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Abstract

Acceleration change index (ACI) is a fast and easy to understand heart rate variability

(HRV) analysis approach used for assessing cardiac autonomic control of the nervous sys-

tems. The cardiac autonomic control of the nervous system is an example of highly inte-

grated systems operating at multiple time scales. Traditional single scale based ACI did not

take into account multiple time scales and has limited capability to classify normal and path-

ological subjects. In this study, a novel approach multiscale ACI (MACI) is proposed by

incorporating multiple time scales for improving the classification ability of ACI. We evalu-

ated the performance of MACI for classifying, normal sinus rhythm (NSR), congestive heart

failure (CHF) and atrial fibrillation subjects. The findings reveal that MACI provided better

classification between healthy and pathological subjects compared to ACI. We also com-

pared MACI with other scale-based techniques such as multiscale entropy, multiscale per-

mutation entropy (MPE), multiscale normalized corrected Shannon entropy (MNCSE) and

multiscale permutation entropy (IMPE). The preliminary results show that MACI values are

more stable and reliable than IMPE and MNCSE. The results show that MACI based fea-

tures lead to higher classification accuracy.

Introduction

Biological signals are output of complex integrated subsystem, whose behaviour evolves with

time [1]. Due to the interaction of numerous subsystems, the biological systems have the capa-

bility to evolve and adjust their self in a dynamic environment. The hierarchy of structural

sub- systems and coupling between them depict the biological systems operate across multiple

spatial and temporal scales [2–4]. Hence, information extracted at single time scale may not be

dynamically correct. Multiscale Entropy (MSE) was proposed by Costa et al. [2], for extracting

information from biological signals and validated that biological signals provide dynamically

incorrect information at single time scale. Since then, MSE has been applied in numerous

fields including biomedical signal processing [2, 3, 5, 6], electro-seismic time series data [7]

and financial time series [8]. Various variants of original MSE have been proposed by either
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changing the coarse graining procedure or by using different entropy estimate to quantify the

dynamical information and to address its drawbacks [6, 9–12].

In MSE, initially a coarse-grained procedure is applied on the original time series, according to

the scale factor τ. On scale 1, the resultant coarse-grained time series is the original time series itself.

At scale two, the average of ith and (i+1)th value in the time series is taken to form the coarse-

grained time series and its size is calculated by dividing the original time series with τ. Then, Sam-

ple Entropy (SE) of coarse-grained time series is computed and plotted in contrast to scale factor.

MSE required long size time series and the size of error bars increases in small time series,

because size of the coarse-grained time series heavily depends on the scale factor. Original

author of MSE used 20000 data points and calculated entropy for 20 scales. Similarly, MSE is

also affected by non-stationarity, because of fixed size of similarity criterion (r). MSE was suc-

cessfully applied for healthy (NSR) and diseased (CHF) subjects. Diseased subject had lower

complexity as compared to healthy subjects [2, 3].

MSE uses sample entropy on the coarse-graining time series, whereas Multiscale Permuta-

tion Entropy (MPE) uses concept of Permutation Entropy (PE) on multiple scales of coarse-

grained time series. PE is advantageous in the presence of dynamical noise, so it can be success-

fully used to characterize the healthy and diseased subjects [13]. Gaussian white noise was used

to compute the MPE. The results of the computation were compared with Multiscale entropy

(MSE). It was found that both SE and PE decreased monotonically as the scale factor increases

[13]. Healthy (NSR) and diseased (CHF) subjects were compared and it was found that healthy

subjects are more irregular on large time scales as compared to the original time series.

In MSE, increase in the scale factor results in a decreased coarse-grained time series, and

the variance of the entropy’s coarse-grained series is increased, which is estimated by SE. The

variance would become high at large scale of estimated entropy values, which results in a

decreased reliability, making time series difficult to distinguish. Composite Multiscale entropy

(CMSE) was proposed to reduce the variance at large scales of estimated entropy, which

showed good performance for short time series [10, 11]. Both 1/f noise and while noise data

was used for computation of CMSE and MSE and while comparing the results of both esti-

mates, it was found that CMSE gave reliable estimation of entropy than MSE.

Recently sign time series analysis methods were applied for quantifying the information car-

ried by biological signals [14]. Ashkenazy et al. (2000) in their scaling analysis of RR time series,

used the sign series (sign of difference of the time series) as an intermediary time series [14].

They derived two sub series: magnitude mi = |ΔRRi | and sign series si = sign(ΔRRi) from the

original time series. They obtained scaling exponent by using detrended fluctuation analysis

(DFA) [15] on sign series. To quantify the dynamics information from inter beat interval time

series data (healthy and pathological) Garcia-Gonzalez proposed Acceleration change index

(ACI) [16]. ACI is closely related to the time series autocorrelation function. The study revealed

that ACI was lower in control groups compared to pathological subjects ACI is robust in case of

dynamical and observational noise, however, its classification ability is modest. Thus, using ACI

for quantifying the dynamical information from coarse grained time series generated using mul-

tiscale coarse graining procedure can be an important endeavour for distinguishing healthy and

pathological. In this study, we propose multiscale ACI (MACI) to investigate the dynamical fluc-

tuations of interbeat interval time series for assessing cardiac autonomic control at multiple time

scale improve classification ability of ACI for distinguishing healthy and pathological Subjects.

Materials and methods

The scale-based acceleration change index named as multiscale acceleration change index

(MACI) is the modified form of acceleration change index (ACI). ACI was proposed Garcia-
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Gonzalez et al [16] for characterizing the dynamics of HRV signals [13], which is closely

related to autocorrelation function of a given signal. Garcia-Gonzalez et al [16] described in

detail the mathematical background relation between autocorrelation function and ACI of the

time series. The results reported by Garcia-Gonzalez et al [16] aver that ACI was lower in con-

trol groups compared to post-infarct (PI) groups. On comparing with standard linear HRV

measures such Mean RR, standard deviation of normal to normal RR-intervals (SDNN), root

mean square of the successive differences (RMSSD) and ratio of low frequency to high fre-

quency (LF/HF) with linear ACI was only index that provided significant no other indices

except ACI provide significant difference between the groups [16].

The cardiac autonomic control maintained by balancing action of sympathetic and para-

sympathetic branches of the autonomic nervous system comprises of feedback controlling

mechanism operating at multiple time scales. Traditional ACI did not consider multiple time

scales and can have limited capability to classify healthy and different pathological groups. To

address this issue, a novel approach MACI is proposed by incorporating multiple time scales

to extract dynamical information encoded by the HRV signals about healthy and pathological

systems.

Acceleration change index (ACI)

To calculate ACI of time series data following procedure was adopted.

Step 1: Given the RR-interval time series. The differentiated RR-interval (DRR) (DRR)

time series is obtained as:

DRRðnÞ ¼ RRðnþ 1Þ � RRðnÞ; n 2 ½N � 1�

Where N is the total number of RR-intervals and RR(n) is the RR interval from beat n to

beat n+1, and.

Step 2: Sign of DRR (SDRR) is obtained by quantizing DRR series in ‘0’ and ‘1’. SDRR is ‘0’

if DRR<0 and ‘1’ if DRR> = 0.

Step 3: Starting from n = 1 to n = N—1, we generate the sign change (SC) series as

SCðjÞ ¼ n

if SDRRðnÞ 6¼ SDRRðn � 1Þ; j 2 ½1;M þ 1�

Where M + 1 is the number of sign changes. SC(j) = n implies that RR(n) is the jth local

maximum or minimum of the tachogram with respects to threshold T.

Step 4: Sign change series is differentiated to obtain DSC, which is the distance (in beats)

between successive changes of sign of the DRR time series:

DSCðjÞ ¼ SCðjþ 1Þ � SCðjÞ

The Acceleration change index (ACI) is defined as:

ACI ¼ k=M

Where k is the number of times DSC time series equal 1 and M is the total number of sam-

ples of DSC time series.

Multiscale acceleration change index (MACI)

To compute the corresponding ACI over a sequence of scale factors MACI is used. The

coarse-grained time series, y(τ), can be constructed at a scale factor of τ, for a one-dimensional
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time series, x = {x1,x2,. . .., xN}, according to the following equation:

ytj ¼
1

t

Pjt
i¼ðj� 1Þtþ1

xi; 1 � j �
N
t

The coarse-grained time series is divided into non-overlapping windows of length τ, and

the data points inside each window are averaged as shown in Fig 1 [17, 18]. To find MACI

value, we then define the ACI measurement of each coarse-grained time series.

MACIðx; tÞ ¼ ACIðyðtÞÞ

The MACI for each scale is computed by applying ACI on coarse-grained time series, y(τ)

The length of time series data is important for most of the nonlinear measurements. In

MACI the length of time series after coarse-grained procedure is equal to the length of original

time series divided by scale factor (τ). As the length of coarse-grained time series is reduced

the variance of ACI measurements grows. Flow chart of MACI algorithm is presented in Fig 2.

Statistical analysis and evaluation metrics

The analysis of variance (ANOVA) was used to analyse the differences among groups means

and their concomitant measures for three or more groups. The one-way ANOVA is an omni-

bus approach, significant F statistic indicates that group means are statistically different, if any

one of the groups is significantly different, but does not make paired comparison. The Bonfer-

roni post-hoc test was used for multiple comparisons among the groups. The degree of separa-

tion among groups was quantified by using Area under receiver operator characteristic Curve

(AUC) values (Mcneil & Hanley, 1984). The AUC is generally distinguished index for quanti-

fying the level of separation between the groups. The AUC values show perfect separation of

two groups at maximum value that is 1 and 0.5 value of AUC correspond to separation of

groups by pure chance.

Data sets

In this study we used data sets of normal sinus rhythm, congestive heart failure and atrial

fibrillation. The details of these data sets are illustrated in Table 1.

Fig 1. Schematic illustration of the coarse grained procedure.

https://doi.org/10.1371/journal.pone.0243441.g001

PLOS ONE Nonlinear dynamics analysis of heart rate variability signals

PLOS ONE | https://doi.org/10.1371/journal.pone.0243441 December 17, 2020 4 / 14

https://doi.org/10.1371/journal.pone.0243441.g001
https://doi.org/10.1371/journal.pone.0243441


Results

The performance of MACI was evaluated for distinguishing healthy and pathological groups

at multiple time scale using coarse graining procedure. The mean of the time series was used

as criterion for transforming original time series into coarse grained time series at multiple

time scales. The results of MACI were compared with original ACI algorithm (MACI at tem-

poral scale 1) for distinguishing healthy and pathological groups.

In the Table 2, results of ANOVA for comparing NSR, CHF and AF subjects using ACI and

MACI(Mean) indices is presented. In the table columns are labelled Sum of Squares (between

and within the groups), df (degrees of freedom between and within the groups), Mean Square

(between and within the groups), F measure and Sig. The only column labelled Sig., represent-

ing significance level of ANOVA, is important from researcher’s perspective for interpretation

results and all other columns are used mainly for intermediary computational tasks. If the

value (s) of Sig. in this column is (are) less than the critical value set by the researcher (say,

0.05), then the outcome will result in significant effects, while value(s) greater 0.05 value will

depict that effects are not statistically significant. The statistically significant results

Fig 2. Flow chart of the MACI algorithm.

https://doi.org/10.1371/journal.pone.0243441.g002
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demonstrate that differences between groups are not by chance or sampling error. The F-mea-

sure is basically the ratio of variability between groups compared to the variability within the

groups determining whether sample means are within sampling variability of each other.

The larger F–measure depicts that the probability of real effects is statistically significant.

When the effects are statistically significant, the means needs to be examined to determine the

nature of the effects using Post-hoc test. The results presented in the Table 2, indicated that the

value of ACI (MACI at temporal scale 1) for normal subjects is lower than CHF subject and

higher than AF subjects resulting in incorrect dynamical information. When scale is increased,

the MACI value for normal subjects became smaller than both CHF and AF subjects, showing

that ACI is higher for both disease groups. The results also indicated that F-measure started to

increase when temporal scales were increased. The increase in F-measure with temporal scales

depicted that probability of real effects in separating healthy and pathological has increased.

Since the results are statistically significant, the means needs to be examined to determine the

nature of the effects using Post-hoc test.

In Table 3, Bonferroni post-hoc test is carried out for multiple comparisons of NSR and

CHF, AF (disease) subjects. The results indicated that maximum separation between NSR and

CHF subjects was obtained at temporal scale τ = 3, (mean difference -0.1586 and p-

value = 1.58×10−18). Similarly, the maximum separation between NSR and AF subjects was

Table 1. Data sets (R-wave to R-wave interval) used in the study.

Number of

subjects

Data Sets Source of Data

72 Normal sinus rhythm

(NSR)

The 72 normal sinus rhythm subjects in which 35 male and 37 females

were taken from publicly available databases of physio net. The age of the

subjects was between 20 to 78 years. The 24 subjects taken from

MIT-BIH NSR database comprised of 18 hours ECG recordings. Rest of

48 subjects taken from NSR RR interval database comprising of 54 beat

annotation files of long-term ECG recording [19, 20].

44 Congestive heart

failure (CHF)

The 44 congestive heart failure subjects in which 29 male and 15 females

were taken from physio net (publicly available database). The 15 sever

CHF subjects were taken from BIDMC CHF database. Rest of 29 subjects

taken from CHF RR interval database comprising of 29 beat annotation

files for long term ECG recordings [20].

24 Atrial fibrillation (AF) The 24 atrial fibrillation subjects were taken from physio net a publicly

available database. All-time series AF data sets comprise of 10 hours

single recording [20].

https://doi.org/10.1371/journal.pone.0243441.t001

Table 2. ANOVA table of ACI (MACI at temporal scale 1) and MACI (mean) indices for distinguishing NSR, CHF and AF subject.

Time Scale Mean ± STD Sum of Squares Df Mean Square F Sig.

NSR CHF AF B/W Group Within Group B/W Group Within Group B/W Group Within Group

1 0.57±0.09 0.61±0.08 0.54±0.11 0.105 1.086 2 137 0.052 0.008 6.616 1.81×10−3

2 0.52±0.09 0.63±0.07 0.64±0.10 0.500 1.039 2 137 0.250 0.008 32.96 2.06×10−12

3 0.41±0.07 0.57±0.08 0.58±0.09 0.936 0.872 2 137 0.468 0.006 73.56 1.99×10−22

4 0.42±0.06 0.53±0.09 0.56±0.07 0.561 0.738 2 137 0.280 0.005 52.05 1.53×10−17

5 0.47±0.06 0.52±0.09 0.56±0.06 0.181 0.701 2 137 0.090 0.005 17.66 1.50×10−7

6 0.50±0.06 0.50±0.07 0.57±0.05 0.091 0.541 2 137 0.046 0.004 11.57 2.27×10−5

7 0.52±0.05 0.50±0.07 0.57±0.05 0.061 0.480 2 137 0.030 0.004 8.644 2.91×10−4

8 0.53±0.04 0.50±0.07 0.56±0.05 0.057 0.404 2 137 0.029 0.003 9.743 1.10×10−4

9 0.53±0.04 0.50±0.06 0.56±0.05 0.060 0.342 2 137 0.030 0.002 11.93 1.67×10−5

10 0.53±0.04 0.49±0.06 0.57±0.06 0.095 0.339 2 137 0.047 0.002 19.14 4.67×10−8

https://doi.org/10.1371/journal.pone.0243441.t002
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obtained at temporal scale τ = 3 (mean difference -0.1721, sig. = 2.07×10−15) and CHF and AF

subjects was obtained at temporal scale τ = 10 (mean difference -0.0773, p-value = 2.73×10−8).

It is evident from Table 2, for temporal scales 2 and 3, mean MACI values of CHF and AF

pathological groups are almost same, however, interbeat interval time series of both pathologi-

cal groups are outcome of different cardiac dynamics. Similarly, at temporal scales 6 and 7,

mean MACI of NSR and CHF subjects almost same. Thus, to differentiate the time series of

dynamical processes, both specific values of MACI and the dependence of MACI values at

temporal scales needs to take into consideration.

In Fig 3, comparison ACI and MACI (optimal scale) for separation of NSR vs CHF, NSR

Vs AF and NSR Vs CHF are shown. It is evident from the figure, ACI was modest in separating

these groups, however, MACI at optimal threshold values revealed significantly high

Table 3. Comparisons of NSR, CHF and AF subjects on the basis of ACI (MACI at temporal scale 1) and MACI (mean).

Time Scale Mean Difference of the groups P-Value

NSR VS CHF NSR VS AF CHF VS AF NSR VS CHF NSR VS AF CHF VS AF

1 -0.0476 0.0284 0.0760 1.78×10−2 5.34×10−1 2.97×10−3

2 -0.1145 -0.1278 -0.0133 6.07×10−10 1.62×10−8 1

3 -0.1586 -0.1721 -0.0135 1.58×10−18 2.07×10−15 1

4 -0.1141 -0.1448 -0.0306 6.93×10−13 1.78×10−13 3.06×10−1

5 -0.0538 -0.0919 -0.0381 3.99×10−4 6.79×10−7 1.13×10−1

6 -0.0028 -0.0688 -0.0660 1 2.38×10−5 1.82×10−4

7 0.0202 -0.0422 -0.0624 2.30×10−1 8.94×10−3 1.71×10−4

8 0.0309 -0.0280 -0.0589 1.04×10−2 9.14×10−2 1.07×10−4

9 0.0288 -0.0321 -0.0610 9.19×10−3 2.16×10−2 1.19×10−5

10 0.0347 -0.0426 -0.0773 1.12×10−3 1.19×10−3 2.73×10−8

https://doi.org/10.1371/journal.pone.0243441.t003

Fig 3. Comparison of ACI and MACI (at optimal scale) for classification of (a) NSR Vs CHF, (b) NSR Vs AF and (c)

CHF Vs AF subjects.

https://doi.org/10.1371/journal.pone.0243441.g003
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separation between the different groups. MACI showed highest separation between NSR and

both pathological groups (CHF and AF) at optimal scale 3 and highest separation between two

pathological groups CHF Vs AF was obtained at temporal scale 10. The findings aver that

small temporal scale can distinguish healthy and pathological groups due to considerable dif-

ference in the dynamical information provided by HRV signals, however, for separating path.

In Fig 4, performance evaluation metrics sensitivity, specificity, positive predictive value

(PPV), false discovery rate (FDR), negative predictive value (NPV), false omission rate (FOR)

and total accuracy are shown for classification of NSR vs CHF, NSR Vs AF and NSR Vs CHF

subjects using the Multilayer perceptron and 10-fold cross validation strategy. It is evident

from figure all the evaluation metrics revealed higher classification ability of MACI at optimal

scales for classification of different groups.

In Fig 5, the area under ROC curve (AUC) is shown for assessing the degree of separation

between NSR Vs CHF, NSR Vs AF and CHF and AF subjects by plotting “1-specificity” against

“sensitivity”. AUC is a well-established index of diagnostic accuracy. The AUC = 0.5 shows

picking a class by a pure chance and AUC = 1 reveals perfect separation between two classes.

Higher values of AUC for MACI reveal higher classification ability of this index at optimal

time scales compared ACI.

In Fig 6, results of MACI for different signal lengths to classify NSR and CHF subjects are

illustrated. The findings show that optimal separation between NSR and CHF was found at

Fig 4. Performance evaluation of ACI and MACI (at optimal scale value) for classification of (a) NSR Vs CHF, (b)

NSR Vs AF and (c) CHF Vs AF subjects.

https://doi.org/10.1371/journal.pone.0243441.g004
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time scale 3 for signal length >1000, and for signal lengths < = 1000, time scale 2 provided

maximum separation followed by the time scale 3. The results demonstrate that almost for all

the signal lengths optimal time scale 3 is consistent for classifying NSR and CHF subjects.

In Fig 7, switching averaging brackets to right to investigate that coarse graining procedure

is stable or not. We investigated the effect by switching the averaging brackets 1 to 4 steps to

right. WE found overlap of MACI values at switching brackets 1 to 4 steps. It is inferred out

for small switching brackets coarse graining procedure is stable and does not affect the MACI

at different threshold values.

Furthermore, the performance of MACI was evaluated by comparing it with other nonlin-

ear multiscale based techniques (Improved Multiscale Permutation Entropy (IMPE) [21] and

Multiscale Normalized Corrected Shannon Entropy (MNCSE) [22]). The effectiveness of the

Fig 5. AUC for assessing degree of separation using ACI and MACI at optimal scale (a) NSR Vs CHF (b) NSR Vs AF

and (c) CHF Vs AF subjects.

https://doi.org/10.1371/journal.pone.0243441.g005

PLOS ONE Nonlinear dynamics analysis of heart rate variability signals

PLOS ONE | https://doi.org/10.1371/journal.pone.0243441 December 17, 2020 9 / 14

https://doi.org/10.1371/journal.pone.0243441.g005
https://doi.org/10.1371/journal.pone.0243441


proposed approach is demonstrated using interbeat interval signals from healthy and patho-

logical subjects. The only column labelled Sig., representing significance level and if the value

(s) of Sig. in this column is (are) less than the critical value set by the researcher (say, 0.05),

then the outcome will result in significant effects, while value(s) greater 0.05 value will depict

that effects are not statistically significant. The statistically significant results demonstrate that

differences between groups are not by chance or sampling error.

In Table 4, corresponding p-values of MACI, IMPE and MNCSE for healthy and pathologi-

cal subjects are presented at temporal scales 1 to 10. Scales based measure MACI, IMPE and

MNCSE were able to discriminate healthy from pathological group more significantly at a

wide range of scales. The maximum separation between healthy and pathological subjects was

obtained at temporal scale 3(p-value = 1.58×10−18) for MACI, temporal scale 7(p-

value = 1.00×10−2) for IMPE and temporal scale 4(p-value = 2.72×10−6) for MNCSE. It is evi-

dent that the differences between MACI, IMPE and MNCSE estimates were smaller at scale 1,

as compared to multiple time scale. The MACI provided was more robust in distinguishing

healthy and pathological subjects.

Discussion

The cardiac autonomic control is regulated by the interacting mechanism of sympathetic and

parasympathetic branches of autonomic nervous system (ANS) and its ability to adapt and

Fig 6. Variations in the MACI values at different time scales with signal length.

https://doi.org/10.1371/journal.pone.0243441.g006
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function in a dynamic environment. Higher adaptive of capability of ANS to regulate cardiac

autonomic control reveals HRV signals of heathy subject reflect higher complexity [2] and

decreased ACI [13, 16]. Aging and disease reduce the adaptive capability of the ANS and

degrade cardiac autonomic, which results in loss of complexity and increase in ACI. The

recent research evidences [2, 21, 22] reveal that studying dynamics of these signals at tradi-

tional single scale provides misleading information. In this study, we analysed the dynamics of

Fig 7. Switching of averaging brackets to the right.

https://doi.org/10.1371/journal.pone.0243441.g007

Table 4. Corresponding p-values comparison of MACI, IMPE and MNCSE at temporal scales 1 to 10 for quantify-

ing the dynamics of healthy (NSR) and pathological (CHF) subjects.

Time Scale Sig.

MACI IMPE MNCSE

1 1.78×10−2 5.10×10−1 6.62×10−1

2 6.07×10−10 3.46×10−1 2.18×10−3

3 1.58×10−18 8.51×10−1 6.26×10−5

4 6.93×10−13 2.86×10−1 2.72×10−6

5 3.99×10−4 1.16×10−1 2.72×10−6

6 1 1.70×10−2 2.94×10−6

7 2.30×10−1 1.00×10−2 8.98×10−6

8 1.04×10−2 7.60×10−3 1.12×10−5

9 9.19×10−3 1.10×10−2 2.11×10−5

10 1.12×10−3 1.10×10−2 5.13×10−5

https://doi.org/10.1371/journal.pone.0243441.t004
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healthy and pathological using a novel index MACI to investigative robustness of incorpo-

ration of multiple time to quantify dynamics of HRV signals extracted from ECG recording of

NSR, CHF and AF subjects.

It is evident from Table 2 and Fig 3, ACI (TACI at τ = 1) showed dynamically incorrect

results for AF subjects (0.54±0.11) compared to NSR (0.57±0.09). Incorporating multiple time

scales resulted in lower ACI for NSR subjects compared to both AF and CHF subjects reveal-

ing that dynamical route of disease is associated with increase of ACI. Basically, ACI increases

when local maxima are immediately followed by local minima and vice versa [13, 16]. In

healthy subjects controlling mechanism of ANS regulates heartbeat and controls the immedi-

ate alternations of local maxima and local minima, which results is decrease in ACI in healthy

subjects. However, in case pathological subjects due to loss of adaptive capability, controlling

mechanism of ANS fails to regulate heartbeat, which causes immediate alternations in heart-

beat, which results in the increase of ACI. Thus, increase in ACI is associated with the dynam-

ics route of disease and decrease in ACI is associated with healthy dynamics.

We used standard multiscaling procedure proposed by Costa et al [2] for generating coarse

grained time series. We observed significantly lower MACI for NSR subjects compared to

CHF and AF subjects at time scales 2 to 5 and at time scales 2 to 10 respectively. The significant

difference between CHF and AF was observed at times scales 4 to 10. The highest separation

between NSR vs CHF and NSR vs AF was obtained at time scale 3, whereas for NSR vs AF sub-

jects, maximum separation was obtained at time scale 10. Thus, we merely iterated time scale

iterated time scale values from 1 to 10 to characterize the heart rate dynamics of healthy and

pathological subjects. The findings aver that along with specific MACI values, we need to con-

sider their dependence on time scale for better characterization of HRV signals of healthy and

pathological subjects.

The present study investigated dynamics of heart rate variability signals to assess cardiac

autonomic control of nervous system. Thus, we need not to consider the morphology of the

ECG signal, instead, we extracted RR-intervals (interbeat intervals) from the ECG signal and

used MACI, which is an extension ACI for assessing dynamical fluctuations of healthy and dif-

ferent pathological subjects. The sign change in the time series occurs when an increasing

interval immediately is followed by the decreasing interval and vice versa. Thus, sign informa-

tion is enough for investigating the dynamical fluctuations of the heart, which assist the clini-

cians to asses cardiac autonomic control and its variations occurring due to aging and disease.

We also investigated the variations in MACI values for different signal lengths to classify

NSR and CHF subjects. The findings show that optimal separation between NSR and CHF was

found at time scale 3 for signal length>1000, and for signal lengths < = 1000, time scale 2 pro-

vided maximum separation followed by the time scale 3. The results demonstrate that almost

for all the signal lengths optimal time scale 3 is consistent for classifying NSR and CHF sub-

jects. The optimal value of time scale revealing highest separation between NSR vs CHF and

NSR vs AF was 3, whereas for NSR vs AF subjects optimal scale was 10. Thus, optimal scale is

different for separating NSR subject from pathological (NSR Vs CHF of NSR Vs AF) subjects

compared to optimal scale for separating two pathological groups (CHF Vs AF). The findings

aver that along with specific MACI values, we need to consider their dependence on time scale

for better characterization of HRV signals of healthy and pathological subjects.

Conclusion

In this study, we proposed multiscale acceleration change (MACI) to analyse the dynamics of

HRV signals accurately and improve classification ability of ACI. to classify healthy and patho-

logical subjects. The preliminary results aver that MACI provided dynamically more accurate
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information compared ACI and outperformed ACI at wide range of temporal scales in classi-

fying healthy and pathological subjects. We also compare MACI with IMPE and MNCSE for

assessing the robustness the proposed index. The performance parameters clearly demon-

strated that proposed MACI provided better separation between these groups than traditional

ACI, IMPE and MNCSE measures. The contributions of this research are twofold. The empiri-

cal results show that classification ability of ACI has increased by incorporation of multiple

time scales and this index more effective in analysing dynamics HRV signals accurately. The

present investigated performance of MACI for classifying only HRV signals of healthy and

pathological subjects. Further studies are suggested to evaluate the robustness of MACI for

analysing other biological signals such as electroencephalographic recording and stride inter-

val time series of healthy and neurodegenerative disease subjects.
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