static and dynamic cues, however,
did not show such a stronger attention shift for dynamic cues
(Hietanen & Leppanen, 2003).

Studies on social attention have typically avoided asking
actors to look back at the starting position to avoid the inhibi-
tion of return effect, where the cued direction is inhibited after
drawing attention back to the center (after a certain delay;
Posner & Cohen, 1984; Klein, 2000). These studies therefore
provide less information about the consequences of asking
actors to look back to center, also because they focus on au-
tomatic attention shifts, and less on estimating the direction of
a perceived glance shift. Social attention studies have also
largely focused on eye-glance shifts, with fewer studies exam-
ining whole-head glance shifts, whereas whole-head glance
shifts tend to result in stronger attention shifts in the observer,
particularly when the stimuli are looked at from peripheral
vision (Burton et al., 2009; Hermens et al., 2017). Future
studies should therefore examine what the effects of using
dynamic versus static stimuli are, and whether showing the
section of the video in which the actor looks back at the center
position affects the findings.

Recommendations

This study shows that it is not advised to have blind faith in the
judgment of annotators when annotating glance behavior,
even when two annotators agree on the coding. Instead, the
findings suggest annotation may be improved by providing
annotators with a reference set of images or videos showing
drivers’ glance behavior that show drivers looking at
predefined locations in the vehicle. Such a reference set of
images or videos can aid the training of annotators (e.g.,
Chapman et al., 2008; Cabrall et al., 2018), and help annota-
tors improve the accuracy of their annotations. Once high
accuracy after such training is achieved, the resulting data
can be used to develop video algorithms that automatically
code what drivers look at (Naqvi et al., 2018).

All-in-all, our findings suggest that people perform poorly
when annotating glance locations at a high spatial resolution,

for many locations inside a vehicle. No participants clearly
stood out in their performance, as is sometimes found in face
recognition, where there are super-recognizers (Bobak et al.,
2017; Robertson et al., 2016; Russell et al., 2009) or people
particularly poor at recognizing faces (Damasio et al., 1982;
McNeil & Warrington, 1993). Thus, it is unlikely that
selecting another sample of untrained participants would have
improved annotation accuracy. Improved annotation accuracy
may be achieved after training (e.g., Chapman et al., 2008;
Cabrall et al., 2018). A follow-up study on the effect of train-
ing is therefore warranted.

Finally, future studies could further address the generaliz-
ability of our findings towards annotation in naturalistic driv-
ing studies by showing annotators the driving context (e.g.,
views from other cameras, sound recordings), and by using
glance behavior in actual traffic. The main challenge for con-
structing such stimuli will be to generate a data-set of known
glance locations without interfering with either driving or
glance behavior. Possibly the use of a single, high-end remote
eye tracker may aid this purpose.

Conclusions

In naturalistic driving studies agreement between pairs of an-
notators is often seen as an indication of accuracy. The present
study demonstrates that such an assumption is not automatical-
ly correct: annotators can be in agreement, but both use the
incorrect label. Clustering of regions improves accuracy, but
not to a level that would be considered sufficient for most
naturalistic driving applications, particularly for regions further
away from the camera. Correct annotation is important for train-
ing of algorithms with the aim of automatically detecting gaze
direction, and it is therefore important to first experimentally
test the annotation accuracy, as was done in the present study,
before using such annotation for algorithm development.
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Appendix

A posteriori clustering of glance locations

Unsupervised clustering techniques were used to establish pos-
sible clustering of glance locations on the basis of the data. The
techniques that we use work on a matrix of numbers that indi-
cate the distance between each possible combination of loca-
tions. The task is therefore to create a measure that expresses
this distance. Common methods for measuring or deriving dis-
tance measures are to ask participants to directly rate the simi-
larity between stimuli, to score stimuli on a range of features and
compute a measure such as the correlation, or to examine how
often two stimuli are confused (Coxon and Jones, 1972). This
first approach would require asking participants to compare
videos for similarity, which will be hugely time-consuming.
The second approach would require establishing features that
describe features of each video. It would be unclear what fea-
tures to define. We therefore adopt the third approach and use
the number of times each response is confused with another.

Large confusion counts indicate that glance shifts looked
similar to our participants. As clustering methods use a measure
of dissimilarity rather than similarity, the confusion counts were
inverted by taking themaximum pairwise count and subtracting
the count for each combination of a correct and a given re-
sponse. Clustering methods also assume that similarities are
equal for A-B and B-A pairs. In a second step, the resulting

distances between pairs (e.g., R5-C4 and C4-R5 distance) were
therefore averaged in order to obtain a symmetric distance ma-
trix assumed by the different techniques (cluster analysis and
multi-dimensional scaling). Because establishing the dissimilar-
ity matrix using the observed confusion counts requires several
steps, it will be important to examine (1) whether the solutions
from the various clustering methods make theoretical sense,
and (2) whether different methods of clustering yield similar
results (Coxon and Jones, 1972).

The first method that we used is hierarchical clustering,
which is a bottom-up (agglomerative) approach that starts
with the leaves, and successively merges leaves and clusters
into larger clusters until the top of the tree is reached (Fig. 6a).
The choice of which leaves or clusters to merge depends (in
addition to the distance) on the linkage method, which indi-
cates which distance to use between already formed clusters or
clusters and leaves (e.g., the shortest, the longest, or the aver-
age distance). We here show the results of average linking,
because other methods yielded a similar clustering (except for
single linkage, which showed a long chain typically found for
this method). The results show that left regions (L1-L3) and
right regions (R1-R5) were grouped into different clusters,
which makes sense from a theoretical perspective. The clus-
tering solution also makes sense in terms of clustering cabin
locations and frontal locations (Fig. 1).

Table 1 Statistics for comparisons of response accuracy per driver. Note: When a p-value equal to one is shown, this means that the number of correct
and incorrect responses were the same across drivers

All three sizes Short vs. Medium Short vs. Large Medium vs Large

Location Chi-
square

P-
value

Location Chi-
square

P-
value

Location Chi-
square

P value Location Chi-
square

P-
value

C1 0.313 0.855 C1 0.23 0.632 C1 0 1 C1 0.23 0.632
C2 24.479 < 0.001 C2 10.78 0.001 C2 22.967 < 0.001 C2 3.058 0.08
C3 0.523 0.77 C3 0.537 0.464 C3 0 1 C3 0.537 0.464
C4 8.664 0.013 C4 7.001 0.008 C4 4.109 0.043 C4 0.876 0.349
C5 3.749 0.153 C5 1.661 0.197 C5 0.579 0.447 C5 2.84 0.092
C6 5.248 0.072 C6 0.286 0.593 C6 3.043 0.081 C6 4.857 0.028
C7 0.859 0.651 C7 0.63 0.427 C7 0 1 C7 0.63 0.427
C8 5.314 0.07 C8 0 1 C8 3.752 0.053 C8 4.188 0.041
F1 8.907 0.012 F1 9.026 0.003 F1 0.797 0.372 F1 3.805 0.051
F3 1.773 0.412 F3 2.128 0.145 F3 0.681 0.409 F3 0.158 0.691
F4 1.656 0.437 F4 1.412 0.235 F4 0 1 F4 1.412 0.235
L1 0.553 0.758 L1 0.175 0.676 L1 0.499 0.48 L1 0.119 0.73
L2 7.343 0.025 L2 6.904 0.009 L2 1.661 0.197 L2 2.63 0.105
L3 1.965 0.374 L3 0.233 0.629 L3 0.673 0.412 L3 2.196 0.138
R1 2.128 0.345 R1 0.103 0.748 R1 1.86 0.173 R1 1.616 0.204
R2 2.144 0.342 R2 0 1 R2 1.644 0.2 R2 1.644 0.2
R3 11.259 0.004 R3 8.009 0.005 R3 8.026 0.005 R3 0.161 0.688
R4 15.864 < 0.001 R4 7.792 0.005 R4 13.268 < 0.001 R4 1.412 0.235
R5 0 1 R5 0 1 R5 0 1 R5 0 1
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Using the resulting tree, a posteriori clustering can be
established. The tree can be converted to clusters by cutting
the tree at a given height. Depending on where the tree is cut,
different numbers of clusters are found.When the tree is cut at
a low point, we find 11 small clusters ({L3}, {L1, L2}, {C1,
C3}, {C4}, {R4}, {R1, R2}, {R3, R5}, {F3, F4}, {C2, F2},
{C8}, {C5, C6}). Cutting the tree at a higher point leaves five
clusters ({C1,C3}, {C2,F2,F3,F4}, {C5,C6,C7,C8},
{L1,L2,L3}, {R1,R2,R3,R4,R5,C4}).

Hierarchical clustering trees do not provide a clear insight into
how near the elements within each cluster are. Figure 6b there-
fore shows the results of a second method, which aims to estab-
lish the underlying dimensions that best represent the observed
distances (multi-dimensional scaling,MDS). The solution is plot-

ted using the two main dimensions, allowing for visualization of
the result. TheMDS solution suggests threemain clusters: one on
the top left of the map {L1, L2, L3}, one on the right {R1, R2,
R3, R4} and one in the bottom left (the remaining locations). The
left and right clusters agree with those found for hierarchical
clustering, but MDS provides less information about how the
Cabin and Front regions should be clustered.

Finally, Fig. 6c shows the results of a third method that uses
graphs, which can deal with asymmetric distance matrices. It
shows the same clustering of the L-areas {L1, L2, L3}, but no
clustering of the R-areas. Instead, a cluster of C-areas can be
seen on the left of the graph. The graph method therefore
suggests a solution in between that of hierarchical clustering
and MDS.

Fig. 6 a Hierarchical clustering solution using the confusion counts. b MDS result using the confusion counts. c Network analysis of the
confusion counts
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